
Knowledge Discovery Using a Service Oriented Web Application

Janez Kranjc, Vid Podpečan, Nada Lavrač
Department of Knowledge Technologies

Jožef Stefan Institute
Ljubljana, Slovenia

{janez.kranjc,vid.podpecan,nada.lavrac}@ijs.si

Abstract—The paper proposes a novel platform for knowl-
edge discovery, which is based on modern web technologies,
and is implemented as a web application. It is based on
the principles of service-oriented knowledge discovery, and
features interactive scientific workflows. In contrast to the
few existing comparable platforms, our environment is suitable
for any knowledge discovery task, offers advanced workflow
construction including meta-workflows, can use any existing
web service as a workflow processing component, and runs
in all major web browsers and platforms, including mobile
devices. The presented environment has been demonstrated on
two use cases: a simple motivating use case built using Weka
web services, and an advanced use case featuring a complex
text mining scenario.

Keywords-data mining; knowledge discovery; web applica-
tion; web services

I. INTRODUCTION

The development of modern knowledge discovery and
data mining environments and tools has reached maturity.
While traditional data analysis software supported a single
or few algorithms, designed to mine highly specialized
data, today’s modern knowledge discovery systems provide
a large collection of generic algorithm implementations,
usually coupled with an easy-to-use graphical user inter-
face. The importance of visual programming using scientific
workflows is now also widely recognized, and all advanced
knowledge discovery software offer some form of workflow
construction and execution, as this is of crucial importance
for conducting complex scientific experiments, which need
to be repeatable, and easy to verify at an abstract level.

However, these so-called second generation systems have
failed to benefit from the concepts of service-oriented ar-
chitecture, and complex and geographically dispersed infor-
mation and knowledge sources as well as algorithms and
functions, publicly available on the web. Finally, today’s
knowledge discovery systems have also failed to bridge
different operating systems and platforms, and are not able to
fully utilize available server resources in order to relieve the
client from heavy-duty processing and data transfer. As the
general trend is shifting towards mobile devices and mobile
computing, this effectively prevents the employment of such
tools in modern mobile information environments.

The novel knowledge discovery platform presented in
this paper was designed to overcome all the recognized

deficiencies while retaining all important features of existing
solutions. As such, our platform benefits from service-
oriented technologies [1], the visual programming paradigm,
as well as platform and software independent technologies.

Firstly, service-oriented architecture featuring web ser-
vices as primal processing components enables paralleliza-
tion, remote execution, and high availability by default. It
provides access to large public (and proprietary) databases,
enables easy integration of third party components (as ser-
vices) and loose coupling, and supports not only distributed
processing but also distributed development.

Secondly, the visual programming paradigm simplifies the
construction of complex knowledge discovery scenarios by
providing basic building blocks, which can be connected
and executed, enables repeatability of experiments by saving
constructed workflows and parameters, provides an intuitive
structuring of complex parts of workflows by introducing
the notion of meta-workflow (workflow of workflows), and
makes the platform suitable also for non-experts due to the
representation of complex procedures as sequences of simple
processing steps.

Finally, as the platform and software independence can be
achieved by using web technologies only, the platform relies
on standards such as HTML, CSS, Ajax and JavaScript, and
widely supported and accepted software solutions such as
Apache and PHP.

To summarize, the presented platform offers a complete
service-oriented workflow environment, suitable for any
knowledge discovery task. The platform is truly independent
as it is implemented in the form of a web application, which
is accessible from any modern web browser.

The rest of the paper is structured as follows. Section II
briefly presents the related work. In Section III, the design
of the platform and its components are discussed in detail.
The description of the initial widgets repository is presented
in Section IV. In Section V, two data mining use cases
are presented. Finally, Section VI summarizes the work and
concludes the paper by suggesting directions of further work.

II. RELATED WORK

This section discusses the work related to the main
concepts of the presented platform: workflow editing and ex-
ecution environments, service-oriented approaches to knowl-

82Copyright (c) IARIA, 2012. ISBN: 978-1-61208-181-6

eKNOW 2012 : The Fourth International Conference on Information, Process, and Knowledge Management

edge discovery and browser-based applications for knowl-
edge discovery.

Many software solutions from different domains enable
construction and execution of scientific workflows. Well
known examples include Weka [2], Orange [3], KNIME [4]
and RapidMiner [5] data mining environments. The most
important common feature is the implementation of a work-
flow canvas where complex workflows can be constructed
using simple drag, drop and connect operations on the
available components. The range of available components
typically includes data loading and pre-processing, data and
pattern mining algorithms and interactive and non-interactive
visualizations.

Even though such data mining software solutions are
reasonably user-friendly and offer a wide range of compo-
nents, there are many deficiencies, which limit their use.
Firstly, all available workflow components provided by any
of these platforms are specific and can be used in this
particular platform only. Secondly, the described platforms
are implemented as standalone applications and have specific
hardware and software dependencies. Thirdly, in order to
extend the range of available workflow components in any
of these platforms, knowledge of a specific programming
language is required. This also means that they are not
capable of using existing software components, implemented
as web services, and available freely on the internet.

In order to benefit from service-oriented architecture
concepts, another group of software tools have emerged,
which are able to make use of web services, and can access
large public databases (some also support means of grid
deployment and P2P computing). Environments such as
Weka4WS [6], Orange4WS [7], Web Extension for Rapid-
Miner, Triana [8], Taverna [9] and Kepler [10] allow for inte-
gration of web services as workflow components. However,
with the exception of Orange4WS and Web Extension for
RapidMiner, these environments are mostly specialized in
domains like systems biology, chemistry, medical imaging,
ecology and geology. Lastly, none of these applications is
browser based thus still requiring specific hardware and
software.

The last group of software tools capable of workflow
construction, most similar to the presented environment,
encompasses browser based applications such as the Oryx
Editor [11] for modelling workflows and business processes,
and the Galaxy [12] genome analysis tool. The Oryx editor,
however, although designed similarly as the proposed envi-
ronment, does not support the deployment of workflows as it
is only a modelling tool. Also, the Galaxy web application is
limited exclusively to the workflow components, provided by
the project itself, and does not provide means for employing
arbitrary web services and other information and computing
resources found on the web.

III. PLATFORM DESIGN

The presented platform consists of three layers as shown
in Figure 1. The upper-most layer presents the parts of the
platform which run on the client side. The middle layer
is located on the server where the platform is hosted. The
bottom layer consists of the remote resources which provide
web services.

This section describes these layers in detail. The user
interface is presented first. Secondly, the workflow engine
is described. Finally, workflow components and the func-
tionalities to import web services are explained.

Figure 1. The three layered design of the platform. The upper-most layer
represents the part of the platform executed on the client side. The middle
layer is located on the server where the platform is hosted. The lower layer
represents remote resources which provide web services.

A. The user interface
The graphical user interface was implemented in HTML.

It consists of three main parts: the toolbar, the widget
repository, and the canvas. A sample screenshot of the user
interface is shown in Figure 2.

Two JavaScript libraries were used to implement the
toolbar. The buttons were implemented using the jQuery
UI library while their event listeners and handlers were
implemented using the jQuery library [13]. The primary
function of the toolbar is to start, execute, save, and load
workflows, and to separate parts of the workflow.

83Copyright (c) IARIA, 2012. ISBN: 978-1-61208-181-6

eKNOW 2012 : The Fourth International Conference on Information, Process, and Knowledge Management

Figure 2. A screenshot of the environment in the Mozilla Firefox browser.

The second part of the graphical user interface is the
widget repository, which provides a clickable list of available
widgets. By clicking on an available widget, its instance
appears on the canvas hosting the currently active workflow.

As the workflow canvas is the part which requires in-
tensive user interaction, it was implemented in JavaScript.
Each widget on the canvas is represented by a short HTML
description, and a special function in JavaScript, which
appends this HTML code to the document object model,
is invoked whenever a widget from the repository list is
clicked.

Widgets can be connected by clicking on an input or
output. When both an input and an output are selected, an
event is triggered, which checks for cycles in the workflow
graph using the depth first search algorithm. If no cycles
are detected, a connection is drawn and the corresponding
widgets become connected.

The connections are graphically represented as Bézier
curves, and implemented by dynamically adding HTML5
canvas elements to the document object model. To enable
cross-browser functionality, the ExplorerCanvas library was
used to simulate the canvas element in the Internet Explorer
browser family. Finally, the selection and removal of con-
nections are implemented using mouse and keyboard event
handlers, respectively.

B. The workflow engine

The presented platform is able to execute workflows
as well as separate widgets. A PHP script on the server
corresponds to each widget. It is invoked from the graphical
user interface using Ajax techniques.

The inputs of the widget are passed to the PHP script
using an asynchronous HTTP POST request. When the
results are available (or when an error occurs), a call-back
function is called, which stores the results of the execution
of the widget into the output variables in the underlying
document object model. The PHP script may either return
the data in a serialized form or issue a special command,
which instructs the user interface to open a pop-up window
for displaying the results (data visualization widgets utilize
this functionality). The execution of multiple independent
widgets simultaneously is assured by the asynchronous
nature of POST requests, which essentially represent an
equivalent to the multithreading programming paradigm.

The execution of the entire workflow is realized by a
special JavaScript function, which iteratively searches for
widgets whose predecessors have finished their execution,
and executes them.

C. Web services as workflow components

Workflow components of the presented platform may be
implemented as remote web services provided by a third
party, or as PHP scripts located on the server hosting the
platform.

84Copyright (c) IARIA, 2012. ISBN: 978-1-61208-181-6

eKNOW 2012 : The Fourth International Conference on Information, Process, and Knowledge Management

Since web services are completely defined by their WSDL
descriptions, the functionality to import web services was
implemented in PHP by parsing the corresponding WSDL
document. For every operation provided by a web service the
PHP script returns an HTML description of the correspond-
ing widget. In the user interface, this procedure is accessible
through a button whose event handler queries the user for
the location of a WSDL file, which is then imported and
parsed, and a list of available widgets is presented to the
user.

The user is allowed to decide about the role of each input
of each operation. The input may be designated as a user
interface input of the widget or as a widget input parameter.
User interface inputs can be set by entering the values
manually in the widget’s graphical user interface while
widget input parameters receive data from other widgets.

IV. THE WIDGET REPOSITORY

In order to enable construction of scientific workflows
implementing arbitrary knowledge discovery scenarios, an
initial set of widgets is available to the user. The widgets
belong to four distinct groups.

The first group of widgets enable data creation, manipula-
tion and simple visualizations including creation of strings
and integers, and joining strings and integers into arrays.
Arithmetic integer operations are also implemented. These
widgets are implemented as PHP scripts located on the
server where the platform is running.

The second group of widgets consists of three widgets,
which allow creating nested workflows (note that the depth
is unlimited). A sub-workflow can be created by adding
an instance of the sub-workflow widget on the canvas.
On activation, the canvas view is switched to the sub-
workflow (switching can also be achieved by clicking on the
corresponding canvas tab). Additionally, two special widgets
are used for assigning inputs and outputs of the current sub-
workflow to carry the data from the parent workflow to the
sub-workflow. By adding an input widget to the current sub-
workflow, the corresponding sub-workflow widget gains an
input, which is connected to the output of the input widget.
The output widget operates similarly. This group of widgets
is implemented in JavaScript and executed on the client side.

The third group of widgets consists of 35 implementations
of the local services available in Taverna [9]. Because Tav-
erna is written in Java and its local services in the Beanshell
scripting language, they were implemented in PHP and
integrated into the platform. These services include widgets
that allow reading and writing files, re-encoding strings,
executing SQL queries, querying public databases such as
PubMed, accessing documents using HTTP, extracting and
viewing images from websites, performing operations on
strings and lists of strings, and manipulating XML files.
Due to security issues in browsers, some services could
not have been implemented in PHP, such as services that

list files and folders of the user’s computer and execute
applications. Using the implemented collection of Taverna
services our platform supports the majority of workflows
created in Taverna.

Finally, the platform offers several data mining algorithm
implementations from the Weka data mining environment,
which have been made available as SOAP web services. The
Orange4WS [7] data mining platform and its tools were
used to implement these services, which enable easy and
platform independent access to the latest Weka software.
The actual SOAP web server hosting Weka services makes
use of the JPype wrapper library [14], which allows calling
arbitrary Java code from the Python interpreter. The services
communicate by exchanging serialized Weka objects such
as learners, classifiers, and datasets. While this approach
does not allow client-side modification of these objects
unless a Java client running Weka is used, it is currently
the only feasible way to use Weka in a service-oriented
environment as only a few Weka classes implement XML-
based serialization according to PMML standard [15].

V. USE CASES

This section demonstrates some of the abilities of the
presented platform. Two use cases are presented and dis-
cussed. The first one is a simple, motivating use case where
Weka web services are used to show the basic functionalities
of the platform: composing a workflow of remote web
services and local processing components, executing the
workflow, and displaying the results. The second use case
is an advanced example of a text mining workflow where
a word graph obtained by querying a public database is
pruned using a specialized graph algorithm (available as a
web service) and visualized locally in a powerful interactive
graph visualization component, provided by the platform.

A. A use case featuring Weka web services

The purpose of this use case is to demonstrate the use of
Weka algorithms, available as web services (see Section IV).
The J48 decision tree induction algorithm (J48) is cross-
validated on the 1984 United States Congressional Voting
Records dataset, which consists of 435 instances with 17
attributes and a binary class attribute, and is available in the
Attribute-Relation File Format (ARFF).

First, the Read Text File widget is used to load the dataset
into the platform. The widget provides a file chooser dialog
where an arbitrary text file can be selected and uploaded to
the server.

Since Weka web services communicate by exchanging
serialized Weka objects, the dataset has to be transformed
into a serialized Weka Instances object. A service from the
repository of Weka services provides this functionality.

Then, to perform the cross-validation of a learning al-
gorithm the Weka service for cross validation is used. It
accepts serialized data, a serialized Weka learner (i.e., an

85Copyright (c) IARIA, 2012. ISBN: 978-1-61208-181-6

eKNOW 2012 : The Fourth International Conference on Information, Process, and Knowledge Management

implementation of the learning algorithm), and the number
of folds. The Weka service providing the J48 learner is
connected to the cross-validation service, which can finally
be executed. The cross-validation service provides several
outputs, which return different reports generated by Weka.
Here, Weka’s cross validation summary is displayed using
the Display String widget.

The complete workflow for performing cross validation
using Weka services and displaying the results is shown in
Figure 3. The workflow can be executed by clicking the
execute workflow button. It invokes the workflow engine,
which takes care of the validation, execution, and error
reporting.

Figure 3. A workflow implementing cross validation of Weka algorithms.

B. An advanced text mining use case

This use case is built upon a collection of advanced
services for text mining, graph analysis, and graph visu-
alization. Its goal is to support the analysis of textual data
by providing means for representing texts as graphs, graph
pruning, and interactive graph visualization.

The information source for this use case is the well
known PubMed database [16], a free database accessing the
MEDLINE database of citations, abstracts and some full text
articles on life sciences and biomedical topics. It was used
for obtaining documents, relevant to the input query.

The resulting document corpus was then processed using
text mining tools from the LATINO project [17], which is
a software library implementing a range of data mining
and machine learning algorithms with the emphasis on
text mining and link analysis (components of the LATINO
library components were provided as web services).

Using LATINO web services, the document corpus was
transformed into a term network as follows. Firstly, it was
tokenized and lemmatized, and transformed into the bag-
of-words (BoW) vectors. Then, the network was produced
using the following principle. Each link between two words
represents a co-occurrence meaning that both words appear
together in at least one document, whereas the link’s weight
represents the normalized number of co-occurrences through
all documents. This weight is a similarity measure in the
sense that two words (or concepts) linked with a higher
weight are more similar (i.e. are more “connected“ because
they appear together more often) than two words with a
lower weight.

Figure 4. A workflow implementing the analysis of textual data using
a public database and a collection of text mining and graph mining
components.

Figure 5. A part of the term graph obtained by querying PubMed with
the query string stem cell. The graph is visualized using an interactive Java
applet available as a widget in the presented platform.

Finally, the resulting weighted graph was pruned using
the Pathfinder algorithm [18], a specialized algorithm for
graph simplification (we omit the details of the algorithm as
this is out of the scope of this paper). In order to transform
the weights into dissimilarities required by Pathfinder the
formula w = 1/w′ was applied where w is the original
weight.

As a result, the pruned graph retained only the strongly
linked concepts, which means that many less significant
edges were removed thus improving its understandability
and presentability. In the constructed workflow, as shown
in Figure 4, an interactive graph visualization component
was used, which enables user friendly exploration of large
graphs. A zoomed part of the graph, obtained by querying
PubMed with the query “stem cell”, is shown in Figure 5.

86Copyright (c) IARIA, 2012. ISBN: 978-1-61208-181-6

eKNOW 2012 : The Fourth International Conference on Information, Process, and Knowledge Management

VI. CONCLUSION AND FUTHER WORK

The paper proposes a browser-based environment for ser-
vice oriented knowledge discovery, which relies on modern
web standards and widely supported and accepted software
solutions. Coupled with the extreme versatility and power
of web services, the proposed environment presents a new
generation tool, ready to be used in any scenario or form
of knowledge discovery, including mining of web and data
streams thus surpassing all currently available knowledge
discovery software tools. Moreover, the proposed environ-
ment is able to run in all modern web browsers, including
those available on mobile devices, which presents great
opportunities for its deployment and widespread use.

In summary, we have developed an open, general, and
independent web application environment for knowledge
discovery, which employs service-oriented technologies, and
is ready to be used in any data and information analysis
scenario.

In future, we plan to implement the process flow control
widgets such as conditional branching and looping. We will
also explore adding means of mining data streams as well
as semi-automatic workflow construction based on planning
algorithms, modern knowledge discovery ontologies, and
systems for semantic annotation of web services. Finally,
we plan to provide a public installation of the environment,
a workflow repository, a community web site, and release
the sources under an open-source license.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) within the context of the project
FIRST, Large scale information extraction and integration
infrastructure for supporting financial decision making, un-
der grant agreement no. 257928.

REFERENCES

[1] T. Erl, Service-Oriented Architecture: Concepts, Technology,
and Design. Upper Saddle River, NJ, USA: Prentice Hall
PTR, 2005.

[2] I. H. Witten, E. Frank, and M. A. Hall, Data Mining:
Practical Machine Learning Tools and Techniques, 3rd ed.
Amsterdam: Morgan Kaufmann, 2011.

[3] J. Demšar, B. Zupan, G. Leban, and T. Curk, “Orange: From
experimental machine learning to interactive data mining,”
in PKDD, ser. Lecture Notes in Computer Science, J.-F.
Boulicaut, F. Esposito, F. Giannotti, and D. Pedreschi, Eds.,
vol. 3202. Springer, 2004, pp. 537–539.

[4] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter,
T. Meinl, P. Ohl, C. Sieb, K. Thiel, and B. Wiswedel,
“KNIME: The Konstanz Information Miner,” in GfKl, ser.
Studies in Classification, Data Analysis, and Knowledge
Organization, C. Preisach, H. Burkhardt, L. Schmidt-Thieme,
and R. Decker, Eds. Springer, 2007, pp. 319–326.

[5] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and
T. Euler, “YALE: rapid prototyping for complex data mining
tasks,” in KDD, T. Eliassi-Rad, L. H. Ungar, M. Craven, and
D. Gunopulos, Eds. ACM, 2006, pp. 935–940.

[6] D. Talia, P. Trunfio, and O. Verta, “Weka4WS: A WSRF-
enabled Weka toolkit for distributed data mining on grids,”
in PKDD, ser. Lecture Notes in Computer Science, A. Jorge,
L. Torgo, P. Brazdil, R. Camacho, and J. Gama, Eds., vol.
3721. Springer, 2005, pp. 309–320.

[7] V. Podpečan, M. Zemenova, and N. Lavrač, “Orange4ws
environment for service-oriented data mining,” The Computer
Journal, 2011.

[8] I. Taylor, M. Shields, I. Wang, and A. Harrison, “The Triana
workflow environment: Architecture and applications,” Work-
flows for e-Science, vol. 1, pp. 320–339, 2007.

[9] D. Hull, K. Wolstencroft, R. Stevens, C. A. Goble, M. R.
Pocock, P. Li, and T. Oinn, “Taverna: a tool for building
and running workflows of services,” Nucleic Acids Research,
vol. 34, no. Web-Server-Issue, pp. 729–732, 2006.

[10] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher,
and S. Mock, “Kepler: an extensible system for design
and execution of scientific workflows,” in Scientific and
Statistical Database Management, 2004. Proceedings. 16th
International Conference on, Jun. 2004, pp. 423–424.

[11] G. Decker, H. Overdick, and M. Weske, “Oryx – an open
modeling platform for the bpm community,” in Business Pro-
cess Management, ser. Lecture Notes in Computer Science,
M. Dumas, M. Reichert, and M.-C. Shan, Eds. Springer
Berlin / Heidelberg, 2008, vol. 5240, pp. 382–385.

[12] D. Blankenberg, G. V. Kuster, N. Coraor, G. Ananda,
R. Lazarus, M. Mangan, A. Nekrutenko, and J. Taylor,
“Galaxy: A Web-Based Genome Analysis Tool for Experi-
mentalists,” Current protocols in molecular biology / edited
by Frederick M. Ausubel ... [et al.], vol. Chapter 19, Jan.
2001.

[13] “jQuery: The write less, do more, javascript library,” Last
accessed January 2012. [Online]. Available: http://jquery.com

[14] “JPype - java to python integration,” Last accessed January
2012. [Online]. Available: http://jpype.sourceforge.net/

[15] “PMML 4.0 - general structure of a pmml document,”
Last accessed January 2012. [Online]. Available:
http://www.dmg.org/v4-0-1/GeneralStructure.html

[16] “Pubmed,” Last accessed January 2012. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/

[17] M. Grčar, “Latino - link analysis and text mining
toolbox,” Last accessed January 2012. [Online]. Available:
http://sourceforge.net/projects/latino/

[18] A. Vavpetič, A. Batagelj, and V. Podpečan, “An implemen-
tation of the pathfinder algorithm for sparse networks and
its application on text networks,” in Proceedings of the 11th
International Multiconference Information Society, 2009.

87Copyright (c) IARIA, 2012. ISBN: 978-1-61208-181-6

eKNOW 2012 : The Fourth International Conference on Information, Process, and Knowledge Management

