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Abstract—In this paper, we describe a nontraditional approach 
for realizing a highly interactive adaptive system with a mini-
mal level of intrinsic knowledge; which opens up the way for a 
more open and active adaptation to the rules and dynamic 
changes of the environment. First, we discuss a lightweight, 
incremental adaptation model where knowledge and strategy 
emerge during (and throughout) the system’s normal opera-
tion. Then, this model is extended with a collective mechanism: 
a society of learners makes use of each other’s findings in 
order to converge faster. Finally, principles are evaluated with 
simulation in a theoretical showcase (‘Connect-5’) world. 

Keywords — collective-adaptive systems, open learning 

I.  INTRODUCTION 
Emergence is one of nature’s strongest weapons for 

handling complex, dynamic and large scale problems. The 
application of surprisingly simple algorithms, when done in 
multitudes, may lead to a different quality of global results. 
Certain fields of emergent behavior have already been uti-
lized in computer science (such as self-organization), while 
other possible application areas are yet untouched. In this pa-
per we propose to face the challenge of open adaptive sys-
tems with an emergent solution.  

Adaptiveness–in our context–means that the system is 
able to dynamically respond to the changes of the environ-
ment. A traditional approach for achieving adaptivity is to 
maintain a self- and/or environment model, detect when 
changes occur, and explicitly start an adjustment process 
within the feedback loop. [1] Powerful tools like reasoning, 
semantics and ontology guarantee that the adaptation is ef-
fecttive and convergent.[3] However, the success of this app-
roach largely relies on the accuracy of the system’s explicit 
knowledge: on the completeness of the world model and on 
the efficiency of built-in adjustment mechanisms. As long as 
environmental changes are in line with it, the system is gua-
ranteed to adapt efficiently; but it is theoretically impossible 
to react to changes that are not included in the model, or to 
choose adjustment strategies that were not encoded previous-
ly.[4,5,6] Our research focuses on the question: how much 
can we avoid this burdening explicit knowledge in an adap-
tive system, thus, unbind the learning process, and let the 
system openly find its way for achieving adaptation (instead 
of following what scientist taught it to do)? An extremity 
may be a system without any pre-injected model or strategy, 

an idea which opens up dimensions yet unknown in dynamic 
adaptation. In this paper we propose a knowledge-poor adap-
tation model (the amount of explicit, pre-injected model is 
kept very low) that we prove to be open and effective for a 
complex dynamic problem case. 

Adaptivity is often required in distributed situations, 
where autonomous building blocks of the system need to 
find their optimum locally, without central help or control. 
Collective adaptive systems make use of the connectedness 
of individual blocks–through communication–in order to 
help converging faster or globally better. The presence of an 
explicit world model facilitates the collective behavior in this 
case, as members of the society share a common and well-
defined understanding of the world and of possible strate-
gies. The question we asked was: is it possible to establish 
meaningful cooperation between independent adaptive sys-
tems without sharing an explicit world model; is it possible 
to share ones expertise and help others to adapt better even if 
their–independently developed–knowledge and strategy is 
highly different? We describe a collective self-evaluation 
and expertise sharing mechanism for the society of know-
ledge-poor adaptive systems, and discuss the effects. 

The structure of the paper is the following. Section II de-
fines the problem space: a theoretical world with an adapta-
tion challenge and easy measurability.  Section III introduces 
the knowledge-poor learning and adaptation model. Section 
IV generalizes the model from a collective perspective, 
where independent learners share knowledge with each 
other. Section V discusses further aspects, consequences and 
limitations of the pro-posed models and algorithms. Section 
VI discloses evaluation results about the goodness of the 
individual and collective algorithms. Section VII concludes. 

II. PROBLEM STATEMENT 
The problem space tackled with in this paper is a world 

with actors who observe their environment and make actions 
from time to time. Certain states of the world mean reward to 
the actor who reaches it, while other states result in penalty.  
The world is only roughly modeled by the actors–the set of 
ob-servable factors is limited–and actors don’t have pre-
injected knowledge or assumptions about rules, requirements 
or strategies of the world. We focus on scenarios which can 
be described in means of discrete time-steps, one or more 
actors take part, and their actions modify to the world’s state. 
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The environment is not only dynamic because of the pre-
sence of other actors (who also act), but also in means of 
general requirements or rules which may change from time 
to time. Actors get known with the actual requirements imp-
licitly, through reward or penalty provided by the environ-
ment (reinforcement learning). 

While numerous cases can be imagined satisfying the 
above specification; we choose a showcase in which the ba-
sic abilities of the system can be demonstrated and efficient-
ly evaluated. This is actually a generalization of a simple 
two-player, deterministic, fully observable, zero-sum board 
game, often known as connect-5, gomoku, or amoeba. 

A. Starting point: a basic Connect-5 World 
Connect-5 is a simple board game, an extension of tic-

tac-toe for bigger sized boards and longer combinations. 
There are two players in the game, one with mark X and the 
other one with mark O. The game starts with a board of tabu-
lar arranged empty square cells. Players make steps intermit-
tently; each one places their mark onto an empty cell. A 
player wins the game, if five of their signs is placed consecu-
tively in one row, column, or in a diagonal line on the board. 
When a player wins, the other one looses. Tie is reached, if 
the board has no more empty cells, but no one has won. 

More formally, the state of the game is represented by 
the board itself (cells and their contents). The transition 
between states is the action of an actor, and the game is basi-
cally a time series of game states. Only one actor is allowed 
to perform action in each particular state. The action is man-
datory, so if there is an empty cell on the board, the upco-
ming actor must act. After each action, the new state is eval-
uated by the environment, and if winner or tie state is 
reached, actors receive feedback. 

Actors are able to observe a rough model of the actual 
environment at any time; and are also able to receive feed-
back about winning/losing/tie state.  They also may accumu-
late a local knowledge base from these observations. 

The goal of the actor is to perform actions that lead to a 
winning state, while the environment is dynamically modi-
fied by the opponent from time to time.  

B. Generalized Connect-5 World 
While the basic connect-5 world incorporates several 

important properties of our problem space, we decided to 
generalize it in order to include further aspects of dynamism 
and collectiveness.  
• Collectiveness. Instead of a single actor-opponent pair, 

the world consists of a society of players, engaged in 
multitudes of parallel games.  The members of the soci-
ety are still autonomous actors–with individual experi-
ence, strategy and decision ability –, but they also 
possess the ability of communicating with each other. 
Actors may share their expertise with other actors, or 
learn from others’ shared knowledge. Please note that it’s 
not guaranteed that the members of the society face the 
same problem instance, e.g., same opponent style or the 
same rules –; nor do we say that the knowledge of any 
individual agent is guaranteed to be of help for others. 
However, the pure ability of sharing one’s dynamically 

built knowledge is an important attribute for a collective 
system, also from the theoretical point of view. Pair-wise 
knowledge sharing may also–but not necessarily–lead to 
the emergence of society level “common knowledge”.  

• Dynamic opponent style and strength.  The strategy, 
goodness and consistency of the opponent may change 
over time, resulting in dynamically changing envi-
ronmental requirements from the actor’s point of view.  
Extremities may be a random opponent (just picking ran-
dom steps), and an analytically optimal opponent (using a 
mathematically optimal strategy). 

• Changing game rules. We also allow the game rules to 
be changed dynamically during the actor’s life cycle. For 
example, the competitive aspect may be removed, so, the 
player gets rewarded for their own 5-long series regard-
less of the other player’s moves. Another way of chan-
ging the rules is to modify the length of the required 
series: e.g., 4 or 10 items long series may mean victory. 
The generalized model keeps the following attributes of 

the basic world (a) The states of the world form a time series. 
(b) Actors are able to observe the world’s state and perform 
actions. They may receive feedback from the environment in 
certain states. (c) The world changes because of the actor’s 
action or because of factors that are outside of the actor’s 
control (e.g., opponent’s action). Besides that, we also made 
the assumption that the actor has no pre-injected knowledge 
of the rules of the world or about the goal to reach–it has to 
reach (positive) game states by ‘learning by doing’. [9] This 
may be a selfish requirement under static conditions (where 
explicit world mode-ling could result in optimal behavior 
from the startup), but our goal here is to ensure the openness 
of the system and its dynamic adaptation ability for im-
mensely new requirements. 

The state space in the showcase example–supposing a li-
mited board size–is finite. However, we don’t see that as a 
hard limitation from the theoretic side, because the observa-
tion ability of an agent is finite by definition (so any board 
size larger than the player’s vision would work as infinite), 
and the mathematical model we use for learning can be ea-
sily extended for non-binary (multi-value or continuous 
interval) cases.  

Summarizing the above, the agent’s job is to learn the 
dynamically changing rules of the world through a feedback 
mechanism in order to select actions that lead to success; 
plus, to do this on-the-fly, without having had any pre-injec-
ted knowledge or preliminary training session; and possibly 
in a collective manner (by knowledge sharing).  

III. BASIC LEARNING MODEL 
This section describes the basic learning and adaptation 

model used within the open autonomous agents.  The model 
combines known basic models (Markov Decision Process 
and Temporal Difference Learning) with specific extensions. 

A. Markov Decision Process 
The inspiration of our model comes from reinforcement 

learning (RL), a general approach that tackles with problems 
very similar to our problem statement. RL is not one specific 
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mechanism but a dynamically improving domain of machine 
learning models. The common approach [7] focuses on fin-
ding actions in an actual world state, in order to achieve a 
goal desired in that context. It is assumed, that an agent 
completing this task is able to sense the environment to some 
extent, is able to perform actions which influence that state, 
and is able to receive feedback from the environment about 
its success.  

A widely used mathematical model describing reinforce-
ment learning problems is the Markov Decision Process 
(MDP). It is defined as a five-tuple (S, A, R, P, γ), where S is 
the set of world states, A is a set of actions, P is a state 
transition probability function P : S × A × S ↦ [0, 1], (where 
P (s’, a, s) tells the probability of reaching state s’ after 
performing action a in state s), R is the reward function R ↦ℝ, 
and γ is a discount factor from interval (0, 1]. It’s important 
to note that the observation capacity of the agent is limited; 
hence, the state observed may significantly differ from the 
real world state. At this stage, S refers to the real world state 
(later, it will be replaced by the agent’s perception). 

RL models are often equipped with value functions and 
policies to help making automatic decisions. We follow the 
terminology and notation of [10]. There is a value function 
defined for states which is able to better describe the real 
utility of a state than the reward function itself (which would 
only tell whether state is terminal). The value function is as-
sociated with a policy π, which is a mapping from states to 
actions, π : S ↦A. A value function for a given policy, Vπ : S ↦
ℝ  is defined as the expected discounted sum of rewards re-
ceived when starting (in t=0) from state s, and following 
policy π: V π (s) = E γ tR(st )t =0

∞∑ s0 = s, π[ ]. It can be shown [2] 
that this value function satisfies Bellman’s equation, and 
may be expressed in the following way: 

Vπ (s) = R(s) +γ P( ′ s , aπ , s)
′ s ∈S
∑ Vπ ( ′ s ) 

If the reward function R and transition probability funct-
ion P are both known, this formula can be analytically solved 
as a linear system. However, in most RL settings–including 
our case–the probability function P is not known; the agent 
only has access to a subset of state transitions (own experi-
ence) and to the feedback coming from the reward function. 
[8] 

To limit the size of |S| –to keep computations on an easy-
to-handle level –, often, estimations or approximations are 
used instead of exact models or values.  

We also introduced a feature extraction step between the 
raw perceived state and the state principle used within the 
model. Feature extraction helps highlighting important pro-
perties of a state, by preprocessing the raw observation be-
fore learning. The exact realization of this feature extraction 
step is an important attribute of the agent, as the extracted 
information deeply influences the learning process. In the 
basic model, the feature extraction mechanism is wired-in 
(and this is all the knowledge–even though being implicit, 
we call it knowledge– the agent gets at startup). In general 
versions of the model, features may be introduced or re-
moved on the fly.  

In means of terminology, a feature based linear 
approximator [2] for the value function is defined as: 

Vπ (s) ≈ wTφ(s)  
where Φ ∈ ℝk is a feature vector based abstraction 
belonging to the state s, and w ∈ ℝk is a parameter vector.  

While the usage of feature vectors was originally sugges-
ted in order to keep the computational complexity under 
control and to be able to deal with large or even infinite state 
spaces, we use it for two other purposes, respectively: (a) to 
facilitate convergence with the selection and usage of rele-
vant and meaningful features, and (b) to bring openness into 
the model through the possibility of dynamically adding and 
removing features–hence refreshing the implicit world mo-
del of the agent.  

With these approximations we lose the applicability of 
Bellman’s equation, but there are other efficient ways for 
finding the solution, such as the LSTD.  

B. Least-Squares Temporal Difference Method 
The Least-Squares Temporal Difference (LSTD) algo-

rithm provides way for finding a parameter vector w that ap-
proximately satisfies Bellman’s equation. Without the full 
deduction of the method discussed in [10] and recalled in [2] 
we denote the main formulae, and review it from the aspect 
of our setting. LSTD attempts to find a fixed point of the 
approximation  

w = ˜ f (w) = argmin
u ∈ℜ k

Φu − ( ˜ R +γ ′ Φ w)
2  

in which Φ and Φ’ are matrices containing m samples of 
observed state transitions from s to s’ in their rows, 
represented with Φ(s)T and Φ(s’)T in each row; ˜ R  is a vector 
containing the obtained reward ri for each of the m transi-
tions. Because the term to be minimized contains Euclidian 
norms only, the optimal fixed point can be analytically 
determined by solving a linear system bA ~~ 1− , where 

˜ A = φ(si)(φ(si) − γ φ( ′ s i)
i=1

m

∑ )T  ˜ b = φ(si)
i=1

m

∑ ri
 

In other words, the only knowledge required by the agent 
for selecting the desirable next state is only a vector (b) and a 
matrix (A).  
• Vector b gives a picture about the perceived goodness of 

each state, based on the total (positive or negative) re-
ward experienced there. 

• Matrix A describes the experienced state transition pairs. 
Transitions model the effect of the agent’s action along 
with the effect of the opponent’s action, in one unit. The 
discount factor helps in distinguishing between states im-
mediately preceding an end state and states that are far 
away. Please note that this abstraction does not include 
any preconception about the number or nature of oppo-
nents, so the model is also applicable for n > 2 players. 

From our point of view, the most important property of vec-
tor b and matrix A is that they can be constructed iteratively; 
each new experience means a minor addition to them. 

The agent may use two different approaches for transla-
ting the knowledge (matrix A, vector b) into an action: 
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(1) Calculate the expected effect of each possible action, 
and select the most desirable one based on the value 
of the result state. (If the number of actions is too 
large–or infinite–, a sampled subset of the possible 
actions may be used, with hierarchical refinement.) 

(2) Analytically identify the most desirable result state 
and then search for an action that leads to it. This 
approach is more problematic because (a) it’s not 
guaranteed that the state space is connected enough 
so an arbitrary end state can be reached from the 
current state, and (b) transitions are not deterministic 
because of the effect of the opponent, so we may end 
up in a very different end state than desired.  

We used the approach (1) in the model.  

IV. COLLECTIVE LEARNING MODEL 
In case of the collective learning model autonomous 

agents share their locally developed knowledge with each 
other. Knowledge sharing is realized as multitude of pair-
wise shares, in a self-organizing manner, without central 
control and without stashing common knowledge centrally. 

This requires the followings: (a) Knowledge import mo-
del: a mechanism to integrate external knowledge into the 
one’s own knowledge base, (b) Self-evaluation mechanism: 
a metric for the agent to evaluate the goodness of its know-
ledge in the actual environment, and (c) Sharing and accep-
tance mechanism: a mechanism that initiates and controls 
knowledge sharing / acceptance. Participants of the share–
donor and receptor–are autonomous elements, so it’s their 
free decision what, when and with whom to share or accept. 

A. Knowledge Import Model 
The import model uses the previously described matrix A 

and vector b as the manifestation of the knowledge; this is 
what the donor shares with the receptor. As shown previous-
ly, A and b are built up iteratively, thus, they’re additive.   

We defined the knowledge import mechanisms the follo-
wing way: the new knowledge of the receptor is a weighted 
combination of its old and the donor’s shared knowledge. 
Weights are denoted by c1 and c2. 

Anew = c1Aoriginal + c2Aimport bnew = c1boriginal + c2bimport 
Weights define the influence of the imported elements. 

An extreme case is when the original knowledge gets zero 
weight meaning that the imported knowledge replaces the 
receptor’s own knowledge (suppressive import). In this case 
the receptor becomes the donor’s equal copy or clone. This 
may be desirable if the imported knowledge is guaranteed to 
be of high value while the knowledge of the receptor is clear-
ly non-performing. However, suppressive import may easily 
lead to a drastic drop in the population’s diversity which may 
become dangerous when the environment changes.  

Non-suppressive import of good knowledge may perform 
somewhat weaker on the short term, but it keeps the popula-
tion diverse which is a useful property on the long term. 
Combinatory import may also accumulate a more general 
knowledge than suppressive one, because it tends to store 
information about uncommon parts of the state space (which 
may become handy when usual strategies stop working).  

B. Self-Evaluation Mechanism 
The self-evaluation mechanism of the agents is based on 

a sliding window memory about the outcome of the last few 
games. Contents of the sliding window are summarized: a 
game won counts as +1, a lost game counts as -1 and tie 
counts as zero. (This is just a despotic choice, more complex 
models could also consider trends, the goodness of the 
opponent etc.) 

C. Sharing and Acceptance Decisions 
We didn’t define explicit triggers for knowledge sharing 

because we believe it’s not possible to say that a certain 
knowledge instance is guaranteed to be helpful or unhelpful 
for others. Instead, a sharing protocol was defined: when a 
donor is ready to share, it contacts another agent who–if 
decides so–becomes the receptor. We examined the 
following sharing patterns:  
• Random sharing model. Agents initiate/accept the 

transaction with a given probability. 
• Self-confidence based model. Agents with high self-eval-

uation values offer their knowledge, and agents with low 
self-evaluation values accept it.   

• Knowledge density (completeness) based model. The 
goodness of the knowledge is measured by its complete-
ness (e.g., number of filled cells in A).  

• Opponent-based model. The receptor prefers knowledge 
that contains data about its current opponent.  

Our model extends the state of the art in the followings: (a) 
applies temporal difference (TD) learning for the problem of 
adaptive systems where requirements change dynamically 
over time (b) introduces the possibility of on-the-fly, 
automatic feature injection (c) brings TD learning into a 
collective dimension.   

V. DISCUSSION 
This section discusses consequences, generalization 

directions and limitations of the pervious models. 
The descriptive properties of the model were partially 

covered in Section III: the model is suitable for problems 
where the state of the environment changes from time to 
time and the actor is able to perform actions picked from a 
finite or infinite set of possible actions. Opponents and envi-
ronmental rules are not directly modeled within the agent’s 
knowledge, so the model is generally applicable for multi-
actor situations. The learning process is knowledge-poor, so,  
except for the initial features, the agent does not need pre-
injected knowledge.  

Learning happens naturally, during the agent’s normal 
activity; which is in contrast with today’s popular adaptive 
system approaches, where the learning phase precedes the 
phase of normal operation.  

The most important factors influencing the learnability of 
a problem are (a) what the agent perceives from the world, 
hence feature extraction, and (b) how well the actual problem 
case is presented, hence, the behavior of the opponent. 

Opponents may significantly influence the convergence 
of the learning process, especially for upexperienced agents.  
When playing against a dummy (e.g., random) opponent, the 
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agent easily spends significant amount of time in irrelevant 
sections of the problem space–as none of the players knows 
how to become successful. In case of a strong opponent the 
agent learns fast what to avoid and, probably, also what to do 
to win (see Section VI). It’s an interesting question whether 
the strongest opponent is the best, or it’s more optimal to 
learn against consequent but imperfect players. The advan-
tage of an imperfect opponent is that it leaves space for the 
agent to learn how to correct errors and how to make use of 
the other’s mistakes. We believe, and tests indicate, that the 
variety of opponent styles leads to the best kind of know-
ledge for static and dynamic cases, respectively. 

Feature extraction is the heart of the agent’s learning 
model. A novelty in our model is that features are not bound 
to be static: they may be introduced or removed dynamically, 
during runtime.  
• Features may be introduced  (a) at knowledge import, 

where the donor agent does not only transfer its know-
ledge but also the mechanism how the new feature can be 
calculated, or (b) through systematic generation where 
the agent uses data mining based techniques to generate 
new features or to derive them by combining existing 
ones. (The exact mechanism of data mining based feature 
generation is outside of the scope of this paper.)  

• Irrelevant features may be removed in order to minimize 
the problem space, thus, facilitate convergence. The trig-
ger of that may be (a) knowledge import where the agent 
may decide to remove those features that are missing 
from some/ any of the knowledge bases (b) in an expli-
citly executed feature optimization step which may be a 
mathematical matrix minimization method (e.g., prince-
pal component analysis or singular value decomposition) 
or the society may use a genetic algorithm based feature 
selection. (Experiments confirmed both directions, but 
the details are again outside of the scope of this paper.) 
Too fast convergence in the knowledge may be dange-

rous because it develops over-specialized strategies that 
work well against the current opponent but may not help if 
the environment changes. To avoid overspecialization, the 
agent may choose prevention strategies, such as picking se-
cond-best directions. Such a strategy leads to a better cove-
rage of the problem space, which may be suboptimal in the 
current game, but could help against future opponents with 
yet unknown strategies. 

The challenge of the agent is not just to learn adapting to 
(playing well within) the current environment; but to adjust 
to the dynamic changes of the environment. Changes may 
range from mild (slightly different opponent style) to drastic 
(essential rule change in the game). Agents may face this 
challenge alone or as a society. 
• Standalone adaptation strategies include: (a) for slight 

changes: prevention of over fitting by better problem 
space coverage, and (b) for drastic changes: self-evalua-
tion triggered knowledge deprecation –when the agent 
feels a significant performance drop it devalues or 
completely clears up its existing knowledge. 

• Collective adaptation strategies include: (a) when the 
problem space is locally homogeneous: learning from 
neighbors, (b) knowledge generalization through sharing 

and combination and (c) for drastic changes: fast, popu-
lation-wide propagation of the up-to-date knowledge. 
Collective mechanisms may be biased by distortions of 

the self-evaluation metrics.  Self-evaluation is intrinsically 
subjective; the agent possesses empirical information only 
which means that the metrics is biased by its experience–
opponents–by definition. Agents facing weak opponents may 
overvalue themselves, while agents with strong opponents 
may do the opposite. The evaluation bias may gain attention 
when it comes to sharing the knowledge: a receptor in a hard 
environment, so with low self-confidence, may overvalue the 
weak-environmental donor’s knowledge just because of its 
false self-confidence. However, it would be heedless to say 
that receiving such knowledge–unless suppressive–is guaran-
teed to be unhelpful. When treating it (choosing c1 and c2) 
with caution, even that kind of import may prove to be use-
ful, because it covers a different, yet un-known sub-domain 
of the problem space (see Section VI). 

Altogether, we think that the descriptive power and gene-
ralizability of the model is high. We can also imagine a 
possible convergence between this knowledge-poor approach 
and today’s knowledge intensive directions, where the two 
may strengthen each other (e.g., in feature generation).  

VI. EVALUATION 
Models were evaluated through simulation. This section 

includes the most important results about the standalone 
learning, adaptation ability, and the collective dimension. 

The standalone model was evaluated along two lines. 
First we wanted to see, how efficient is the on-line learning 
ability in the connect-5 world, with no initial experience, 
trained against opponents with different strengths. In this set-
ting, we also measured, how the self-evaluation mecha-nism 
performs compared to an objective evaluator. After this we 
examined how trained agents react to drastic environmental 
changes. 

0%

25%

50%

75%

100%

Random 85% opp. 95% opp. 99% opp 100% opp.

Games Lost Ties Games Won
Evaluated Strength Estimated Strength

 
Figure 1.  Learning characteristics and self-evaluation vs. opponent style. 

On-line learning with no initial knowledge. The experi-
ment consisted of an adaptation phase and an objective eval-
uation phase. (1) First, the untrained agent plays 350 games 
against a fixed-algorithm opponent, and uses its learning me-
chanism to adapt. Win/lost/tie statistics were also collected 
here. We evaluated five identical agents, each playing with a 
different opponent, namely: one random player; and the four 
opponents with mathematically optimal strategies but with 
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some–15%, 10%, 1% and 0%–chance of making an error 
(failing to choose the perfect action). (2) In the evaluation 
phase, learning was switched off in order to get an unbiased 
picture about the knowledge of each agent. Agents were al-
lowed to use their existing knowledge, and were evaluated 
by playing 100 games against the “perfect” (0% failure rate) 
opponent, as an absolute measure. Their preliminary self-
evaluation (based on the training phase) was compared to the 
actual measured strength. (Strength is defined as the percent-
tage of non-lost games.) 

Columns in Figure 1 visualize the outcome of the adapta-
tion phase, while the curves refer to the self-evaluated and 
objectively measured strength. Training results show that the 
number of games won by the agent falls as opponents get 
stronger. Surprisingly, the number of lost games does not in-
crease with stronger opponents; instead, games tend to end 
more often with a tie. Evaluation results indicate that the real 
gameplay strength is higher for agents trained against stron-
ger opponents. Please note, that although the agent trained 
with the random player holds the lowest strength, it could 
also fray out a tie in 17 percent of the games against the 
strongest opponent. The difference between the self-estima-
ted strength and the actual strength is unexpectedly small, 
expect for the divergent (random) training environemnt. 

Adaptivity. The second experiment examines the level of 
adaptivity to world changes. We used a trained agent, which 
had a training session of 50 connect-4 games (a game with 
the same rules as connect-5, except that the combination of 
four is enough for the victory). Then, the agent had to play 
connect-5 against the strongest opponent, without any notifi-
cation or adjustment regarding the rule change. Figure 2 
shows that in the first 25 games the agent had serious prob-
lems using the experience gathered earlier, resulting in a 
defeat rate of almost 96 percent. Although, after 50 games it 
could defend with 50 percent accuracy, and after 125 games, 
it reached almost the same strength level, as in the previous 
on-line learning test. Tests with other rule change schemes 
(C-5 to C-4, no compettiveness) brought similar results. 
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Figure 2.  Adaptation to changing rules (Connect-4 to Connect-5). 

The collective dimension was evaluated along various 
aspects, here we present one. Differently trained agents got 
knowledge injections, and then, got evaluated off-line. Listed 
combinations are: empty (untrained) receptor + best trained 
donor (trained with the strongest opponent), randomly 
trained receptor + best trained donor, Connect-4 trained re-
ceptor + best trained donor, and best trained receptor + ran-
dom donor. Figure 3 shows that knowledge injection had 

positive effects in all cases. This is not surpising in the first 
three cases when the injected knowledge was clrealy more 
accurate than the agent’s own. In the last case, a good agent 
received “worse” knowledge, and still, this helped it to gain 
winning which was out of ques-tion beforehand (however, 
general strength dropped slightly). This effect can be ex-
plained with the nonlinearity of the problem space. 
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Figure 3.  Collective effects (evaluated against the 100% opponent). 

VII. SUMMARY 
We described an emergent, knowledge-poor and open 

approach for adaptive systems where adaptation emerges 
from simple steps during the system’s normal operation, 
even amongst drastically changing environmental rules. Dy-
namic features and the lack of mandatory and too explicit 
semantics bring real openness. The cooperative knowledge 
sharing mechanism brings the adaptation of knowledge-poor 
learners to a collective level. 
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