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Abstract— To protect computer systems and their users against
security attacks, all potential security related incidents should be
detected by monitoring system behavior. In this paper, a novel
approach to detect, analyze and handle security anomalies in
virtualized computing systems is presented. Adequate sensors on
different virtualization layers monitor relevant events, a Complex
Event Processing engine is used to aggregate and correlate
events on the same or different layers to find genuine attacks
and eliminate false positives, and corresponding actions are
performed if a security anomaly is detected. To enhance the
quality of the results, machine learning techniques are used
to analyze a historical database of recorded events offline to
generate new or modify existing queries on the monitored event
stream automatically. Furthermore, sensors can be activated and
deactivated during runtime to gather interesting events, reduce
the false alarm rate and ensure the system’s responsiveness when
a sudden increase of monitored event data occurs. In this way, a
flexible, minimally-invasive approach for detecting, analyzing and
reacting to a broad variety of security anomalies in a virtualized
environment is provided.

Index Terms— security; malware; virtual machine monitoring;
complex event processing; intrusion detection.

I. INTRODUCTION

Computers exposed to the Internet are at constant risk of
being attacked. To protect them against security attacks, all
security related incidents should be detected by monitoring
system behavior. To detect security anomalies, Intrusion De-
tection Systems (IDS) or Intrusion Prevention Systems (IPS)
are typically used; their combination is known as Security
Information and Event Management (SIEM). However, most
SIEM systems only monitor events on the infrastructural layer,
need human assistance in case of error recovery, raise a
high number of false alarms, and do not scale well with an
increasing number of events.

In this paper, a new approach to detect, analyze and handle
security anomalies is presented. The anomalies include both
known and yet unknown security vulnerabilities with a particu-
lar focus on systems based on operating system virtualization,
such as Infrastructure-as-a-Service Cloud computing systems.
Hence, this paper proposes a novel SIEM system especially
for virtualized computing resources.

The proposed architecture monitors security anomalies on
different layers of a virtualized computing system. Monitoring

is based on installing adequate sensors in the hypervisor (also
called virtual machine monitor), in a virtual machine itself
and in any kind of application runtime environment, such
as an web-application container, to continuously report all
relevant activities. A combination of out-of-VM monitoring
using virtual machine introspection [6] and in-VM monitor-
ing is used to keep the usual monitoring overhead low. To
facilitate horizontal and vertical correlation and aggregation
of monitored events, Complex Event Processing (CEP) is
used. CEP enables robust cross-layer monitoring by leveraging
Event Processing Agents (EPAs). EPAs are continuous queries
on event streams that are able to analyze basic events and
look for security anomalies. Based on the gathered results,
the system can react autonomously and intelligently, i.e., it is
able to repel attacks and circumvent security vulnerabilities.
Occurring anomalies, even on different layers, will be detected
at an early state and appropriate actions are launched. To
enhance the quality of the results, machine learning is used
to analyze archived, offline data. This allows us to generate
new EPAs automatically through behavioral models derived
from a historical database of recorded events. Furthermore, it
is possible to activate and deactivate sensors during runtime
in order to gather interesting, individual events, eliminate
false positives and keep the system responsive when a sudden
increase of monitoring data occurs. n this way, a flexible,
minimally-invasive approach for detecting, analyzing and re-
acting to a broad variety of security anomalies in a virtualized
environment is provided.

The core functionality is maintained in a special, trusted vir-
tual machine (called ACCEPT-VM). It receives and processes
all sensor data and triggers actions if necessary. In order to
increase the processing speed and handle a larger amount of
events, the benefits of multi-core architectures are leveraged,
thus, EPAs can be scheduled between CPU cores. Furthermore,
to make use of intra-EPA-parallelism, it should be possible to
offload certain EPAs to General Purpose Graphic Processing
Units (GPGPUs).

This paper is organized as follows. Section II discusses
related work. Section III presents the approach for detect-
ing, analyzing and handling security anomalies in virtualized
computing systems. Section IV presents examples. Section V
concludes the paper and outlines areas for future work.
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II. RELATED WORK

Teixera et al. [11] present Holmes, an implementation of
a monitoring solution for integrating a CEP engine with
machine learning. The CEP engine generates alerts using hand-
crafted continuous queries to detect known abnormalities and
deviations from expected behavior. Furthermore, it normalizes
the asynchronous events for analysis with the machine learn-
ing algorithm, i.e., it joins different streams to be analyzed
together and generates time series with equidistant intervals.
A machine learning algorithm detects unknown anomalies in
time series, without manual rule creation and anticipation of
problem conditions and thresholds.

Holmes utilizes infrastructure level sensors and can thus
only detect hard- and software issues as well as attacks such as
Distributed Denial-of-Service (DDoS) attacks. The proposed
architecture is not hierarchical, i.e., it consists of a single
message bus, where all sensors publish their information to
and the central CEP engine and machine learning modules
subscribe to. This architecture does not scale well, neither for
an increasing number of events nor for an increasing number of
machines to monitor. Historical data is not used for anomaly
detection, which limits the potential to detect anomalies as
well as increases the risk of false positives.

Ficco [5] presents an approach to detect and respond to
attacks by using event correlation. The approach is described
using a DDoS attack as an example. Different information
sources on several architectural levels, such as network,
operating system and application, are deployed in strategic
points of the system. In the example, these sources are the
number of connections from a single IP, the length of the
backlog queue of TCP and the number of application requests.
Agents deployed together with the sensors analyze, filter,
normalize and forward messages to the so called Decision
Engine, consisting of a correlator, a diagnoser and a reaction
module. Specialized modules, called Remediators, are used to
remediate a specific attack or intrusion. An ontology is used
to map all symptoms and possible effects of an attack. This
ontology is used for the correlation of events and the decision
about the right remediation strategy.

Although the proposed solution uses sensors on several
architectural levels, it is targeted mainly at detecting different
types of DoS attacks. The detection is based on the information
about known attacks stored in the ontology. Detection of
unknown anomalies is not possible with this solution. Since a
central decision engine is used, scalability is also a problem
of the architecture for growing network size or an increasing
number of events. Finally, historical data is not taken into
account in the detection process, missing another opportunity
to eliminate false positives.

Cugola and Margara [3] present research about low latency
CEP and general purpose GPUs. The work is based on the T-
Rex CEP Engine and TESLA [4] as the language for defining
rules. The authors assume that there are two major approaches
for complex event processing: an automaton and a column
based approach. Their main goal is to evaluate performance
differences between them. Furthermore, they additionally com-
pare them with a GPU variant. Automaton-based Incremental

Processing (AIP) is the algorithm used to translate a CEP
rule into a linear, deterministic finite state machine, which
is fed with the incoming events while temporal results are
stored. The counterpart approach is based on Column-based
Delayed Processing (CDP), where events become more or less
replicated for each rule and are stored in a column based
structure. This algorithm is also used as a basis for their GPU
implementation.

In all of their test setups, it is obvious that a CDP approach
outperforms automaton based processing. They also imple-
mented the CDP approach with CUDA on nVidia Graphics
cards. Their first test of the GPU implementation results in
a speedup of 25 compared with CPU CDP. Their evaluation
leads to an average speedup of 40 with their hardware config-
uration. Additionally, their results are very varying depending
on the particular configuration. For example, a large window
size in which events are aggregated can lead to a speedup of
100. Their closing recommendation is to use GPU aided CEP
only for large and complex rules, because there is a tradeoff
between speedup and the overhead generated by using this
technology.

Gorton [7] argues that the usage of a diversity of sensors
on several architectural levels raises the chance to detect an
attack, because the sensors may reinforce each other. However,
this requires to manage and correlate the higher number of
events and alerts. Different solutions have been developed in
the area of intrusion correlation, targeted to the reduction of
alerts a security officer must address. The potential to detect
anomalies using these different information sources, however,
is not the focus of these solutions.

III. PROPOSED ARCHITECTURE

To detect attacks in a virtualized computing environment,
it is useful to know as many anomalies in the behavior of
the system as possible. Theoretically, every event that occurs
in one of the different layers of a virtualized system can be
an indicator for an anomaly: for example, established network
connections, creation or termination of processes or even user
or process activities beyond regular working hours.

The decision about what is a normal or unknown system
behavior cannot be made by the sensors of a monitored envi-
ronment. Instead, a CEP engine is responsible for processing
all the informations sent by the sensors and is then able
to decide what can be viewed as normal system behavior.
Through dynamic deployment of further sensors, it is possible
to eliminate false positives and verify findings.

Therefore, the architecture of the anomaly management
system consists of a secure and trusted virtual machine (called
ACCEPT-VM), where the main analysis components of the
system such as the Sensor Management, the Matchmaker, the
CEP engine and various databases are located. Furthermore,
a set of passive sensors and actors reside on every layer
(hypervisor, operating system and application layer) of each
virtual machine. All of these sensors continuously deliver a
stream of information to the ACCEPT-VM, and each actor is
able to execute a specific set of actions on its corresponding
layer in order to respond to any detected problem.
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Fig. 1. Sensors and Actors in a monitored environment.

A. Monitored System

Sensors are deployed on several layers: The hypervisor, the
operating system and application containers (see Figure 1). All
sensors and actors are equipped with their required privileges
related to the corresponding layer, and their implementation
is aimed to be minimally invasive with respect to the normal
functionality.

All information sent by sensors and received by actors
contain important system information, which can be misused
by an intruder. This is the reason why both the communication
between sensors and the secure and trusted ACCEPT-VM as
well as the communication between the ACCEPT-VM and the
actors are secured in terms of authentication of the communi-
cation partners and the integrity/secrecy of the messages sent
via the communication channels.

1) Sensors: There are several possibly interesting metrics
to be gathered on each layer. Some of the expected events to
be gathered can be found in the following list:

• Hypervisor level: Network traffic, system calls from
within VMs, process lifecycle information.

• Operating system level: File access, network sockets,
resource utilization.

• Application level: JVM information (heap utilization,
thread count, library calls)

Sensors monitor traditional characteristics of resource usage
(e.g., percentage of processor usage or memory consumption)
as well as all data created by all processes in a system, such
as system calls, network traffic, read/write memory access.
This low level information greatly enhances the chances to
detect more sophisticated attacks such as malicious polymor-
phic code, hidden processes or ongoing memory corruption
exploits. On the hypervisor level, virtual machine introspection
is used for acquiring monitoring data; on the operating system
and application container level, the sensors are running as
privileged user processes. Their security, as well as the security
of the actors are ensured by hypervisor introspection. The
hypervisor can monitor the running sensors and their process
memory to guarantee that they have not been manipulated.

Sensors installed on the application level are used to monitor
application behavior. This could be an application container
such as Tomcat or JBoss or a bare Java Virtual Machine
(JVM). Metrics gathered by these sensors are, e.g., changes of

the memory heap, number of threads, number of Java classes,
libraries or garbage collector statistics. Events occur if the
code flow accesses constructors, methods and variables.

2) Actors: Actors are also installed across all layers, en-
abling direct countermeasures at the appropriate levels. Ex-
amples for such actions can be found in the following list:

• Hypervisor level: Start, stop or pause a virtual machine.
Block or shutdown network interfaces.

• Operating system level: Start, stop, terminate processes
or network connections. Delete users or files.

• Application level: Launch the garbage collector, solve
deadlocks. Relaunch, terminate the application container
or even remove components from the latter.

Further actions include a migration of a compromised vir-
tual machine from the productive network to a separate honey-
pot network in order to detect possible malware. Since actions
can be triggered on all layers of the virtualized system, they
must be specified in a flexible, multi-purpose way. Therefore,
an easy-to-use scripting language such as JavaScript is used.
Actions can be executed concurrently on a target system, with
the constraint of being executed in isolation, consistently and
completely to avoid interferences or unknown system behavior.
To increase the expressiveness and the usability of specified
actions, actions are able to view all the data monitored by the
sensor of the corresponding level.

B. ACCEPT-VM

The ACCEPT-VM consists of the CEP analysis engine, a
Matchmaker, a Sensor Management, a Model Database and
a Historical Database (see Figure 2). The latter is stored
on a dedicated server in a data warehouse. The ACCEPT-
VM is a trusted virtual machine in the sense that its attack
surface is minimized: The number of services is reduced to an
essential set, Mandatory Access Control is implemented and
integrity checks are run on the file system. Existing security
approaches, such as AppArmor [2] or SELinux [8], Tripwire
[13] or AIDE [1] are used. Communication with this special
virtual machine avoids direct TCP/IP traffic to the other virtual
machines. A virtual device within the hypervisor is responsible
for all message passing between sensors and actors. This
has the advantage that the ACCEPT-VM cannot be directly
attacked from the network or through a compromised host.
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Furthermore, it provides a faster interface to pass information
than classic socket communication.

The capability of performing analysis on a large amount of
data on the input stream coming from the sensors is ensured
by two main approaches: First, the EPAs running in the
CEP engine are supported by pattern matching techniques.
Second, the inherent control- and data-parallelism of EPAs are
used to increase the number of events that can be processed.
Furthermore, today’s GPGPU technology is used to process a
higher degree of events in parallel.

1) Complex Event Processing Engine: The analysis of all
occurring events is performed using the CEP engine developed
by the Software AG [10]. Event Processing Agents work
as continuous queries on the different event streams coming
from the sensors. These EPAs are verbalized in a SQL-like
language and can combine information from different streams,
thus different layers. Even mixing dynamic stream based
queries with static data gathered, for example, from the Model
Database (see III-B.2) is possible. Based on the results of the
EPAs, actions are launched in order to react to a detected
anomaly.

2) Model Database and Historical Database: The Model
Database is built upon the information provided by the Histori-
cal Database. The Historical Database acts as a giant data store
and foundation for model generation. It stores all events and
actions generated by the sensors and the EPAs. Due to the high
number of events generated by the sensors, it is necessary to
develop new strategies to reduce the size of data. Nevertheless,
it is necessary that the events and actions get recorded so that
a root cause analysis is possible. The historical data can also
be used to create simulations within a sandbox and replay
certain scenarios. This enables both ”what-if” analyses and
the possibility to evaluate the effectiveness of EPAs.

With the data contained in the Historical Database, the
Model Database can be created. This database contains the
default behavior of a computer system expressed in statistical
models. For example, a model regarding the average time of a
TCP session to a web server can be created, and an EPA can
be installed to detect abnormally long TCP sessions. Such a

long open session might indicate a successful penetration of
the web server with a shell running through the socket instead
of short HTTP requests. The data from the Model Database
can be used by the EPAs to detect essential anomalies differing
from regular system behavior which again can trigger adequate
actions.

3) Matchmaker: The Matchmaker component consists of
two parts: The Input Matchmaker and the Output Matchmaker.
The Input Matchmaker is responsible for a fully automatic
interconnection between a sensor and an EPA. For example,
if an EPA wants a specific input, then a request is sent to
the Input Matchmaker. The Input Matchmaker is aware of the
position of every sensor, including its meta-data, i.e., a flexible
description of sensors and their possible actions. Analogously,
the Output Matchmaker serves as a mediator that forwards
EPA generated actions to actors within the monitored system.
The effectiveness of these actions is measured by the Output
Matchmaker. For example, if a false positive is detected,
then the Sensor Management can take countermeasures by a
reconfiguration of the corresponding EPA; if a static program
analysis implies that a sensor is no longer useful, then it is
possible to remove it from the system by means of the Sensor
Management.

4) Sensor Management: The Sensor Management controls
the (de-)activation and placement of sensors in a monitored
system. It is able to (de-)activate sensors on-demand and
during runtime, as well as it is able to scale the degree of data-
granularity sent by a sensor. For example, the sampling rate
of a sensor can be adapted to the needs of its corresponding
EPA. Another advantage of this dynamic management system
is that the number of events transmitted can be adjusted to an
optimal level with respect to the system resources available to
the ACCEPT-VM.

C. Performance Considerations

Due to the enormous number of sensors, a number of
performance considerations have to be taken into account.
Regarding the CEP engine, it is possible to optimize an EPA in
order to perform multiple computations only once. While this
problem is solved for simple queries, it still remains unsolved
for complex ones. Hence, new methods for pattern matching
must be developed. Furthermore, EPAs can be distributed
to multiple, distributed and dedicated computing resources.
If every EPA runs as a separate thread, it is possible to
leverage the advantages of recent multi-core architecture to
achieve a massive speedup (intra-EPA parallelism). It is also
possible to execute the ACCEPT-VM on multiple, dedicated
physical machines or an a whole compute cluster, respectively.
It is likely that the system will generate huge amounts of
data during runtime. Thus, the need for efficient ways to
transfer events arises, both within a single virtualized node
and between physical nodes in a virtualized cluster. The first
problem can be solved by a lightweight secure communication
channel based on para-virtualization. However, for inter-node
communication, an approach is needed that reduces the amount
of data, which could be achieved by technologies such as
difference transmission.
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GPGPU Aided CEP Engine: Due to the huge amount of
data and probably very complex requests to detect sophisti-
cated anomalies, it is necessary to take further technologies
into account. A possible solution is the use of General Purpose
Graphical Processing Units (GPGPU) with OpenCL or CUDA.
Due to the architecture of this hardware, a high degree of
parallelism can be achieved. But instead of a general use, only
special kind of requests should be executed with this SIMD
architecture due to hardware restrictions. It is imaginable that
the CEP engines uses the GPGPU as a co-processor. Especially
highly computation intensive tasks such as pattern matching
can be outsourced with a great benefit, as indicated by the
PFAC [9] library for exact string matching performed on
GPUs.

If compression algorithms are required to dump the data to
disk, a further application of the GPU might be possible. Due
to the high speed stream processing capabilities of a GPU,
it can be used to compress the event streams during runtime
without generating additional load on the CPUs.
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IV. EXAMPLES

The general lifecycle of the ACCEPT system is depicted in
Figure 3. The ”blue” loop with the larger arrows represents
the sense-detect-react-cycle and the ”yellow” loop with the
smaller arrows shows the automatic rule generation process. To
illustrate this new approach, two examples are presented in this
section. First, a simple anomaly in double-entry accounting of
the hypervisor and operating system layer port list is associated
with a network based backdoor (see Subsection IV-A). Second,
a more complex scenario shows an anomaly in the correlation
of sensor data on the application container and operation
system level (see Subsection IV-B), which is associated with
a common attack scenario: An SQL injection attack [14].

A. TCP Backdoor
In this scenario, an attacker has successfully installed a

backdoor in a monitored virtual machine. He/she hides his/her

presence through a rootkit, a modification of the operating
system and its userland interfaces. Even though the backdoor
is listening on an arbitrary TCP port, the process belonging
to it and the listening socket are not listed by the operating
system userland tools.

Sensors: The scenario including the sensors and corre-
sponding actions is shown in Figure 4. To detect the backdoor,
at least two different sensors are involved: One sensor is
running within the virtual machine and utilizes standard tools
such as netstat to check for any listening sockets. Since the
backdoor is well hidden, this sensor will not report the security
breach.

The other sensor is inspecting the network state of the
virtual machine from the hypervisor level. Since this sensor
is running outside of the guest operating system, it is not
affected by the backdoor’s hiding features. On this level, an
event is generated for the detection of a newly opened port in
the virtual machine.

Analysis: With the help of the Model Database and the
Historical Database, queries can be generated to recognize
normal or regular behavior. Therefore, an alarm should be
triggered when a new open port is detected. Furthermore, by
comparing both listening socket sensors, inside and outside
of the virtual machine, it can be concluded that this really is
a security related anomaly. A regular service installed in the
virtual machine should not be hidden within the system. The
conflicting sensors information is a clear sign of an attack.

Action: As a result of this attack, actions should be taken to
eliminate the threat as much as possible. One such action could
be to block all communication from and to the backdoor’s port
on the hypervisor level. This prevents the attacker of extracting
information or further using the infected machine. Another
step that should be taken is to isolate and possibly terminate
the processes involved in the infection. For forensics purposes,
taking a snapshot of the virtual machine and generating a dump
is another possibility.

B. SQL Injection
Another common attack scenario is the one of a web

application vulnerable to SQL injection. Input not properly
sanitized might lead to arbitrary queries executed on a backend
SQL server. Even though SQL vulnerabilities could easily be
fixed, they are still rated as the number one vulnerability in
the Open Web Application Security Project Top 10 risk list
[12].

Sensors: At least one sensor is needed to intercept all SQL
statements sent from the web application to the corresponding
SQL server. This sensor might be a JDBC proxy server
or directly located in MySQL, for example. Furthermore, a
sensor inspecting all running web applications and marking
potentially harmful SQL statements. Furthermore, a sensor is
needed to protocol which client request caused which SQL
queries.

Analysis: All queries coming from potentially harmful
marked statements can then be further analyzed. Signs of
potential SQL injection attempts can be identified by various
syntactic specialties such as extensive use of wildcard SE-
LECTs or trimmed of code through comments. In conjunction
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Fig. 4. Example: TCP backdoor detection.

with the information of the source of this request, an alarm
can be raised. One by-product of the passive analysis is that
potentially harmful code can be found before it is exploited
and fixed in advance.

Action: The obvious action to take is blocking the offending
IP address through a firewall. Through the use of the code
inspection sensor, the faulty code sections might also be
directly visible and automatic solutions to fix the problem can
be used.

V. CONCLUSION

In this paper, a multi-level approach incorporating several
state-of-the-art techniques such as virtualization, virtual ma-
chine introspection and complex event processing for detect-
ing, analyzing and handling security anomalies has been pre-
sented. The proposed approach tries to keep management and
maintenance within the virtual machines to a bare minimum
by emphasizing the use of sensors on the hypervisor level.
Furthermore, it does not only detect security anomalies, but is
also able to react accordingly and defend or secure the system
automatically. The flexible nature of the framework and the
CEP backend make it especially easy to add new sensors to
increase security and react to new threats or adapt to new
technologies/devices. Using EPAs allows robust monitoring on
all layers. With the Historical Database and techniques from
machine learning, new EPAs can be automatically generated.
While being able to detect not only new anomalies, the system
can also verify false positives through correlation of different
sensor layers. The components of the proposed framework
form a reliable and adaptable security monitoring solution.

The approach is currently under development, and no signif-
icant implementation work has been started yet. Future work
is devoted to detail the design of the components, implement
the system and perform adequate experimental evaluations.
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