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Abstract—Distributed computing systems need agreement 

protocols when global consistency must be achieved in a fault-

tolerant way. However, solving the Byzantine agreement 

problem in an efficient way in terms of communication 

complexity is still a challenging task. In synchronous systems 

with stringent time requirements not only the fault tolerance, 

but also the limitation of the communication complexity are 

crucial for practical usability.  Many agreement protocols use 

digital signatures. This paper presents a novel signature 

generation technique to merge several signatures into a single 

one. This advantage opens a design space for agreement 

protocols with significantly reduced message overhead. 

Moreover, the new signature technique can also be applied to 

existing agreement and/or consensus protocols (Turquois and 

ESSEN, for example) without affecting the fault tolerance 

properties of the protocol.  

Keywords— Malicious Byzantine Faults; Agreement proto-

cols; Digital Signatures for Fault Tolerance.  

I. INTRODUCTION 

Distributed systems are becoming more and more 

important in our electronic society. In case of safety 

relevance, it is important to make these systems resilient 

against faults. Fault tolerance techniques can be applied to 

increase various dependability properties. Many real-time 

applications require fail-operational behaviour. Take a fail-

safe brake-by-wire system as an example. It has to provide 

its functionality all the time. In the presence of a fault, the 

four-wheels braking is reduced to diagonal-wheel braking. 

Consequently, a decision has to be taken which pair of 

wheels has to be passivated (in a non-blocking way, of 

course).  

The agreement problem is recognized as a fundamental 
element in fault-tolerant distributed computing (i.e., safe 
brake, collision avoidance, semiautomated vehicles, etc.). 
The problem has been known for decades as Byzantine 
agreement (BA) [1][2]. In order to solve it, two conditions 
have to be satisfied, known as interactive consistency (IC): 

IC1: All fault-free nodes obtain exactly the same view 

IC2: The information provided by a fault-free node is 
part of this view. 

 Due to its paramount importance, the problem has 

attracted a great deal of attention in the past. It has been 

investigated extensively and many solutions have been 

proposed. Many of the approaches [3][4][5] focused on 

reducing the communication complexity in terms of the 

number of messages, the number of nodes (related to the 

number of faults to be tolerated), and required storage.  

Signature techniques contribute a lot to a reduction in 

communication complexity, because they protect the origin 

of the message against undetectable corruption when the 

message is forwarded from node to node [2]. 

Typical sequences of actions during the execution of an 

agreement protocol are the following ones: 

1. Send a signed message to one/more neighboring node(s) 

2. Forward a message from node to node(s), where each 

forwarding node cosigns the message 

3. Collect incoming messages (which can be numerous) 

including signature checks 

4. a) Take a local decision on the message to be sent in the 

next round, b) termination with some value or a con-

sistency vector [3][4]. 

The steps 1 to 4 may be repeated several times, depending 

on the particular protocol. 

Typically, the following situation occurs frequently: In 

some phases, a node X receives different messages 

M1,…,Mk all of which it has to forward to a neighbor node 

Y. If all the messages M1,…,Mk have been signed by 

different nodes N1,…,Nk and all nodes contain identical 

payload contents A (see Figure 1), then node X cannot 

summarize the messages and send only one message with 

payload contents A to node Y, because the signatures would 

be lost then. Instead X has to forward the k messages 

separately (in some protocols it is sufficient to filter out a 

subset of the messages). 

Consequently, a signature mechanism which allows 

messages to be merged has the potential to greatly reduce 

the communication overhead of an agreement protocol. 

Figure 1 illustrates an example of the idea behind signature 

merging. 
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Figure 1. (left) new (right) conventional - signature mechanism. 

A. Contribution and Outline 

The goal of this work is the provision of a novel 

signature mechanism, which opens an extended design 

space for agreement protocols with lower communication 

complexity in terms of message transmissions. By signature 

merging, the number of messages, and thus the overall 

transmitted information can be reduced. The new method 

does not use cryptographically strong signatures. Instead, 

the signatures are designed to withstand faults, even with 

Byzantine behaviour, but not intelligent attacks of humans. 

Besides the (very short) computation time for signature 

merging, the protocol does not need extra time for reaching 

agreement.   

The rest of the paper is organized as follows: Section II 

characterizes the agreement protocols relevant for this 

paper. The new signature method is presented in Section III 

and its application to agreement protocols in Section IV. 

The improvement is shown in Section V by providing a 

quantification of the overhead. A summary and an outline of 

ongoing work are given in Section VI. 

II. CONSIDERED AGREEMENT PROTOCOLS 

A. Protocols 

Since the time when the agreement problem was intro-

duced by Lamport et. al. [1], many solutions have been 

proposed. Most of the work is focused on reducing the 

number of messages, the required number of nodes per 

tolerated fault and the storage consumption. 

It has turned out that signatured protocols need signifi-

cantly less messages. However, without signature merging 

there is a limitation to further reduction. In this paper, the 

merging approach is applied to two protocols: Turquois [3] 

and ESSEN [5]. For each of these protocols a variant is 

derived that takes benefit of signature merging. 

Turquois is a protocol which solves the consensus 

problem in asynchronous systems composed of n ad hoc 

nodes where a subset f (with 𝑓 <
𝑛

3
 ) of them can fail in an 

arbitrary manner. It is the first work which addresses the 

problem of reaching consensus in the presence of omission 

faults. However, Turquois solves the problem at the expense 

of a relatively high communication and storage overhead. 

The high number of message transmissions is caused by the 

message validation process. In the worst case, a node has to 

transmit more than 
𝑛+𝑓

2
 messages received from previous 

round(s). A signature technique has a great impact on the 

message and storage overhead as will be shown later in this 

paper.  

ESSEN is a protocol that solves the Byzantine agree-

ment problem even in the presence of “malicious coopera-

tion” faults. This means two faulty nodes may “secretly” 

exchange their information, such as keys and signed 

messages. In ESSEN, the communication complexity is 

very low for up to four arbitrary faults. The protocol 

requires a fully synchronous system (clock synchronization 

is presupposed). The message storage consumption is the 

space of only three messages. The required number of nodes 

grows quadratically with the number of tolerated faults. As 

with Turquois, the protocol uses signatures without merging 

functionality. The benefit of adding a signature scheme with 

merging capability will be shown later in this paper. 

B. Signatures 

For the purpose of fault tolerance, cryptographically 

strong signatures are not needed, because the signatures 

serve as countermeasures against “stupid faults” rather than 

“intelligent attacks”. Consequently, signatures with 

relatively low computation time can be used (as reported in 

[7]). Signature techniques greatly improve the communi-

cation complexity of agreement/consensus protocols. How-

ever, when using an existing signature technique [7][8] a 

receiver has only two options to deal with after a message 

has been received. Either each received signature is stored 

separately, as is done in Turquois, or some kind of filter 

mechanism is applied (e.g., only the message with the 

highest number of signatures is stored). In both cases the 

overhead for both message storage and communication may 

become high. 

By the proposed signature merging technique the 

receiver(s) get the opportunity to combine the messages into 

a single one without affecting the information about the 

signature source. This means, the new message will still 

contain the information of all signature sources (as shown in 

Figures 1 and Section III). 

III. NEW SIGNATURE SCHEME SIGSEAM 

The proposed signature scheme is intended to withstand 

arbitrary technical faults rather than intelligent attacks. For 

the purpose of fault tolerance simple signature generation 

methods are sufficient [6][7][8]). The signature technique 

presented in this paper is based on a multiplication scheme 

similar to [7]. It achieves almost the same effectiveness as 
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[7]. A thorough investigation on the new signature merging 

mechanism is still work in progress. Next, the algorithms 

for signature generation and checking are presented in 

detail.  

All calculations are done modulo m, where m is set to a 

power of two (m = 2
x
 with x ϵ ℕ). Typical values may be   

m = 2
16

 or m = 2
32

. The generation of private and public 

signature keys is done as follows: Each node chooses two 

arbitrary natural numbers a, b from modd = [m/16, m/2]  

ℕ𝑜𝑑𝑑 . The product c = a ▪ b is calculated. The value of 

parameter a is used as private key. The pair (b, c) is taken as 

public key, which is publically distributed to all nodes to be 

used for signature checking. 

Signature generation: The signature of the original 

sender of a message is calculated over the payload data d 

and the sequence number n (e.g., the sequence number is 

changed from round to round) only. The following signature 

function 𝜎0 and a usual CRC function are used by the first 

signing node (e.g., source node, indexed with zero): 

 σ0(n, d) ≔ CRC(n, d) ∙ ai   

Cosignature generation of a forwarding node is done as 

follows: The cosignature value is calculated over the 

signature value  σ𝑗  with j ≥ 0 by applying the following 

cosignature function σ𝑖 . The index represents the number of 

signing and/or cosigning nodes:  

 σ𝑖 : = {
σ𝑗 +  CRC(n, d) ∙ (ai + 1), if j is even 

σ𝑗 +  CRC(n, d) ∙ (ai − 1), otherwise    
 

where j < i. Depending on the number of signatures in σ𝑗 

the secret key ai of the cosigning node is used as either (ai + 

1) or (ai – 1) depending or whether or not the number of 

already added (co-) signatures is even. 

Compared to usual (co-) signature schemes there is an 

important point: In the proposed merging signature scheme 

the new cosignature 𝜎𝑖 replaces the existing (co-) signature 

in a message to be forwarded. However, the indices of all 

signing nodes are kept in the message. Thus, there is a list 

“Who has signed?” in each message.  

The signature value signed by j nodes can be expressed 
by the following sum function:  

𝑠 = CRC(n, d) ∙ ((j + 1) mod 2 + ∑ ai
j
i=0 ). 

A receiver uses the following signature check function 

τ(n, d, s) after reception of a message with number n, 

payload data d and signature s. The check is passed if the 

following equation is correct: 

 𝑠 ∙ ∏ 𝑏𝑖
𝑗
𝑖=0 = 

CRC(n, d) ∙ (e ∙ ∏ 𝑏𝑖

𝑗

𝑖=0

+ ∑ [𝑐𝑖 ∙ ∏ 𝑏𝑘

𝑗

𝑘=0,𝑘≠𝑖

]

𝑗

𝑖

).

If s has been signed by an odd number of nodes, then 

parameter e is set to zero. Otherwise parameter e is set to 

one. In case of an odd number of nodes having (co-) signed 

the message we obtain: 

 𝑠 ∙ ∏ 𝑏𝑖
𝑗
𝑖=0 = CRC(n, d) ∙ ∑ (c𝑖 ∙ ∏ 𝑏𝑘

𝑗
𝑘=0,𝑘≠𝑖 )

𝑗
𝑖=0  

𝑠 ∙ ∏ 𝑏𝑖

𝑗

𝑖=0

=  CRC(n, d) ∙ ((j + 1)mod 2 + ∑ ai

j

i=0

) ∙ ∏ 𝑏𝑖

𝑗

𝑖=0

⇔

𝑠 ∙ ∏ 𝑏𝑖

𝑗

𝑖=0

=  CRC(n, d) ∙ ∑ ai

j

i=0

∙ ∏ 𝑏𝑖

𝑗

𝑖

⇔

𝑠 ∙ ∏ 𝑏𝑖

𝑗

𝑖=0

=  CRC(n, d) ∙ ∑ a𝑖 ∙

𝑗

𝑖=0

b𝑖 ∙ ∏ 𝑏𝑘

𝑗

𝑘=0,𝑘≠𝑖

⇔

𝑠 ∙ ∏ 𝑏𝑖

𝑗

𝑖=0

=  CRC(n, d) ∙ ∑ (c𝑖 ∙ ∏ 𝑏𝑘

𝑗

𝑘=0,𝑘≠𝑖

)

𝑗

𝑖=0

  Q. E. D.

The implications from right to left are obvious. The 

implication from left to right based on the same conclusion, 

as shown in [8]. The proof is done by contradiction: Due to 

the fact that all calculations are done modulo m (m = 2
x
 

with x ϵ  ℕ) for b ϵ modd the product 𝑠 ∙ ∏ 𝑏𝑖
𝑗
𝑖=0  returns a 

unique value in modulo m. However, parameter b is odd and 

the only prime factor of m is 2. Consequently, 2 must be a 

prime factor of value b ϵ modd (contradiction) Q.E.D. 

IV. MODIFIED AGREEMENT PROTOCOL 

A detailed explanation of the two protocols ESSEN and 

Turquois can be found here [3][5]. In the following, only the 

parts of the algorithm which have been modified are 

discussed in detail. The modified protocol variants are 

called SEAM and Turquois*, respectively. 

A) SEAM 

Storing of received messages: A data message is stored 

in the secondary buffer, when (in addition to the four 

conditions given in [5]) also the following two conditions 

are satisfied: 

1. The node is member of group ExtG (see [5]) 

2. The node has not transmitted a message yet.  

Otherwise, if all six conditions are not satisfied, the data 

message is rejected (for more details see [5]). 

Merging of signatures: The messages in the primary and 

the secondary buffer are merged, iff both messages contain 

at least 2f – 2 (parameter f indicates the number of tolerated 

faults) different signature sources. The content of the 
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secondary buffer is deleted after transmission (regardless of 

whether or not the message has been merged). Moreover, in 

contrast to [5], only the primary and default buffer are used 

for the final decision. All other parts of the algorithm remain 

unchanged. 

B) Turquois* 

Merging of signatures: In each round, all messages with 

identical content are merged (instead of stored separately). 

This means not more than two different messages are stored 

within a round. All other parts of Turquois remain un-

changed. Both variants SEAM and Turquois* have been 

simulated for up to 30 nodes and up to 10
9
 rounds. The 

number of simultaneously faulty nodes has been limited to 6 

in case of SEAM and 9 in case of Turquois (for more details 

see [3][5]). In all simulation runs the interactive consistency 

was fully preserved. 

V. COMPLEXITY OF THE INVESTIGATED PROTOCOLS    

   BY USING SIGSEAM 

In this section, the communication complexity in terms 

of redundant nodes as well as message transmission over-

head is quantified by simulation. The modified protocols 

SEAM and Turquois* are compared with their original 

versions ESSEN and Turquois, respectively. The outcomes 

are shown in Figure 2. Summarizing the results it can be 

said that the new signature technique greatly improves the 

communication complexity of both protocols. In case of 

ESSEN the number of redundant nodes as well as the 

number of required message transmissions has been reduced 

from  1 + 
f² + f

2
+ ⌈

(f – 1)

2
⌉ down to   

3f+2⌈
f−1

2
⌉+⌈ 

f²

2
⌉

2
. In case 

of Turquois, the high number of  (3f + 1)
(n+f+2)

2
 message 

transmission (worst case) has been reduced to a constant of 

3 messages per node, whereas the number of required nodes 

remains unchanged. This means 9f + 3 messages in all.  

VI. CONCLUSION AND FUTURE WORK 

The simulation results have clearly shown that the proposed 

signature technique with merging functionality significantly 

improves the efficiency of agreement protocols and does not 

affect the time taken to reach agreement. 

The work on signature merging is still in progress. The 

coverage of special fault cases affecting the signatures 

themselves must be evaluated in detail. Besides bursts, bit 

flips, wrong data, also signature-related faults like copy-

and-paste of signatures between messages, etc., have to be 

assessed with respect to the achieved coverage. Moreover, 

these results will be compared with 16-bit or 32-bit “light” 

versions of existing cryptographic signature techniques.  

ACKNOWLEDGMENT 

The author gratefully acknowledges the helpful discussions 

with Prof. Klaus Echtle who participated in the development 

of the concept of signature merging.  

REFERENCES 

[1] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the 
presence of faults”, JACM, vol. 27, Apr. 1980, pp. 228–234, doi: 
10.1145/322186.322188. 

[2] L. Lamport, R. Shostak, and M. Pease, “The byzantine 
generalsproblem”, ACM and TOPLAS, vol. 4, July 1982, pp. 382–
401, doi:10.1145/357172.357176. 

[3] H. Moniz, N. F. Neves, and M. Correia, “Turquois: Byzantine 
consensus in wireless ad hoc networks”, IEEE, DSN, Chicago, IL, pp. 
537-546,  June 2010, pp. 537–546, doi: 10.1109/DSN.2010.5544268. 

[4] M. Jochim and T.  M. Forest, “An Efficient Implementation of the 
SM Agreement Protocol for a Time Triggered Communication 
Systems”, SAE International Journal of Passenger Cars - Electronic 
and Electrical Systems, vol. 3, 2010, pp. 106-116, doi:10.4271/2010-
01-2320. 

[5] O. Bousbiba, “ESSEN - An Efficient Single Round Signature 
Protected Message Exchange Agreement Protocol for Wireless 
Distributed Networks”, ACRS 28th, Workshop Proceedings, March 
24 - 27, 2015, Porto, Portugal, ISEP, Berlin: VDE Verl., ISBN: 978-
3-8007-3657-7.  

[6] K. Echtle and T. Kimmeskamp, “Fault-Tolerant and Fail-Safe Control 
Systems Using Remote Redundancy”,  ARCS 22th, Workshop 
Proceedings, March 11, 2009, Delft, The Netherlands, Berlin: VDE 
Verl., ISBN: 978-3-8007-3133-6.   

[7] L. Martin, “Relative signatures for fault tolerance and their 
implementation”, Dependable Computing – EDCC-1, Lecture Notes 
in Computer Science, vol. 852, Oct. 1994, pp. 561–580, 
doi:10.1007/3-540-58426-9_158. 

[8] K. Echtle, “Avoiding Malicious Byzantine Faults by a New Signature 
Generation Technique”, Depenable Computing – EDCC3, Lecture 
Notes in Computer Science, vol. 1667, Sept. 1999, pp. 106-123, 
doi:10.1007/3-540-48254-7_9. 

   
Figure 2. The idea of signature merging. Communication complexity: (a) message transmission overhead (b) required number of redundant nodes. 
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