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Abstract—Accuracy of classification and recognition in neural
signal is the most important issue to evaluate the clinical
assessment or extraction of features in brain computer interface.
Especially, classification of multitasks by measuring functional
Near-Infrared Spectroscopy (fNIRS) is a challenging due to its low
spatiotemporal resolution. To improve the classification accuracy
of fNIRS neural signals for multitasks, an evolutionary computing
method was proposed. Four healthy participants performed four
finger tasks which are digit-active, digit-passive, thumb-active and
thumb-passive. To classify the four tasks, a multitask classifier
was devised by the ensemble multitree genetic programming
(EMGP). The experimental results validate the performance of
the proposed classifier. The comparison of the conventional and
proposed classifiers at the real classification experiment shows
the higher accuracy of the proposed method. Moreover, it reveals
the improvement of classification accuracy when compared with
conventional classifiers in the additional experiment of fifteen
dataset in University of California Irvine machine learning
repository. The proposed classifier can be effective to classify and
recognize the fNIRS neural signals during multitasks. Moreover,
the subject dependent learning can be designed for the local brain
activation training based on neuro-feedback. After data learning
for all classes, the subject tries to make their brain activation
of an active task as similar with a passive task by the online
motor-imagery with action observation. As a result, the subject
is trained to concentrate his brain activation for the essential area
of brain. The proposed classifier can be applied well because high
classification accuracy is essential to the neuro-training system.
Finally, the classification accuracy of the proposed EMGP is
5.48% higher than the average of conventional classifiers.
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I. INTRODUCTION

Paralysis from a stroke or nerve injury has a terrible effect
on patients’ daily life. Especially, upper limb disorders greatly
affect their routine with great inconveniences. Over 30 percent
of stroke survivors suffer because their hand motor ability is
increasingly turning into disability, even after rehabilitation
for a year [1]. The conventional rehabilitation programs only
provide passive approaches to patients, but it has limited
effect [2]. Currently, there are many researches for promoting
the neuroplasticity by brain monitoring or neurofeedback [3].
The patients can perform the interventions more actively by
neurofeedback from a brain computer interface (BCI). The first

step for the neurofeedback is the neural signal classification
and recognition of patients.

Many techniques allow for real-time monitoring of brain
activity. Invasive approaches have been successfully employed
in human primates. Although such invasive methods have a
high performance, non-invasive sensors to monitor brain ac-
tivity are preferred in order to widely adapt to most of clinical
environments, including rehabilitation medicine. Conventional
non-invasive brain recording techniques are mainly electroen-
cephalography (EEG), functional magnetic resonance imaging
(fMRI) and functional near-infrared spectroscopy (fNIRS).

EEG is the most widely used technique adopted in BCI
[3]. EEG provides good time and space resolution, but it has
too high sensitivity so that the noisy data requires additional
pre-processing for training [4]. fMRI has also been used to
interface with the human brain [3]. Although it has advantages
such as high temporal and spatial resolution and whole brain
coverage including the central, electro-magnetic compatibility
constraints, high sensitivity to movement and high costs make
it unsuitable in a common therapeutic environment. fNIRS
is an optical approach that locally observes cortical activity
based on the neurovascular coupling [4]. It is easy to use,
safe, affordable, and relatively tolerant to movements. So it
can be mobile and operated wirelessly [5]. Compared to EEG,
fNIRS allows for the classification of more stable cortical
activity and requires less additional processing [4]. There have
been many researches of neurofeedback based on fNIRS for
various types of classifiers and applications. Classification of
hand motor imagery with support vector machines (SVM) and
hidden Markov models (HMM) were implemented [6]. An
online classification system for BCI was researched in [7].
The classifier was based on a real time difference calculation
for both side hand motor imagery. In these studies, the brain
activation was induced by motor tasks.

Although many researches have been studied, it is still
difficult to design an effective classification system for neuro-
monitoring and neurofeedback because the kinds of data have
some problems such as vast volume and noises from the human
body. For grasping tasks recognition with considerable accu-
racy, the high-density observation that uses a lot of sensors and
frequent measurement is required but it dramatically increases
the size of data. To overcome these problems effectively, this
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study approaches the system with a perspective on machine
learning by means of evolutionary computation (EC) inspired
by biology that shows outstanding performance to find global
optimum model. In this paper, we proposed a classification
method based on the ensemble multitree genetic programming
(EMGP) for the neural signal recognition for multiple tasks
with higher accuracy. The main advantage of the proposed
learning algorithm is that the search algorithm based on EC
looks for global optimum model in very wide search space
effectively, and the sensitivity feature of genetic programming
(GP) helps the multi classifiers to ensure their diversity.
Consequently, the low spatial resolution problems of fNIRS
measurement can be relieved.

The rest of the paper is organized as follows: Section 2
describes the proposed neural signal classification method in
detail and in Section 3, the experimental results are depicted.
Conclusion is presented in Section 4.

II. PROPOSED CLASSIFICATION METHOD

The proposed classification method consists of the data
modeling and the EMGP classifier. The neural signal data are
collected by fNIRS, noise is reduced by preprocessing, and a
data model is built to make the data easier to be handled by
the multi-tasks classifier. The proposed EMGP has the major
distinction of the multiple classifiers with parallel learning
in contrast with [8]. This difference gives the outstanding
robustness and search capability to the proposed method.
Of course, some modifications are required to compose the
effective algorithm with consideration for the structural aspect,
characteristics of the data, and medical domain knowledge. All
mentioned methods are summarized in the subsections below.

A. fNIRS data modeling for multitask classifier
The fNIRS neural signals are acquired by 24-channels op-

tical brain-function imaging system (FOIRE-3000, Shimadzu
Co) at a sampling rate of 7.7 Hz. It uses safe near-infrared
light to assess the concentrations of oxygenated hemoglobin
(Oxy-Hb) and deoxygenated hemoglobin (Deoxy-Hb) in the
cerebral blood at wavelengths of 780 nm, 805 nm, and 830
nm. This study uses Oxy-Hb for analysis and classification,
which is found to be more correlated with the regional cerebral
blood flow (rCBF) than deoxy-Hb [9]. An increase in rCBF
reflects an increase in neural activity [10]. The optical probes
are placed on the fronto-parietal regions of the brain cortex
to cover an area of 21×12cm. The subjects performed five
types of tasks denoted by TDA, TDP , TTA, TTP , and Rest as
follows:

• {TDA} - Actively grasping four digits except thumb
• {TDP } - Passively grasping four digits except thumb

by functional electrical stimulation (FES)
• {TTA} - Actively grasping thumb except the remains
• {TTP } - Passively grasping thumb by FES
• {Rest} - Rest without performing any tasks

Each subject performed four types of tasks for three times
for a total of 48 sessions for 4 subjects. The task signs are sent
to subject at regular intervals like [Rest → Task → Rest] as
shown in Figure 1. The signals were collected via 24 optical
fibers attached to the pre-frontal cortex for 40 seconds in each
session. The dataset contained 14,784 samples and 24 features

Figure 1. fNIRS data model of four finger tasks.

as described in Figure 1. Noise interference in hemodynamic
signals may arise from instrumental, experimental, or physio-
logical sources. Particularly, physiological noises often overlap
in frequency with the expected neural signals [11]. In this
study, we employ wavelets [12] for noise reduction.

B. Multitree Genetic Programming (MGP)
In the proposed classifier the fitness function, selection

strategy, crossover, and mutation of conventional MGP have
been modified. The major point is the ensemble in the parallel
operation of multiple classifiers. It is robust from noises and
can improve the accuracy by the concept of swarm intelli-
gence [13]. If the swarm who has a number of individuals
has diversity and active cooperation amongst individuals, the
swarm is more intelligent than any individual in the swarm.
The system is designed to induce this swarm intelligence.
Sufficient numbers of multitrees satisfy the first condition. In
addition, the sensitivity of GP and mutation operator help the
swarm keep the diversity. Finally, the crossover in parallelized
learning of evolutionary groups leads to the cooperation of
individuals.

1) Problem formulation: Given a set of pre-processed
training data X := {x1, x2, . . . , xm} with corresponding
labels Y := {y1, y2, . . . , ym}, where yi ∈ {±1} for i =
1, i = 2, . . . ,m, our next goal is to estimate a function
f : X → {±1} to predict whether a new signal observation
z ∈ X∗ will belong to class +1 or −1. We define classes for
the tasks {TDA}, {TDP }, {TTA}, {TTP }, and {Rest}.

2) The structure of an individual: An MGP individual
consists of independent n trees. The best fitness trees in
each group at the final stage of MGP learning become n
classifiers. In this study, the internal nodes of tree consist of
math operators, i.e. {+,−, ∗, /, exp, log, root}. The leaf nodes
are selected among R and features. R is random variable from
0 to 1. The decision of each tree is determined by the result of
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the formula calculation. In other words, if the result is negative,
the decision is class A.

3) Ensemble technique for MGP: We utilized and modified
the Bagging and Boosting [14] ensemble methods for MGP.
At the bagging, different sampled feature sets are allocated
to MGP evolving group. Although the different feature sets
lead to additional tree validation after the external crossover,
it is valuable to reserve the diversity of classifiers. Boosting
technique is performed to ensure the diversity between trees in
a classifier during the learning time. The details of ensemble
for MGP are treated as follows.

Upper nodes of GP individual are decided from early gen-
erations as the learning directivity can be kept in the state with
a high probability. Therefore, the initial weighting significantly
influences the diversity of the ensemble classifiers. To obtain
the diversity, each of n groups has different weighting values
toward the samples that are separated in n groups by a random
sampling algorithm. The detailed process of the ensemble is
shown in Figure 2.

The variation of fitness in a group decreases as passing
generations. The proposed system sets a new weighting crite-
rion when the fitness variation is less than a lower threshold for
the verification of convergence. The weighting criteria for each
sample set the number of misclassifications for the individuals
in the top k percent. The k is empirically decided as 10 in this
paper. The lower threshold is 50 percent of the variation when
the weighting criteria are changed.

Algorithm 1 Discrete AdaBoost for EMGP

1: Samples x1, x2 . . . , xn
2: Desired outputs y1, y2, . . . , yn, y ∈ {−1, 1}
3: Initial weight w1,1, w2,1, . . . , wn,1 set to 1

n
4: Separate the samples to k groups by random sampling
5: ith evolving group weight update w = w×α in ith sample

group
6: Error function E(f(x), y, i) = e−yif(xi)

7: Weak learners h : x→ [−1, 1]
8: for t in 1, 2, . . . , T do
9: Choose ft(x) :

10: Find weak learner ht(x) that minimizes εt, the
weighted sum error for misclassified points εt =∑
i wi,tE(ht(x), y, i)

11: Choose αt = 1
2 ln

(
1−εt
εt

)
12: Add to ensemble:
13: Ft(x) = Ft−1(x) + αtht(x)
14: Update weights:
15: wi,t+1 = wi,te

−yiαtht(xi) for all i
16: Renormalize wi,t+1 such that

∑
i wi,t+1 = 1

17: end for

Figure 2. The Algorithm Specification of Discrete AdaBoost for EMGP

4) Final decision: Instead of training a single classifier,
we train multiple GP groups which mean the number of tree
in each individual for the purpose of further improvment in
the overall accuracy as described in Figure 1. We consider a
multiple n - classifier functions {f1, f2, . . . , fn} and a data
set {(xi, yi)mi=1}, xi ∈ X, y ∈ Y . The tree groups are trained
in parallel to predict fni=1 : x → {±1}n. The outputs from
all classifier functions are then defined as an m-dimensional

binary vector y = [y1,i, y2,i, . . . , ym,i], such that yj,i = 1 if fi
recognizes xj and 0 otherwise for i = 1, 2, . . . , n. The number
of correct assignments is N1(fi) =

∑m
j=1 yj,i and the number

of mistakes is N0(fi) = m−
∑m
j=1 yj,i. In order to make the

final decision from the set of functions {fi, . . . , fn}, we define
the following majority voting rule:{

+1 if
∑n
i fi(z) ≥ k

−1 else
∑n
i fi(z) ≤ n− k

(1)

where k < n and i = 1, 2, . . . , k making similar predic-
tions defined by the k− of − n majority classifier for k ≥ n

2 .
Thus, we have two possible outcomes from all classifiers
F : X → {+1,−1}. Machine learning consists of training and
testing phases. In both phases, we train and test five different
groups of multiple classifiers E1, E2, . . . , E5.

Group E1 is trained by taking samples from the digit-active
task {TDA} as positive and samples from the remaining tasks
as negative. Likewise, group E2 is trained by taking samples
from digit-passive task {TDP } as positive and samples from
the remaining tasks as negative.

Best Tree  

in Classifier 1 

Best Tree  

in Classifier 2 

Best Tree  

in Classifier n 

MGP Learning 

Final Classifier 

Figure 3. Combining decisions from the best tree in each classifier

In the training phase, each individual base MGP is sep-
arately trained using the same input data from the 10-fold
cross validation. During the testing phase, unseen examples
are applied to all base functions simultaneously in real time.
Further, a collective decision is obtained on the basis of the
majority voting scheme using Equation (1). In other words,
once each of the n base classifiers from the MGP evolving
group has cast its vote as shown in Figure 3. The majority
voting strategy assigns the test patterns to the class with the
largest number of votes and outputs are provided as the final
prediction.

III. EXPERIMENTAL RESULTS

The simulation environment of the proposed EMGP is
constructed in C++. Parameters such as population size, depth
limitation, iteration number, probability of internal crossover,
external crossover, and mutation are set 10000 individuals, 10
depths, 1000 generation, 0.7, 0.05, and 0.1, respectively. The
parameters of the conventional classifiers are set as default
value of WEKA [15]. All accuracy results in this paper were
obtained by 10-fold cross validation.

16Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-472-5

eKNOW 2016 : The Eighth International Conference on Information, Process, and Knowledge Management



TABLE I. ACCURACIES AND ROOT RELATIVE SQUARED ERROR
(RRSE) (%) OF THE CONVENTIONS AND PROPOSED EMGP FOR

OVERALL BRAIN DATA

Classifier Accuracies RRSE
PART 97.78 25.20
Jrip 96.59 31.27

Naive Bayes 57.01 96.98
Bayes Net 74.20 75.36

J48 98.13 22.83
BFTree 97.44 26.73

FT 97.88 24.24
NBTree 97.59 25.77

RBFNetwork 62.48 86.47
Max. of Conv. 98.13 22.83
Proposed GP 99.39 15.03

TABLE II. CLASSIFICATION ACCURACIES (%) OF CONVENTIONAL
CLASSIFIERS AND PROPOSED EMGP FOR SUBJECT DEPENDENT

LEARNING

Classifier S1 S2 S3 S4

PART 98.64 98.53 98.26 98.97
Jrip 98.32 97.51 96.78 97.83

Naive Bayes 76.81 72.67 73.05 71.42
Bayes Net 92.47 95.34 90.71 88.90

J48 98.43 98.62 98.34 98.91
BFTree 97.94 97.47 98.13 98.45

FT 98.56 98.86 98.86 98.62
NBTree 97.59 98.02 97.72 98.29

RBFNetwork 83.90 84.03 85.44 80.76
Max. of Conv. 98.64 98.86 98.86 98.97
Proposed GP 99.43 99.10 99.02 99.24

Table 1 shows the classification results for conventional
classifiers which are implemented in WEKA and the proposed
EMGP. The conventional algorithms used in the experiment
are Pruning rule based classification tree (PART), Jrip, naive
Bayesian, Bayesian Network, J48, Best First Decision Tree
(BFTree), Functional trees (FT), Naive-Bayes tree (NBTree),
and radial basisbasis function network (RBFNetwork). In
consideration of the structure of the tree based GP, the tree-
based learning algorithms such as PART, Jrip, J48, BFTree,
FT, and NBTree were selected as the target of comparison
tests. Probability based algorithms such as naive Bayesian
and Bayesian Network; and RBFNetwrok that is a universal
learning technique are used. In this experiment, the full data
obtained by the previous description is compared based on the
accuracy. By referring to the results of Table 1, it can be seen
that the proposed classification method has the best accuracy
with the minimum RRSE when compared with conventional
classifiers.

In the subject dependent test as shown in Table 2, EMGP
classified the four finger-grasping tasks with the best accuracy.
Here we compared the performance of the training and testing
for single subject data. Other signal patterns may come on
the same motion according to individual differences. Thus,
this experiment was performed to exclude the uncertainty. As
expected, it was able to confirm that the learning accuracy is
improved overall.

To show the appropriateness of the proposed method,
fifteen UCI datasets [16] are used as benchmark dataset. Table
3 shows specifications of each dataset. The data set for the
biological signals were chosen as a test candidate. If the
learning ability is good in this result, the proposed algorithm
is to be used universally in bio-signal data. Table 3 shows
the classification results for conventional classifiers and the
proposed EMGP. The classification accuracy of EMGP is

TABLE III. NUMBER OF SAMPLES (S) AND FEATURES (F) ALONG
WITH MODEL SIZE FOR UCI DATASET, AND CLASSIFICATION

ACCURACIES (%)

Specifications Results

Dataset S F ModelSize Conv. EMGP
Blood Transfusion 748 4 2992 77.20 79.54

Breast Cancer 683 9 6147 96.18 97.21
Breast Tissue 106 9 954 66.46 68.87

Cleveland 297 13 3861 50.13 44.78
Glass 214 9 1926 61.89 69.62
Heart 270 13 3510 79.55 78.51

Ionosphere 351 33 11583 89.68 95.15
Lung Cancer 27 56 1512 55.56 59.25

Olitos 120 25 3000 69.81 84.16
Parkinson 195 22 4290 82.34 90.76

Pima Indian Diabetes 768 8 6144 75.00 76.56
Sonar 208 60 12480 67.47 88.46

Soybean 47 35 1645 98.58 100.00
SPECTF Heart 80 44 3520 73.06 80.00

Wine 178 13 2314 85.52 97.75
Mean 286.13 23.53 4391.86 75.22 80.70

5.48% higher than the average of conventional classifiers.

IV. CONCLUSION

The classification of four finger-grasping tasks, based on
neural signal data, isf challenging task in non-invasive neuro-
monitoring due to the difficulty of recognition for activation
near different cortical areas. Many machine-learning tech-
niques have been developed to obtain highly accurate classifi-
cation performance. This paper also targets the improvement of
the neural signal recognition and proposes a new classification
method for neural signal recognition during multitasks which
is based on EMGP with considerations of the signal character-
istics. The high sensitivity of GP is known as a disadvantage to
handle signal data. The proposed GP tried to solve the problem
by using multiple classifiers consisting of several trained GP
trees with majority voting. Also, the system performs the
parallel learning with several evolutionary groups. According
to the experimental results, we validated the relevance of the
proposed method.

In the future work, approaches based on probability theory
regarding the margin to solve such problems would develop GP
classifiers. The current decision which combines method with
the majority voting can be improved by theoretical approaches
or advanced ensemble combiners such as weighted voting
and stacking. This study can be applied to activate the brain
training for enhancing brain plasticity. For the applications,
the subject dependent learning in this paper can be designed
for the local brain activation training based on neuro-feedback.
In other words, the learning models] collected through a pre-
experiment can systematically help the user in a specific area
immersion. Future research will continue to focus on the
application of EMGP.
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