
The Web MIDI API in On-Line Applications for Music Education

Luca A. Ludovico

Laboratorio di Informatica Musicale
Dipartimento di Informatica

Università degli Studi di Milano
Email: luca.ludovico@unimi.it

Abstract—This work discusses a recent browser technology known
as the Web MIDI API to design and release browser applications
for music. This application programming interface (API), still
under development by the Audio group of the World Wide Web
Consortium (W3C), provides support to the Musical Instrument
Digital Interface (MIDI) protocol, enabling web applications to
interface with MIDI input and output devices on the client
system and send and receive MIDI messages. The paper critically
analyzes advantages and drawbacks currently presented by the
Web MIDI API in the context of web-based music education. In
the final part of this work, a case study will be discussed.

Keywords–MIDI; Web applications; Music education; Web
MIDI API.

I. INTRODUCTION

In computing, a web application – or web app – is a client-
server software application in which the client or user interface
runs in a web browser. Web applications are very popular, since
they offer a number of advantages: they are cross-platform,
easy to update, often free, and they should not require ad hoc
installations. The distribution of web applications is immediate
and their audience potentially includes all users owning a
network-attached device equipped with a web browser. These
characteristics are very important for educational applications
too. For instance, portability and compatibility are at the base
of the Bring Your Own Device (BYOD) paradigm, whose
advantages, risks and perspectives in the educational field have
been discussed in [1], [2], [3]. As stated in [4], the most
important quality criteria for the success of web applications
include reliability, usability, security, availability, scalability,
maintainability, and time-to-market. Most of these aspects
must be considered also in the design and implementation of
applications for students.

The Musical Interface for Digital Instruments (MIDI) is
a well-known and widely-adopted protocol to exchange mes-
sages among compatible music devices. Even if nowadays
MIDI could seem out of date and naive to non-experts –
suffice it to recall that the maximum bitrate of the protocol is
31.25 kbps and the structure of messages is composed by 7-bit
packages – it is still largely supported by professional music
and audio equipment. Some recent initiatives are bringing
new life to the format. In this sense, it is worth citing: the
recent reorganization of the official web site [5], with updated
contents, a new graphical layout and a News section; the
release on the marketplace of innovative music controllers,
such as the ROLI Seaboard Grand, able to extend the potential
of the original MIDI protocol still preserving full compatibility
[6]; and finally, the establishment of interest groups which join

academia and industry in order to apply MIDI to new contexts
and meet recent technological requirements. In this light, the
World Wide Web Consortium (W3C) launched an initiative
aiming to design and implement the so-called Web MIDI
API. This specification defines an Application Programming
Interface (API) supporting the MIDI protocol, enabling web
applications to enumerate and select MIDI input and output
devices on the client system and send and receive MIDI
messages [7]. As stated in the official W3C page, the Web
MIDI API is intended to enable non-music MIDI applications
as well as music ones, by providing low-level access to the
MIDI devices available on the users’ systems. Further details
will be provided in Section IV.

The goal of this paper is to match the advantages of web
applications in the music education field with the flexibility
and power of the MIDI protocol for music reproduction. The
point of intersection of these two worlds lies in the technology
known as the Web MIDI API. The early development stage
of the API, the limited support currently offered by browsers
and the consequent lack of available applications make this
promising field relatively novel.

The paper is structured as follows: Section II will discuss
web resources for music teaching and learning; Section III will
provide an overview of the MIDI protocol and its applicability
to music education; Section IV will give details about the
Web MIDI API initiative; Section V will present a critical
analysis of this approach concerning the design, development
and release of web applications; finally, Section VI will discuss
the case study of an on-line application for music coding.

II. WEB RESOURCES FOR MUSIC TEACHING AND
LEARNING

Computer-based technologies can help music education
from many points of view, ranging from teaching strategies
to new approaches to composition and performance, from
assistive technology and music therapy to K-12 listening skills
development [8]. In recent times, the pervasiveness of network
technologies and the availability of high-speed connections
have resulted in a rise of meaningful Internet-based music
resources. Just to mention some examples:

• The official web sites of important institutions – see
the digitalization project of the Bach Archiv Leipzig
[9], the music section of the Beic Digital Library [10],
and the archive of the Teatro alla Scala [11], to name
but a few – nowadays offer high-quality materials to
Internet users. The mentioned examples cover hetero-
geneous aspects of music, including scores [12], audio

72Copyright (c) IARIA, 2017. ISBN: 978-1-61208-541-8

eLmL 2017 : The Ninth International Conference on Mobile, Hybrid, and On-line Learning

recordings [13], and heterogeneous opera-related con-
tents [14] respectively. These materials are of great
interest for the community of experts, scholars and
music students, but they cannot be easily reused in an
educational context, due to both technical limitations
and copyright issues;

• There are collections of downloadable music re-
sources, often based on the efforts of community
members. In this light, two relevant examples are the
Internet Archive, a site that retrieves digitized content
from the web including music scores and audio files
[15], and the IMSLP/Petrucci Music Library [16], a
popular platform to share public domain music [17];

• Other on-line initiatives providing non-interactive re-
sources for music education and dissemination, includ-
ing static web pages, video tutorials, etc. For example,
the YouTube official channel of the Philharmonia
Orchestra – London (UK) collects in the Instrument
Guides section a number of videos aiming to present
musical instruments to young people.

Many studies discussed the integration of web-based ma-
terial into music teaching, documenting phases of integration
that include supplemental links to resources, web-based teach-
ing sequences, and various media to support course content
[18]. All the mentioned initiatives are potentially useful for
music teaching and learning, nevertheless, in order to achieve
effective educational results some additional features would be
desirable. The ideal web interface should not only grant high-
quality and certified resources, achieve cross-platform compat-
ibility, and be always available, but it should also support an
active and customizable experience of music contents, present
multi-modal interactivity, and foster peer-to-peer and student-
teacher interactions.

Keeping these goals in mind, we can provide a non-
exhaustive state of the art on recent on-line initiatives that
embody such a vision. An example of web platform containing
high-quality materials for music education is DREAM – Digital
Resource Exchange About Music [19], a virtual space for ex-
changing information about digital learning tools [20]. Another
relevant example is EMIPIU – Enhanced Music Interactive
Platform for Internet Users [21], a web environment that
adopts the IEEE 1599 standard to encode music in all its
aspects according to a multi-layer structure and presents an
advanced web player to enjoy such contents in a synchronized
way [22]. As an evidence of its pedagogical valence, the same
technology has been employed in the on-line version of a
music textbook for children published by Pearson [23]. Finally,
let us mention the Chrome Music Lab [24] a set of simple
on-line tools that let anyone explore how music works. This
initiative is a collaboration between musicians and coders, and
its core technology lies in the freely available Web Audio API
[25].

In our opinion, a more detailed survey about web applica-
tions currently available for music education would go beyond
the scope of this work.

III. MIDI AND MUSIC EDUCATION

The Musical Instrument Digital Interface (MIDI) is an
industry standard music technology protocol that connects
products from many different companies including digital

musical instruments, computers, tablets and smartphones. The
MIDI specification describes the protocol, the digital interface
and low-level hardware aspects, such as ports, cables and
connectors.

The original protocol was designed and released in the
1980’s. Despite significant enhancements over the years, the
MIDI specification officially remains at version 1.0 [26]. Later
extensions include the Standard MIDI File format, MIDI Show
Control, MIDI Time Code, and MIDI Machine Control. Nowa-
days the activities of the MIDI Manufacturers Association
(MMA) are focusing on new transfer protocols, such as MIDI
over USB and over wireless.

MIDI is used everyday around the world by musicians, DJs,
producers, educators, artists and hobbyists to create, perform,
learn and share music and artistic works. Advanced and inno-
vative interfaces to make music through MIDI are constantly
under development, as shown during the Annual General
Meeting of the MMA occurred at the 2016 Winter NAMM
Show. The importance of MIDI as a commonly-accepted and
widely-adopted standard is also demonstrated by the libraries
available for the main programming languages, such as the C#
MIDI Toolkit for C#, the package javax.sound.midi for Java or
the MIDI Toolbox for Matlab [27].

The MIDI data stream is a unidirectional asynchronous bit
stream at 31.25 kbps. The interface on a MIDI instrument
will generally include three different connectors, labeled MIDI
IN, MIDI OUT, and MIDI THRU. The data stream is usually
originated by a MIDI controller or by a MIDI sequencer. A
MIDI controller is a device which is played as an instrument,
and it translates the performance into a MIDI data stream in
real time as it is played. Examples include not only keyboards,
but also electronic drums, wind controllers and guitar-like
MIDI devices. A MIDI sequencer is a device which allows
MIDI data sequences to be captured, stored, edited, combined,
and re-played. The MIDI data output from a MIDI controller or
sequencer is transmitted via the devices’ MIDI OUT connector.
The final recipient of the data stream is commonly a MIDI
sound generator or sound module, which will receive MIDI
messages at its MIDI IN connector, and respond to these mes-
sages by playing sounds. Further information can be retrieved
from the official documentation.

It is worth underlining that MIDI does not transmit audio
signals; instead, it sends event messages about musical notes,
controller signals for parameters, such as volume, vibrato
and panning, cues and clock signals to set the tempo, and
system-specific MIDI communications. In other terms, MIDI
itself does not make sound, rather it encodes the exchange of
messages generated by a MIDI chain and to be interpreted by
synthesizers in order to produce sound. The pros and cons of
this key aspect of MIDI will be discussed in Section V.

A MIDI device can be a piece of hardware (controllers,
synthesizers, etc.), a virtual/software tool, or a part of a soft-
ware environment. From a logical point of view, the simplest
MIDI chain presents a message generator – like a keyboard
controller – and a message consumer – like a synthesizer.
There are devices that integrate both functions in a unique
product, as shown in Figure 1. Obviously, more complex
layouts can be created through the concatenation of multiple
devices, e.g., controllers, sequencers and sound modules, as
shown in Figure 2.

73Copyright (c) IARIA, 2017. ISBN: 978-1-61208-541-8

eLmL 2017 : The Ninth International Conference on Mobile, Hybrid, and On-line Learning

Figure 1. An example of minimal MIDI chain: a keyboard controller
connected to a sound module.

Figure 2. An example of non-trivial MIDI setup in daisy-chain configuration.

Thanks to the huge support offered by most keyboard
controllers and to the availability of software counterparts
for physical equipment, MIDI can be easily adopted in any
educational environment. For instance, in the proposals de-
tailed below, a network-attached computer will be sufficient to
experience MIDI-based activities oriented to music education.
According to some experts, MIDI can even bring a paradigm
shift in music teaching and learning (see [28] and [29]).
Among a number of didactic applications of the protocol, it is
worth mentioning:

• the production of easy, low-cost, on-the-fly audio
renderings of potentially complex music pieces, in
contexts of instrument performance [30], vocal train-
ing [31], and assisted composition [32];

• the accompaniment for music lessons and individual
instrumental practice [33];

• the support offered to real-time distributed music
performances, mainly due to the lightweight exchange
of MIDI messages, as documented in [34] and [35];

• new possibilities of music expression and interaction
for people affected by various kinds of disability,
thanks to ad-hoc MIDI-compatible controllers. A rel-
evant application of MIDI to therapy and special
education can be found in [36], which presents the
use of MIDI devices in order to enable students with
physical and learning disabilities to participate to a
festival of popular music.

For a more detailed discussion of the advantages and
drawbacks of MIDI in music education, please refer to [37]
and [38].

IV. THE WEB MIDI API
In Section II we have cited a number of heterogeneous web

applications for music education, and in Section III we have
explored the applicability of MIDI-based approaches to this
field. Now the question is how to couple the advantages of

Figure 3. An example of MIDI chain formed by a web application that is
piloted by a keyboard and controls a sound module.

on-line solutions with the potential of MIDI, and the answer
lies in the Web MIDI API [7].

This specification defines an API to support the MIDI
protocol within web applications, so that applications can
enumerate and select MIDI input and output devices on
the client system and send and receive MIDI messages. In
accordance with the MIDI philosophy, also the API is not
designed to describe music or controller inputs semantically;
rather, it is intended to reproduce the mechanisms of MIDI
input and output interfaces, enabling direct access to devices
that respond to MIDI (e.g., controllers, synthesizers, lighting
equipment, other pieces of software, etc.). For the sake of
clarity, please note that the Web MIDI API is not a way to
play Standard MIDI files (SMFs) in a browser; this function
should be performed by a future extension of the HTML5
<audio> tag instead.

The Web MIDI API puts the web application in communi-
cation with other parts of the physical or virtual MIDI chain by
sending and receiving standard MIDI messages. In this way,
the web application becomes a new MIDI-compatible actor
connected to the MIDI chain, as intuitively shown in Figure 3.
The API aims to enable a brand new class of applications on
the web that can respond to MIDI controller inputs, even with
no music purposes. Examples may range from MIDI-controlled
video games to interfaces for the music expression by users
with disabilities. All these approaches can result in the design
and implementation of interactive browser-based educational
products.

From a practical point of view, adopting the Web MIDI
API in a web page requires to embed ad-hoc JavaScript code.
The first steps is searching for MIDI available resources on
the client system by invoking the requestMIDIAccess()
method. Then, it is possible to select the input/output devices
to be connected, if any. For an application that has to produce
sound, this implies to pick at least the default MIDI synthe-
sizer. Finally, the application can listen to MIDI messages as
well as user actions in input, process them and finally send
MIDI messages in output. The send(data,timestamp)
method of the MIDIOutput interface enqueues the mes-
sage(s) to be sent to the corresponding MIDI port, provided
that the data parameter contains one or more valid and
complete MIDI messages. It is also possible to specify when
the data should be sent to the port; if the timestamp
parameter is not present, is set to zero or to a time in the
past, data are to be sent as soon as possible.

74Copyright (c) IARIA, 2017. ISBN: 978-1-61208-541-8

eLmL 2017 : The Ninth International Conference on Mobile, Hybrid, and On-line Learning

V. CRITICAL ANALYSIS

Before HTML5, the performance of audio files in a web
page could occur only through a plug-in – e.g., Macromedia
Flash or Windows Media Player – or non-standard HTML
syntax such as <bgsound>, an Internet Explorer element
associating a background sound with a page. These custom
solutions caused incompatibilities between implementations
and across different browsers, implying different behaviors of
the same page when visited by different users and unwanted
installations of third-party plug-ins.

The introduction of the <audio> element in HTML5
specification solved these issues. The idea was to provide web
designers and programmers with a standard way to embed into
web pages audio in MP3, Wav, and Ogg format. Nowadays,
the <audio> element is largely supported by web browsers,
as shown in Figure 4.

Consequently, at present there are standard approaches to
sonify web pages through background music and to play audio
content on demand. Nevertheless, in some cases a solution
based on pre-recorded sound files is neither efficient nor
effective. Let us consider those applications where audio is
produced in response to a specific user action, and sound
parameters (pitch, loudness, duration, timbre, etc.) should
change accordingly. For the sake of clarity, the sonification
of a button click can be easily implemented by loading a
default sound file, whereas a web interface to explore mul-
tiple music-scale models performed by different instruments
would require a considerable number of recordings; and the
situation would become even more critical in the case of an
interactive application (e.g., a touch-sensitive keyboard with
multi-timbral synthesis) where user actions are unpredictable.
In those music-oriented applications where sound parameters
may change considerably and are difficult to predict since they
depend on users’ choices and behaviors, MIDI can play an
important role.

Among the advantages offered by a MIDI-based approach,
we can mention:

• A production of sound samples completely demanded
to a MIDI synthesizer, with no need to pre-record
audio fragments with all the variants required (e.g.,
different pitches, durations, timbres, etc). This implies
also the possibility to use the full range of Gen-
eral MIDI patches for multi-timbral synthesizers, and

Figure 4. The main browsers supporting the HTML5 <audio> element.
The numbers below specify the first browser version that offers full support.

Figure 5. Browsers supporting the Web MIDI API. The numbers below
specify the first browser version that offers full support.

to modify sounds through all the supported Control
Change commands;

• A very light and compact client-server exchange of
music data, since MIDI does not transmit audio sig-
nals, rather it sends commands to trigger audio events;

• The possibility to embed web applications into
MIDI chains, by connecting them with other MIDI-
compatible real (hardware) or virtual (software) de-
vices;

• Provided a basic knowledge of the MIDI protocol,
the easiness of use by programmers, even if the
adoption of the HTML5 <audio> element is very
straightforward as well.

Of course, there are also some annoying drawbacks to take
into account:

• MIDI is not an audio format, consequently the result-
ing sound quality on different systems is unpredictable
since it largely depends on the characteristics of the
sound module in use;

• MIDI is not a music-notation format, so it can be
employed to encode scores only in non-professional
applications or in simplified contexts, such as most
children-oriented music games;

• The Web MIDI API requires a MIDI chain to produce
sounds, namely the presence of either a hardware or
a software synthesizer;

• The Web MIDI API has not reached the status of
standard yet, and at the moment of writing it is
supported only by the browsers listed in Figure 5.

The first two drawbacks listed above are connected to the
choice of MIDI as a way to represent music symbols and
produce sounds; conversely, the last two are directly linked to
the current characteristics of the Web MIDI API. Experience
shows that the success of web applications resides in multi-
platform support, cross-browser compatibility and no need to
perform ad hoc installations, whereas at present the Web MIDI
API seems to go the opposite way: it requires the adoption of
a specific subset of browsers and the availability of physical
MIDI devices attached to the client – an uncommon situation
for most users – or, more likely, the installation of software
emulators.

Some of these problems will be hopefully solved when
the API becomes a standard. In the meanwhile, to get round
the problem it is possible to distribute applications wrapped in
ready-to-use software packages that embed all the required in-
stallations, resources, and configurations. For example, Docker
[39] is an open-source project wrapping up in a so-called
container all the resources needed in order to run one or
more processes. This isolation concerns both hardware (CPU,
memory, file system, etc.) and software (libraries, tools, code,
and so on). After the public deployment, the package launched
on a client behaves like a virtual machine.

VI. CASE STUDY: A WEB APPLICATION FOR MUSIC
CODING

In order to foster artistic creativity and analytical skills
in young students, we designed, implemented and released a
publicly-available web environment for music coding. Music

75Copyright (c) IARIA, 2017. ISBN: 978-1-61208-541-8

eLmL 2017 : The Ninth International Conference on Mobile, Hybrid, and On-line Learning

Figure 6. A web interface for music coding where music is generated
through the Web MIDI API.

Figure 7. An evolution of the web application for music coding, based on
Google Blockly and deployed as a Docker package.

coding can be seen as an evolution of creative coding [40],
where the latter is applied to music education and its goals
embrace not only personal creativity, but also the analysis and
comprehension of music processes.

The web environment – to this end – proposes a simplified
subset of music operators involving mainly rhythmic and
melodic aspects of music. Examples include Play(p), i.e.,
“Play a given pitch”, Transpose(v), i.e., “Modify the
previous pitch according to a number of ascending/descending
steps”, and Tie(), i.e., “Extend the duration of a note”.

In addition to a short list of music operators, the interface
also presents a palette of musical instruments to choose from.
The reasons that led to multi-timbral support are manifold:
making music creation and reproduction more engaging, sup-
porting the study of harmony and the listening of polyphony
through different timbres, introducing young students to the
characteristics of orchestral instruments, etc.

Due to the young age of expected users, music operators
and musical instruments are represented through playful and
colored icons, as shown in Figure 6.

This is not the place to provide further details about the
user interface, nor to discuss the validity of its pedagogical
approach. For those interested in deepening these topics, a
detailed discussion can be found in [41] and [42]. Rather, in
this context we are interested in the way music is produced in

response to user choices: in fact, sound performance has been
demanded to the Web MIDI API.

The choice of the Web MIDI API against other standard
solutions, such as sampled sounds, is motivated by a number
of factors. First, the multi-timbral support combined with the
possibility to play a wide range of pitches would have required
the generation of approximatively 2000 sound samples. MIDI
syntax easily solves this issue thanks to:

• the parametric values of Note On events, which make
pitch (and even velocity) easy to set;

• the use of different MIDI channels properly configured
through Program Change messages in order to support
different timbres.

Furthermore, the MIDI numeric representation of music
parameters allows to easily compute a music tune coming
from an algorithmic process. Let us recall that the interface
has been conceived to foster music coding, thus notes are not
necessarily expressed in an imperative way (e.g., “Play C4”),
but they can result from the application of a number of music
operators (e.g., “Play C4”, “Transpose a major third up and
play”, “Repeat the last note”). In this sense, the MIDI approach
intrinsically simplifies the computation of music parameters
that drive sound performance.

Such a web application for music coding is publicly
available at http://coding.lim.di.unimi.it. Please note that the
Web MIDI API requires a compatible browser – e.g., Google
Chrome – and the connection to a MIDI sound module to
work.

Recently, we made the interface evolve releasing a new
version in form of a Google Blockly game. Blockly [43]
is a library for building visual programming editors which
uses interlocking, graphical blocks to represent code concepts
like variables, logical expressions, loops, and more. In our
context, blocks have been linked to music concepts, e.g., music
operators and basic score elements, as shown in Figure 7. For
the reasons above, also this application adopts the Web MIDI
API as a base for the sound engine. In order to solve the cross-
platform and installation issues mentioned in Section V, we
decided to make the Blockly-based implementation available to
schools and other interested institutions as a Docker package.

VII. CONCLUSION

Thanks to its well-known characteristics, the web can
be a great means to design, implement and distribute valid
and engaging educational tools, and the field of music is
no exception. In recent years we have seen the release of a
large number of web applications focusing on music, including
playful approaches to learn a musical instrument, professional
ear-training apps, on-line viewers/players for music archives,
and so on. Within this multi-faceted scenario, MIDI – a
format dating back to the 80’s but still widely adopted by
the community of professional musicians – has shown signs
of great vitality.

In this paper we have analyzed the applications of MIDI
to web frameworks for music-education, an intersection made
possible by the Web MIDI API. At the moment of writing,
this W3C initiative is still under development, and the sup-
port offered by web browsers is very limited. Nevertheless,
we consider the Web MIDI API very promising, and many

76Copyright (c) IARIA, 2017. ISBN: 978-1-61208-541-8

eLmL 2017 : The Ninth International Conference on Mobile, Hybrid, and On-line Learning

implications in education – e.g., by interfacing the web app
with external MIDI controllers – have yet to be explored.

REFERENCES

[1] K. W. Miller, J. Voas, and G. F. Hurlburt, “BYOD: Security and privacy
considerations,” It Professional, vol. 14, no. 5, 2012, pp. 53–55.

[2] R. Afreen, “Bring your own device (BYOD) in higher education:
opportunities and challenges,” International Journal of Emerging Trends
& Technology in Computer Science, vol. 3, no. 1, 2014, pp. 233–236.

[3] P. Bruder, “Gadgets go to school: The benefits and risks of BYOD
(bring your own device),” The Education Digest, vol. 80, no. 3, 2014,
p. 15.

[4] J. Offutt, “Quality attributes of web software applications,” IEEE
software, vol. 19, no. 2, 2002, pp. 25–32.

[5] “MIDI.org,” http://www.midi.org/, accessed: 2017-02-22.
[6] J. Flanagan, “Sensitive piano keys let pianists create new sounds,” New

Scientist, vol. 219, no. 2925, 2013, p. 22.
[7] C. Wilson and J. Kalliokoski, “Web MIDI API,” W3C, working draft,

Dec. 2016, https://webaudio.github.io/web-midi-api/.
[8] P. R. Webster, Computer-based Technology and Music Teaching and

Learning: 2000–2005. Dordrecht: Springer Netherlands, 2007, pp.
1311–1330.

[9] “Bach digital,” https://www.bach-digital.de/, accessed: 2017-02-22.
[10] “BEIC - Biblioteca musicale,” http://www.beic.it/it/articoli/

biblioteca-musicale/, accessed: 2017-02-22.
[11] “Archivio La Scala,” http://www.teatroallascala.org/archivio/, accessed:

2017-02-22.
[12] U. Wolf, “Bach-autographen online. kooperationsprojekt bach-digital

angelaufen urz liefert kompetenz und rechenpower,” Universität
Leipzig, Journal, vol. 4/2008, 2008, p. 24.

[13] A. Baratè, L. A. Ludovico, and G. Haus, “Integration of audio resources
into a digital library: The BEIC case study,” International Journal of
Digital Curation, vol. 10, no. 2, 2015, pp. 48–57.

[14] G. Haus and L. A. Ludovico, “The digital opera house: an architecture
for multimedia databases,” Journal of Cultural Heritage, vol. 7, no. 2,
2006, pp. 92–97.

[15] “Internet Archive: Digital Library of Free Books, Movies, Music &
Wayback Machine,” https://archive.org/, accessed: 2017-02-22.

[16] “IMSLP/Petrucci Music Library: Free Public Domain Sheet Music,”
http://imslp.org/, accessed: 2017-02-22.

[17] P. M. Hash, “Internet resources for historical research in music educa-
tion,” Journal of Historical Research in Music Education, vol. 31, no. 1,
2009, pp. 3–5.

[18] N. Barry, “Integrating web based learning and instruction into a graduate
music education research course: An exploratory study,” Journal of
technology in Music Learning, vol. 2, no. 1, 2003, pp. 2–8.

[19] “DREAM — Digital Resource Exchange About Music,” http://
dreammusictool.ca/, accessed: 2017-02-22.

[20] R. Upitis, K. Boese, and P. C. Abrami, “Demonstrating DREAM: A
digital resource exchange about music.” International Association for
Development of the Information Society, 2015.

[21] “EMIPIU,” http://emipiu.di.unimi.it/, accessed: 2017-02-22.
[22] A. Baratè, G. Haus, L. A. Ludovico, and G. Presti, “Advances and

perspectives in web technologies for music representation,” DigitCult -
Scientific Journal on Digital Cultures, vol. 1, no. 2, 2016, pp. 1–8.

[23] S. Erotoli and V. Vacchi, C’è musica per tutti. Vol. A-B. Pearson,
2014.

[24] “Chrome Music Lab,” https://musiclab.chromeexperiments.com/, ac-
cessed: 2017-02-22.

[25] P. Adenot, C. Wilson, and C. Rogers, “Web Audio API,” W3C, working
draft, Dec. 2015, https://www.w3.org/TR/webaudio/, accessed: 2017-
02-22.

[26] M. M. Association, “The complete MIDI 1.0 detailed specification
version 96.1,” La Habra: MIDI Manufacturers Association, 1996.

[27] T. Eerola and P. Toiviainen, MIDI Toolbox: MATLAB Tools for
Music Research. Jyväskylä, Finland: University of Jyväskylä, 2004.
[Online]. Available: www.jyu.fi/musica/miditoolbox/

[28] G. Jordahl, “Teaching music in the age of MIDI,” Classroom Computer
Learning, vol. 9, no. 2, 1988, pp. 78–85.

[29] J. Zhu, “MIDI and music teaching in colleges of multimedia system
application,” in Key Engineering Materials, vol. 474. Trans Tech Publ,
2011, pp. 1926–1930.

[30] M. Ajero, The effects of computer-assisted keyboard technology and
MIDI accompaniments on group piano students’ performance accuracy
and attitudes. ProQuest, 2007.

[31] C. Yun and W. Fu, “On the feasibility of employing MIDI in vocal
music teaching,” Journal of Mianyang Normal University, vol. 4, 2010,
p. 038.

[32] S. Reese, “MIDI-assisted composing in your classroom,” Teaching
music, 1995, pp. 199–206.

[33] F. Kersten, “Using MIDI accompaniments for music learning at school
and at home: MIDI and other computer technologies can help students
build their musical skills in the classroom and at home,” Music
Educators Journal, vol. 90, no. 4, 2004, pp. 44–50.

[34] D. Gang, G. V. Chockler, T. Anker, A. Kremer, and T. Winkler,
“TRANSmidi: a system for MIDI sessions over the network using tran-
sis,” in Proceedings of the International Computer Music Conference.
Citeseer, 1997, pp. 283–286.

[35] D. Akoumianakis, G. Vellis, I. Milolidakis, D. Kotsalis, and
C. Alexandraki, “Distributed collective practices in collaborative music
performance,” in Proceedings of the 3rd International Conference on
Digital Interactive Media in Entertainment and Arts, ser. DIMEA ’08.
New York, NY, USA: ACM, 2008, pp. 368–375. [Online]. Available:
http://doi.acm.org/10.1145/1413634.1413700

[36] B. Cole, “MIDI and communality,” Organised Sound, vol. 1, no. 01,
1996, pp. 51–54.

[37] T. E. Rudolph, Teaching music with technology. GIA Publications,
2004.

[38] X. Guo, “The application and research of computer MIDI technology
in music education,” in International Conference on Social Science and
Technology Education (ICSSTE 2015), 2015, pp. 236–241.

[39] “Docker,” https://www.docker.com/, accessed: 2017-02-22.
[40] K. Peppler and Y. Kafai, “Creative coding: Programming for personal

expression,” Retrieved August, vol. 30, no. 2008, 2005, p. 314.
[41] L. A. Ludovico and G. R. Mangione, “Music coding in primary school,”

in Smart Education and Smart e-Learning, ser. Smart Innovation,
Systems and Technologies, R. J. Howlett, L. C. Jain, and V. Uskov,
Eds. Springer International Publishing, 2015, pp. 449–458.

[42] A. Baratè, L. A. Ludovico, and G. R. Mangione, “A web framework to
develop computational thinking through music coding,” in Proceedings
of the 2nd International Conference on New Music Concepts (ICNMC
2016), M. Della Ventura, Ed. Milano, Italy: ABEditore, 2016, pp.
157–167.

[43] “Google Blockly,” https://developers.google.com/blockly/, accessed:
2017-02-22.

77Copyright (c) IARIA, 2017. ISBN: 978-1-61208-541-8

eLmL 2017 : The Ninth International Conference on Mobile, Hybrid, and On-line Learning

