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Abstract—In this paper, we show through the resolution of a
real problem, how knowledge engineering techniques can be
used to guide the definition of Evolutionary Algorithms (EA)
for problems involving a large amount of structured data. Evolu-
tionary Algorithms have proven to be very effective in optimizing
intractable problems in many areas. Various representations
of the fitness functions (multi-objective EA), the genome and
mutation / crossover operators adapted to different types of
problems (routing, scheduling, etc. ) have been proposed in the
literature. However, real problems including specific constraints
(legal restrictions, specific usages, etc.) are often overlooked by
the proposed generic models. To ensure that these constraints
are effectively taken into account, we propose a methodology
based on the structuring of the conceptual model underlying the
problem, creating a domain ontology suitable for optimization
by EA. The real-world example, that is detailed throughout the
article, belongs to the general field of medical assistance. The
project focuses on the logistics involved in the transportation of
the patients. Although this problem is a specific case of the heavily
studied family of Vehicle Routing Problems (VRP), its specificity
comes from the amount of data and constraints: in addition to
costs, many legal or health considerations must be taken into
account. Our approach is based on the development of a multi-
objective genetic algorithm, which has to come up with the best
itinerary taking all these constraints into account. We will show
that a precise definition of the knowledge model with a domain
ontology can be used to describe the chromosome, the evaluation
functions, the crossover and mutation operators.

Keywords–Knowledge engineering, multi-objective optimization
problems, evolutionary algorithms

I. INTRODUCTION

In this article, we will show that the use of knowledge
engineering can greatly enhance the definition of an evolu-
tionary algorithm for a real case. This study is the result of
a collaboration between our team and an Alsatian SME that
provides real data to deal with.

The project is developed under a healthcare system envi-
ronment, specifically oriented to the transportation of patients,
normally from or to some healthcare centre. The needs for
developing an application arrives because of the fact that the
enterprises, which take care of the logistics of the journeys
have to manage a big amount of requirements and constrains at
the moment of making an itinerary. This logistics affects many
enterprise resources, like the employees and vehicles, which
should be assigned in an efficient way in order to guarantee,
among other things, the conformity of the patient and the
satisfaction of certain law regulations.

The problem consists on satisfying the daily requests of the
patients minimizing the costs and fulfilling certain constrains.
The requests are basically for pick-ups and/or deliveries of
the patients to or from their house to some healthcare centre.

There are different types of vehicles that can accomplish a
journey and each of them has an associated cost. There are
also the costs of affecting a crew, meaning a set of one or two
employees, to a certain vehicle or to a certain patient.

Many studies concern the Vehicle Routing Problem (VRP)
[1]. This large number of studies place themselves along two
axes:

• the solving approach; mainly exact algorithms or
meta-heuristics (stochastic or nature inspired algo-
rithms) [2].

• the variants of the problem; including time windows
constraints [3] or multiple heterogeneous vehicles with
pickup and delivery [4], among others.

We have chosen to use Evolutionary Algorithms (EAs)
for the specific problem to solve, since we will show in this
article that some families of EA are particularly suitable for a
knowledge driven definition.

Even if this problem belongs to the family of Vehicle
Routing Problems, it soon became clear that the solutions
proposed in the literature, as specific as they are [5][6][7], were
not intended to take into account all the specific constraints
of the problem. In addition, we believe that this situation is
found in many optimization problems when the parameters are
numerous and varied in nature. Thus, in our example, legal
constraints such as the working time of ambulance attendants,
or medical constraints such as the disinfection of the vehicles,
or the personnel qualification, cannot be overlooked while
minimizing costs or distances.

The entire legacy software environment, in particular the
conceptual model of the information system, represents a body
of knowledge and skills within the company, which should
be used in the implementation of the optimization module.
But strangely enough, we did not find in the literature any
framework taking all of these needs into account. In fact, in the
early days of genetic algorithms, much emphasis was put in the
domain-independent nature of the basic crossover and mutation
algorithms, working on a standard binary coded, fixed length
chromosome [8]. The foundation of genetic algorithms relies
on the exploitation of similarities (building blocks or schemas)
in the chromosome. Using a specific chromosome representa-
tion and operators that emphasize meaningful building blocks
in the application domain should improve the efficiency, as
highlighted by C. Janikow in [9]. This general idea has led
to numerous specific genetic algorithms based on domain
knowledge. For example, in our problem, the distribution of
tasks between ambulances can be seen as a special case of a set
partition problem. This kind of problem led to the definition
of specialized so-called Grouping Genetic Algorithms, and it
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is no surprising that some further specialization has produced
very efficient genetic algorithms for the pick-up and delivery
problem [10]. In addition to the coding of the chromosome,
knowledge may be used in other parts of a genetic algorithm:
in the the fitness function or the initial population, or to keep
collective knowledge among individuals (Cultural Algorithms).
A survey about such use of knowledge for the development of
highly specialized EAs can be found in [11].

Our goal is different: we want to use domain knowledge to
assist in the definition of the algorithm. That is why we propose
a methodology centred on an extended domain ontology for
the definition of evolutionary algorithms whose parameters and
constraints represent a huge volume of structured data (this is
what we call Knowledge-Intensive Evolutionary Algorithms).

The rest of the paper is structured as follows. In Section
II, we present the main steps of the methodology we propose.
In Section III, we detail the way of building an extended
conceptual model in order to link the domain ontology with
the EA own constructions. We then see how this structuring
of the conceptual model can be used to define the evaluation
functions (Section IV ) then the chromosome, and associated
mutation/crossover operators (Section V), ensuring that all the
specific constraints of the problem are taken into account.
Finally, we present in Section VI the preliminary results on the
ambulance routing problem, before giving some conclusions
and perspectives.

II. METHODOLOGY OVERVIEW

We propose a methodology in three phases (Figure 1).

A. Analysis
This phase consists in defining precisely the function to be

optimized through a specific labelling of the domain ontology.
The project objectives are identified by a team of domain
experts, and a comprehensive list of constraints and costs
related to the realization of these objectives is identified. A
team of domain experts, incorporating expertise in Knowledge
Engineering and in Evolutionary Algorithms is then formed.
The aim is to link the goals / costs / constraints in the
project with the generic concepts of EAs (evaluation functions,
representation of the genome, mutation, and crossover) through
a specific labelling of the domain entities. Four general,
overlapping categories of domain entities are defined:

1) Entities to Optimize: entities whose values are to be
determined by the optimization algorithm (e.g., which
ambulance will take care of each client). The structure of
the chromosome will largely depend on these entities and
their relationships. It prefigures the output data structure
of the evolutionary algorithm.

2) Parameter Entities: entities whose values act as costs or
constraints (e.g., cost/km for a vehicle, legal maximum
number of daily driving for an ambulance attendant).
The calculation of the fitness functions depends on these
entities. They prefigure the structure of the input data.

3) Evaluation Entities: entities whose values are objectives
to optimize (e.g., minimize the total number of kilometres
travelled by all ambulances or maximize the benefits). It
must be ensured that each of these goals is represented
by one or more fitness functions in the evolutionary
algorithm.

Project
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Figure 1. Methodology overview

4) Other Entities: entities that are not involved in the opti-
mization (e.g., history of customer calls to the customer
call centre).

The first three categories overlap. In fact, the membership of
an entity to a category depends mainly on the usage of the
values of its properties in the optimization problem. Some of
the entities in the application domain may be “heterogeneous"
when not all their properties serve the same purpose.

In the frequent case where the function to be optimized
must be integrated into a larger existing system, most entities
already exist in its data model. Most often, however, new
entities will have to be introduced to have a more fine-grained
representation of the entities to optimize.

We describe in Section 3 a specific labelling of the domain
ontology to specify these categories.

B. Definition

From the labelled domain ontology defined in the analysis
phase, the fitness functions, the structure of the chromosome
and the associated evolutionary operators must now be defined.
This process will be described in Section 4 for the fitness
functions and in Section 5 for the genome and operators of
the genetic operators.
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C. Implementation
A first prototype using the EASEA platform [12], [13] was

developed to test the feasibility of the approach. However, it
soon become clear that it will not be sufficient to solve real
problems. Limitiations come from:

• the total memory footprint (genomeSize ×
populationSize) is too large to be handled by
a single computer

• the convergence time to an acceptable solution is too
long.

For our application, the convergence time is critical: ambulance
itineraries cannot be fully calculated off-line, because waiting
times and consultation durations are largely unpredictable, and
new journeys may be requested at any time, some of them
urgent. The system must be able to take these changes into
account and propose a new schedule in about one minute. Only
a massively parallel implementation as proposed also by the
EASEA platform can achieve such an efficiency.

Section 6 presents the evaluation of the the first prototype.
Notice that the highly specialized technical details concerning
the parallel implementation are not discussed in this article.

III. STRUCTURING KNOWLEDGE FOR EVOLUTIONARY
ALGORITHMS

The data model needs to deal with a huge quantity of
information, taking into account all the constraints. Given the
complexity of the data model, we have decided to formalize it
as a domain ontology. The ontology will guide the definition of
the evolutionary algorithm thanks to the formal relationships
that appear among the entities in it.

An ontology is a knowledge representation of a domain or
a field that provides conceptual resources for knowledge-based
systems (KBS). It gathers and defines the set of objects that
are known as belonging to the domain [14].

In general, an ontology is composed of entities sometimes
called concepts or classes and relationships between these
entities usually called roles, properties, or attributes if they are
mono-valued. Within this paper we used entity and property. In
fact, ontologies provide the conceptual and notional resources
needed for knowledge formulation and for making knowledge
explicit. Our domain ontology formalizes the main concepts
concerning our problem, such as vehicles, crews, patients,
addresses, journeys and so on (see entities below DomainEntity
in Figure 2).

One of the essential components of the routing problem
is PlannedElement. It is an event to be held at a given
location (Address), which should start at a desired time
(requestedDate), and should last a known or estimated time
(duration). There are many subtypes of PlannedElement,
some of them are shown in Figure 2:

• PlannedEmployeeElement: events related to an
employee. For example, such employee shall be home
by noon. On the same principle, there are also
PlannedV ehicleElement events related to a vehicle:
the vehicle must be revised or disinfected, etc.

• PlannedF leetElement: an event that is not directly
dependent on a vehicle or on a particular employee.
The optimization algorithm will have to determine

which vehicle driven by which employees (Crew) will
be assigned to the event. There are again two subtypes
of PlannedF leetElement:
◦ BusinessF leetElement: this is the the most

classical event: a patient must be collected or
deposited somewhere. These events are paired
within a Journey, which includes the collec-
tion, the ride and the deposit of the patient.
Of course, a patient who was picked up by
an ambulance must be deposited by the same
one. The optimization will obviously have to
take this basic constraint into account. The
Journey is associated to PlannedElement
and not directly to a BusinessF leetElement
since constraints related to the vehicle may
be associated with Journey: for example, for
some infectious patients, the ambulance must
be disinfected immediately after the ride.

◦ InternalF leetElement: these are constraints
that are not directly related to the patients (e.g.,
fetching a document in a hospital).

The assignment of the events to individual vehicles is the
main goal of the optimization. A PlanningLine represents
the list, ordered by increasing time, of the events supported
by a given vehicle. A complete Planning is simply the set of
the PlanningLine for all the vehicles.

To optimize itineraries, notions of distance and travel
time are crucial. They are represented by the Distances and
Time for the Next (TFN ) entities. These data are huge: the
ambulances of a large company may have to visit several
thousands of addresses per day. As evolutionary algorithms
may randomly test any path, the distance between any two
addresses must be known or estimated. This is even more
critical for the travel time, which usually depends on the time
of day (see Section IV for more details).

Finally, the algorithm must take into account many addi-
tional constraints. For the sake of simplicity, only two appear
in Figure 2:

• CostCustomerV ehicule: vehicles are more or less
suitable for patients. A patient in a wheelchair is easier
to take care of (soft constraint) in a adapted vehicle.
A patient who must travel lying down requires (hard
constraint) a real ambulance.

• CostCustomerEmployee: common language, per-
sonal preferences, among others.

The ontology for Evolutionary Algoritms (EA) ontology
provides generic, domain independent, entities and properties
allowing to define what use will be made of entities and
properties of the domain in the genetic algorithm. The EA
ontology is therefore a characterization of the entities and
properties of the domain ontology seen as individuals. A
precise modelling would require for the EA ontology to be
defined at a meta-model level over the domain ontology.
The separation of entities into four categories as proposed
in Section II should be represented as specializations of the
meta-entity "Entity" itself. Similarly, a parameter used in the
fitness function should be explicitly linked to some entities
or properties in the application domain. For example, in the
application domain of ambulances, the specific evaluation
function "minimizing travel distances" should be connected
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Figure 2. extract of the domain and EA ontology

(among others) to the property "address" of the "patient" entity.
Unfortunately, not many formalisms allow the representation
of relationships between different semantic levels (model and
meta-model). In the ontology description language OWL 2 [15]
for example, the possibility for a single object to be seen both
as an entity and as an individual is reserved to the OWL-full
expressivity, which is undecidable, and although theoretical
studies have been conducted [16], few tools or reasoners, if
any, allow to take into account this kind of structures.

We therefore chose a simpler model for the current version
of our methodology in OWL-DL:

• two generic entities, DomainEntity and EAEntity
are defined. All the domain entities are defined as
subclasses of DomainEntity

• we define a generic object property
EAProperty and three mutualy exclusive
sub-Properties EAEvaluationProperty,
EAOptimizableProperty,
EAParameterProperty. All object properties
of the domain ontology involved in the genetic
algorithm must be subproperties of one of these three
specific properties depending on whether they are
involved for optimization, in the evaluation, or as a
parameter.

• For the same purpose, but for atomic domain
knowledge, we also define a generic data property
EADataProperty and three mutually exclusive sub-
dataproperties. The top level EA object and data
properties, and their specialization for the ambulance

example can be seen in Figure 3.

• The entity EAEvaluationEntity is defined as a
subclass of EAEntity having at least one evaluation
property :

EAEvaluationEntity v EAEntity

EAEvaluationEntity ≡
(EAEvaluationProperty some Thing) or
(EAEvaluationDataProperty some (boolean
or dateTime or integer or real or ...))

EAParameterEntity and EAOptimizableEntity
are defined similarly.

Figure 3. Object and data properties
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The use of domain entities in the evolutionary algorithm
is shown at two levels of granularity in the EA ontology:
properties are classified according to their use within the EA,
and every entity involved in the realization of the EA will
be automatically classified into one or more sub-classes of
EAEntity based on its properties. Thus, one can see in Figure
2 that PlannedElement plays a role both as a parameter and
as an entity to optimize.

IV. MULTI-OBJECTIVE OPTIMIZATION AND EVALUATION
FUNCTIONS

As stated in the previous sections, our problem is not a
single-objective optimization problem, but a multi-objective
one, because optimal decisions need to be made in the presence
of trade-offs between two or more, eventually conflicting,
objectives. Multi-objective approaches appear clearly as a
possibility to solve our problem after a careful analysis of the
constraints coming from the underlying data model. Moreover,
beyond the classical advantages of these approaches, they are
efficient in limiting a concentrated convergence of the solutions
in a small subset of the Pareto front, which is very interesting
for knowledge intensive evolutionary algorithms.

To be able to define a set of objectives, we first have
to present a macro-objective and then break it down into a
series of micro-objectives. The macro-objective is defined as:
Based on a set of required elements, vehicles, patients and
employees, we have to generate a planning of itineraries that
these vehicles will take so that the crews achieve the requested
elements of the customers, minimizing the cost for the transport
companies, maximizing service quality and observing all the
restrictions that may appear in the context.

Several micro-objectives have been deduced from this
macro one, including:

1) Generate itineraries without delays or idle time between
two different requests.

2) Generate itineraries that minimize the cost associated to
the length of the trip.

3) Optimize the working time of the employees to avoid
paying overtime or that they work less time that the legal
number of hours per week.

4) Minimize the cost of the employees.
5) Minimize the cost of the vehicles.
6) Optimize the quality of service.
7) Balance the number of requests served by each vehicle.

These micro-objectives are, of course, in relation with the
entities in the ontology in Figure 2.

For the two fitness functions detailed below, we will denote
by V the set of vehicle, by PE the set of PlannedElement,
and to each vehicle vi, we associate the ordered list Pi =
[pi1, ..., p

i
ni
], pij ∈ PE of PlannedElement assigned to the

vehicle.
1) Minimizing the cost associated with arrivals to a certain

point in delay or in advance: Each Journey between two
PlannedElements pj and pj+1 is represented in a temporal
line (Figure 4) with three values, RequestedDate (RD),
Duration(D) and the estimated time to arrive to the next
point (TFN). The duration estimates the time needed in a
point to take care of the patient. This time depends on multiple
factors, for example, the size of the wheelchair if the patient
needs one or the fact that the patient is in a stretcher or not.

Figure 4. Temporal line between points pj and pj+1

Figure 5. Structure of the chromosome

The TFN data are represented as a three-dimensional matrix
(called cubeTFN ), where each element represents the travel
times between two addresses for a given (discrete) time in the
day. Therefore, cubeTFNijt is the time in seconds it takes to
go from the point i to point j at time t.

The cost is represented through a piecewise function f0(x),
where x = RDj+1 − (RDj + Dj + TFNj) is the temporal
difference shown in Figure 4. If this difference is negative
(arrival in delay), the cost is quadratic; otherwise (arrival in
advance), the cost is linear.

f0(x) =

{
x2 , x < 0
x , x ≥ 0

Therefore, the objective can be formalized as:

min
∑
v∈V

∑
p∈Pi

f0(RDj+1 − (RDj +Dj+

cubeTFN(pj , pj+1, RDj+1)) (1)

2) Minimizing the cost associated to the length of the trip:
Ideally, the vehicles should attend points that are close to each
other, in order to prevent the crews from driving long distances
between two successive points in the itinerary. The cost to go
from point pj to point pj+1 is estimated from the distance
matrix cubeTFN and the associated cost per kilometre of each
V ehicle vi. Therefore, if x = (pj , pj+1, t) where t is the time
of the day when the trip needs to be made, this objective can
be formalized as:

min
∑
v∈V

∑
p∈Pi

costKm (vi, cubeTFN (pj , pj+1, RDj+1)) (2)

V. DEFINITION OF THE CHROMOSOME AND OF THE
EVOLUTIONARY OPERATORS

When the genetic algorithm finishes its execution, it returns
a planning based on the ontology, to which the structure of the
chromosome is adapted (Figure 5). For the set of all the vehi-
cles, the chromosome associates then a crew and a list of points
(PlannedElements) that the vehicle needs to attend (this
list of PlannedElements is the PlannedLine associated to
each vehicle). All list of PlannedElements are sorted by
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Figure 6. The PlannedElementCrossover operator

ascending requested Date (object property requestedDate(p)
in model of Figure 3).

For the population to evolve, it is necessary to define a set
of evolution operators. These should take into account all the
aspects that are necessary for the planning to tend towards a
possible final solution. There are two major axes that differ in
the structure of a chromosome, the distribution of the Crews
and the PlannedElements on the set of vehicles.

Making evolutionary changes in the two axes can affect all
costs associated with the objectives, generating new popula-
tions with individuals of better quality. Several operators for
the two axes have been defined, including crossover, mutation
and swap. Only two of them are detailed below.

A. PlannedElementCrossover
As noted in Section III, PlannedElements may be re-

grouped in a Journey. Each PlannedElement belongs to at
most one Journey. We denote by inJ(p) the set containing
p and all the PlannedElements in the same Journey as p.

In Figure 6, the big long top rectangle represents the
list of all the PlannedElements sorted by ascending time.
To perform the crossover between two individuals, named
mother and father in the figure, a PlannedElement pr is
randomly chosen in this list. For each PlanningLine i, we
have the list P f

i (resp. Pm
i ) of PlannedElements affected

to vehicle i in the father (resp. mother) individual. The set
P s
i of PlannedElement affected to vehicle i in the new son

individual is defined by :

[l]P s
i = {pf ∈ P f

i ;∃p ∈ inJ(pf ) RD(p) <= RD(pr)}
⋃

{pm ∈ Pm
i ;∀p ∈ inJ(pm) RD(p) > RD(pr)}

Informally speaking, the son has the assignation of its father
for early PlannedElements, and of its mother for later ones.
We can also create a second derived individual (daughter in
Figure 6) by reversing the role of the father and mother.
The corresponding operations are schematically shown for one
PlanningLine at the bottom of Figure 6.

B. CrewMutation
This operator is implemented by taking a random Crew of

the list of all possible crews and make a simple swap between
it and a randomly selected Crew in the individual, only if the
number of employees is the same in both crews (Figure 7).

VI. EVALUATION

For a preliminary evaluation of the resulting algorithm, we
consider the two evaluations functions described in Section
IV. Evaluation is carried out under three different scenarios.
In each scenario, we select an increasing number of V ehicles,

Figure 7. The CrewMutation operator

which have to satisfy the constrains of an also increasing num-
ber of Journeys. The input data of the algorithm consists of a
number of Journeys randomly generated according previous
information provided by a partner service medical company.
As mentioned in Section III, each Journey includes constrains
regarding the time, the cost, the number of occupants, etc.

All the three scenarios are evaluated using a population of
1000 individuals during 400 generations. The probability of
the genetic operators are 0.8 for the crossover and 0.1 for the
mutation.

Figure 8 shows the best and average fitness values for the
three different scenarios along the different generations. The
results considering the cost of the delay (equation (1)) are
shown on the left side of the figure, whereas results for the
cost for the length of the trip (equation (2)) are shown on the
right. Notice that fitness values are shown in the y-axis while
the generation number is shown in the x-axis.

As can be observed, for the three scenarios the algorithm
has been capable of minimizing the values of both objective
functions along the evolution process.

In the case of the delay function on the two first scenarios,
we can observe that the improvement tends to slow down con-
siderably beyond the generation 100. A different situation is
shown on the third scenario, where the algorithm requires more
generations to find a good solution. Clearly, as a consequence
of having a larger problem, more evolution time seems to be
required.

When considering the cost of the trip, the best values curve
shows a more variable behaviour. However, even with this
non monotonic behaviour, an improvement along the evolution
process is still observed. In the second and third scenario the
difference between average and best fitness values is bigger
than the first scenario. Therefore, it could be possible that more
evolution time be required.

Finally, we can observe that in those scenarios with the
largest number of journeys to satisfy, average and best fitness
values are also considerable larger. In particular, in the case
of the cost fitness function we can observe best values starts
at 70 (KAC) for the third scenario, whereas best values start
at 45 (KAC) and 17 (KAC) for the second and first scenarios,
respectively. A similar pattern is also observed in the delay
fitness function.

VII. CONCLUSIONS AND PERSPECTIVES

This article has shown, through the resolution of a real
problem, how knowledge engineering techniques can be used
to guide the definition of EA for problems involving a large
amount of structured data.
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Figure 8. Fitness function values for different problem sizes

The first prototype, using the EASEA platform, has been
evaluated. The idea behind this evaluation is just to demon-
strate the feasibility of the methodology. Therefore, we have
not fine tuned the EA parameters in order to get a solution
suitable for the real-life scenario. Notice that such fine tuning
will be carried out on a parallel version of the EA, which is
currently being developed.

We also intend to use machine learning techniques in order
to increase the efficiency of the EA. In fact, most of the
PlannedElements are recurring in the same geographical
area; the development of a module taking profit of the past
experience is being undertaken to attempt guiding the popula-
tion of the EA to more accurate and close-to-reality itineraries.

As evoked in Figure 4, each PlannedElement has an
internal duration associated with it. Whether the point is
a collection point or a deposit point, this internal duration
depends specifically on the conditions in which the next ride
needs to be made. This internal duration represents the amount
of time taken for the patient to get in or out of the vehicle
and depends on certain specificities of the patient, such as the
need of a wheeling chair (that can have different sizes), or of
a stretcher or of crutches, oxygen mask or perfusion. And, of
course, this duration depends also on the age of the patient
and on his general health state.

For the moment, some tests with linear regressions using
WEKA [17] have been made, yielding encouraging results;
although some occasional missing values in the input data (due
mainly to oversights of the staff in the call centre that receives
the requests) induces the need of using other techniques [18].
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