
Reducing the Communication Complexity of Agreement Protocols By Applying A

New Signature Scheme called SIGSEAM

Omar Bousbiba

Dependability of Computing Systems

University of Duisburg-Essen

Essen, Germany

bousbiba@dc.uni-due.de

Abstract—Distributed computing systems need agreement

protocols when global consistency must be achieved in a fault-

tolerant way. However, solving the Byzantine agreement

problem in an efficient way in terms of communication

complexity is still a challenging task. In synchronous systems

with stringent time requirements not only the fault tolerance,

but also the limitation of the communication complexity are

crucial for practical usability. Many agreement protocols use

digital signatures. This paper presents a novel signature

generation technique to merge several signatures into a single

one. This advantage opens a design space for agreement

protocols with significantly reduced message overhead.

Moreover, the new signature technique can also be applied to

existing agreement and/or consensus protocols (Turquois and

ESSEN, for example) without affecting the fault tolerance

properties of the protocol.

Keywords— Malicious Byzantine Faults; Agreement proto-

cols; Digital Signatures for Fault Tolerance.

I. INTRODUCTION

Distributed systems are becoming more and more

important in our electronic society. In case of safety

relevance, it is important to make these systems resilient

against faults. Fault tolerance techniques can be applied to

increase various dependability properties. Many real-time

applications require fail-operational behaviour. Take a fail-

safe brake-by-wire system as an example. It has to provide

its functionality all the time. In the presence of a fault, the

four-wheels braking is reduced to diagonal-wheel braking.

Consequently, a decision has to be taken which pair of

wheels has to be passivated (in a non-blocking way, of

course).

The agreement problem is recognized as a fundamental
element in fault-tolerant distributed computing (i.e., safe
brake, collision avoidance, semiautomated vehicles, etc.).
The problem has been known for decades as Byzantine
agreement (BA) [1][2]. In order to solve it, two conditions
have to be satisfied, known as interactive consistency (IC):

IC1: All fault-free nodes obtain exactly the same view

IC2: The information provided by a fault-free node is
part of this view.

 Due to its paramount importance, the problem has

attracted a great deal of attention in the past. It has been

investigated extensively and many solutions have been

proposed. Many of the approaches [3][4][5] focused on

reducing the communication complexity in terms of the

number of messages, the number of nodes (related to the

number of faults to be tolerated), and required storage.

Signature techniques contribute a lot to a reduction in

communication complexity, because they protect the origin

of the message against undetectable corruption when the

message is forwarded from node to node [2].

Typical sequences of actions during the execution of an

agreement protocol are the following ones:

1. Send a signed message to one/more neighboring node(s)

2. Forward a message from node to node(s), where each

forwarding node cosigns the message

3. Collect incoming messages (which can be numerous)

including signature checks

4. a) Take a local decision on the message to be sent in the

next round, b) termination with some value or a con-

sistency vector [3][4].

The steps 1 to 4 may be repeated several times, depending

on the particular protocol.

Typically, the following situation occurs frequently: In

some phases, a node X receives different messages

M1,…,Mk all of which it has to forward to a neighbor node

Y. If all the messages M1,…,Mk have been signed by

different nodes N1,…,Nk and all nodes contain identical

payload contents A (see Figure 1), then node X cannot

summarize the messages and send only one message with

payload contents A to node Y, because the signatures would

be lost then. Instead X has to forward the k messages

separately (in some protocols it is sufficient to filter out a

subset of the messages).

Consequently, a signature mechanism which allows

messages to be merged has the potential to greatly reduce

the communication overhead of an agreement protocol.

Figure 1 illustrates an example of the idea behind signature

merging.

29Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

Figure 1. (left) new (right) conventional - signature mechanism.

A. Contribution and Outline

The goal of this work is the provision of a novel

signature mechanism, which opens an extended design

space for agreement protocols with lower communication

complexity in terms of message transmissions. By signature

merging, the number of messages, and thus the overall

transmitted information can be reduced. The new method

does not use cryptographically strong signatures. Instead,

the signatures are designed to withstand faults, even with

Byzantine behaviour, but not intelligent attacks of humans.

Besides the (very short) computation time for signature

merging, the protocol does not need extra time for reaching

agreement.

The rest of the paper is organized as follows: Section II

characterizes the agreement protocols relevant for this

paper. The new signature method is presented in Section III

and its application to agreement protocols in Section IV.

The improvement is shown in Section V by providing a

quantification of the overhead. A summary and an outline of

ongoing work are given in Section VI.

II. CONSIDERED AGREEMENT PROTOCOLS

A. Protocols

Since the time when the agreement problem was intro-

duced by Lamport et. al. [1], many solutions have been

proposed. Most of the work is focused on reducing the

number of messages, the required number of nodes per

tolerated fault and the storage consumption.

It has turned out that signatured protocols need signifi-

cantly less messages. However, without signature merging

there is a limitation to further reduction. In this paper, the

merging approach is applied to two protocols: Turquois [3]

and ESSEN [5]. For each of these protocols a variant is

derived that takes benefit of signature merging.

Turquois is a protocol which solves the consensus

problem in asynchronous systems composed of n ad hoc

nodes where a subset f (with 𝑓 <
𝑛

3
) of them can fail in an

arbitrary manner. It is the first work which addresses the

problem of reaching consensus in the presence of omission

faults. However, Turquois solves the problem at the expense

of a relatively high communication and storage overhead.

The high number of message transmissions is caused by the

message validation process. In the worst case, a node has to

transmit more than
𝑛+𝑓

2
 messages received from previous

round(s). A signature technique has a great impact on the

message and storage overhead as will be shown later in this

paper.

ESSEN is a protocol that solves the Byzantine agree-

ment problem even in the presence of “malicious coopera-

tion” faults. This means two faulty nodes may “secretly”

exchange their information, such as keys and signed

messages. In ESSEN, the communication complexity is

very low for up to four arbitrary faults. The protocol

requires a fully synchronous system (clock synchronization

is presupposed). The message storage consumption is the

space of only three messages. The required number of nodes

grows quadratically with the number of tolerated faults. As

with Turquois, the protocol uses signatures without merging

functionality. The benefit of adding a signature scheme with

merging capability will be shown later in this paper.

B. Signatures

For the purpose of fault tolerance, cryptographically

strong signatures are not needed, because the signatures

serve as countermeasures against “stupid faults” rather than

“intelligent attacks”. Consequently, signatures with

relatively low computation time can be used (as reported in

[7]). Signature techniques greatly improve the communi-

cation complexity of agreement/consensus protocols. How-

ever, when using an existing signature technique [7][8] a

receiver has only two options to deal with after a message

has been received. Either each received signature is stored

separately, as is done in Turquois, or some kind of filter

mechanism is applied (e.g., only the message with the

highest number of signatures is stored). In both cases the

overhead for both message storage and communication may

become high.

By the proposed signature merging technique the

receiver(s) get the opportunity to combine the messages into

a single one without affecting the information about the

signature source. This means, the new message will still

contain the information of all signature sources (as shown in

Figures 1 and Section III).

III. NEW SIGNATURE SCHEME SIGSEAM

The proposed signature scheme is intended to withstand

arbitrary technical faults rather than intelligent attacks. For

the purpose of fault tolerance simple signature generation

methods are sufficient [6][7][8]). The signature technique

presented in this paper is based on a multiplication scheme

similar to [7]. It achieves almost the same effectiveness as

Message M1

A:N1

Message M2

A:N2

Message M4

A:N4

Message M3

A:N3

Message M

A:N1:N2:N3:N4

received received

New

signature

mechanism

Conventional

signature

mechanis

sent

Message M

A:Ni, i ϵ {1,2,3,4}

sent

30Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

[7]. A thorough investigation on the new signature merging

mechanism is still work in progress. Next, the algorithms

for signature generation and checking are presented in

detail.

All calculations are done modulo m, where m is set to a

power of two (m = 2
x
 with x ϵ ℕ). Typical values may be

m = 2
16

 or m = 2
32

. The generation of private and public

signature keys is done as follows: Each node chooses two

arbitrary natural numbers a, b from modd = [m/16, m/2]

ℕ𝑜𝑑𝑑 . The product c = a ▪ b is calculated. The value of

parameter a is used as private key. The pair (b, c) is taken as

public key, which is publically distributed to all nodes to be

used for signature checking.

Signature generation: The signature of the original

sender of a message is calculated over the payload data d

and the sequence number n (e.g., the sequence number is

changed from round to round) only. The following signature

function 𝜎0 and a usual CRC function are used by the first

signing node (e.g., source node, indexed with zero):

 σ0(n, d) ≔ CRC(n, d) ∙ ai

Cosignature generation of a forwarding node is done as

follows: The cosignature value is calculated over the

signature value σ𝑗 with j ≥ 0 by applying the following

cosignature function σ𝑖 . The index represents the number of

signing and/or cosigning nodes:

 σ𝑖 : = {
σ𝑗 + CRC(n, d) ∙ (ai + 1), if j is even

σ𝑗 + CRC(n, d) ∙ (ai − 1), otherwise

where j < i. Depending on the number of signatures in σ𝑗

the secret key ai of the cosigning node is used as either (ai +

1) or (ai – 1) depending or whether or not the number of

already added (co-) signatures is even.

Compared to usual (co-) signature schemes there is an

important point: In the proposed merging signature scheme

the new cosignature 𝜎𝑖 replaces the existing (co-) signature

in a message to be forwarded. However, the indices of all

signing nodes are kept in the message. Thus, there is a list

“Who has signed?” in each message.

The signature value signed by j nodes can be expressed
by the following sum function:

𝑠 = CRC(n, d) ∙ ((j + 1) mod 2 + ∑ ai
j
i=0).

A receiver uses the following signature check function

τ(n, d, s) after reception of a message with number n,

payload data d and signature s. The check is passed if the

following equation is correct:

 𝑠 ∙ ∏ 𝑏𝑖
𝑗
𝑖=0 =

CRC(n, d) ∙ (e ∙ ∏ 𝑏𝑖

𝑗

𝑖=0

+ ∑ [𝑐𝑖 ∙ ∏ 𝑏𝑘

𝑗

𝑘=0,𝑘≠𝑖

]

𝑗

𝑖

).

If s has been signed by an odd number of nodes, then

parameter e is set to zero. Otherwise parameter e is set to

one. In case of an odd number of nodes having (co-) signed

the message we obtain:

 𝑠 ∙ ∏ 𝑏𝑖
𝑗
𝑖=0 = CRC(n, d) ∙ ∑ (c𝑖 ∙ ∏ 𝑏𝑘

𝑗
𝑘=0,𝑘≠𝑖)

𝑗
𝑖=0

𝑠 ∙ ∏ 𝑏𝑖

𝑗

𝑖=0

= CRC(n, d) ∙ ((j + 1)mod 2 + ∑ ai

j

i=0

) ∙ ∏ 𝑏𝑖

𝑗

𝑖=0

⇔

𝑠 ∙ ∏ 𝑏𝑖

𝑗

𝑖=0

= CRC(n, d) ∙ ∑ ai

j

i=0

∙ ∏ 𝑏𝑖

𝑗

𝑖

⇔

𝑠 ∙ ∏ 𝑏𝑖

𝑗

𝑖=0

= CRC(n, d) ∙ ∑ a𝑖 ∙

𝑗

𝑖=0

b𝑖 ∙ ∏ 𝑏𝑘

𝑗

𝑘=0,𝑘≠𝑖

⇔

𝑠 ∙ ∏ 𝑏𝑖

𝑗

𝑖=0

= CRC(n, d) ∙ ∑ (c𝑖 ∙ ∏ 𝑏𝑘

𝑗

𝑘=0,𝑘≠𝑖

)

𝑗

𝑖=0

 Q. E. D.

The implications from right to left are obvious. The

implication from left to right based on the same conclusion,

as shown in [8]. The proof is done by contradiction: Due to

the fact that all calculations are done modulo m (m = 2
x

with x ϵ ℕ) for b ϵ modd the product 𝑠 ∙ ∏ 𝑏𝑖
𝑗
𝑖=0 returns a

unique value in modulo m. However, parameter b is odd and

the only prime factor of m is 2. Consequently, 2 must be a

prime factor of value b ϵ modd (contradiction) Q.E.D.

IV. MODIFIED AGREEMENT PROTOCOL

A detailed explanation of the two protocols ESSEN and

Turquois can be found here [3][5]. In the following, only the

parts of the algorithm which have been modified are

discussed in detail. The modified protocol variants are

called SEAM and Turquois*, respectively.

A) SEAM

Storing of received messages: A data message is stored

in the secondary buffer, when (in addition to the four

conditions given in [5]) also the following two conditions

are satisfied:

1. The node is member of group ExtG (see [5])

2. The node has not transmitted a message yet.

Otherwise, if all six conditions are not satisfied, the data

message is rejected (for more details see [5]).

Merging of signatures: The messages in the primary and

the secondary buffer are merged, iff both messages contain

at least 2f – 2 (parameter f indicates the number of tolerated

faults) different signature sources. The content of the

31Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

secondary buffer is deleted after transmission (regardless of

whether or not the message has been merged). Moreover, in

contrast to [5], only the primary and default buffer are used

for the final decision. All other parts of the algorithm remain

unchanged.

B) Turquois*

Merging of signatures: In each round, all messages with

identical content are merged (instead of stored separately).

This means not more than two different messages are stored

within a round. All other parts of Turquois remain un-

changed. Both variants SEAM and Turquois* have been

simulated for up to 30 nodes and up to 10
9
 rounds. The

number of simultaneously faulty nodes has been limited to 6

in case of SEAM and 9 in case of Turquois (for more details

see [3][5]). In all simulation runs the interactive consistency

was fully preserved.

V. COMPLEXITY OF THE INVESTIGATED PROTOCOLS

 BY USING SIGSEAM

In this section, the communication complexity in terms

of redundant nodes as well as message transmission over-

head is quantified by simulation. The modified protocols

SEAM and Turquois* are compared with their original

versions ESSEN and Turquois, respectively. The outcomes

are shown in Figure 2. Summarizing the results it can be

said that the new signature technique greatly improves the

communication complexity of both protocols. In case of

ESSEN the number of redundant nodes as well as the

number of required message transmissions has been reduced

from 1 +
f² + f

2
+ ⌈

(f – 1)

2
⌉ down to

3f+2⌈
f−1

2
⌉+⌈

f²

2
⌉

2
. In case

of Turquois, the high number of (3f + 1)
(n+f+2)

2
 message

transmission (worst case) has been reduced to a constant of

3 messages per node, whereas the number of required nodes

remains unchanged. This means 9f + 3 messages in all.

VI. CONCLUSION AND FUTURE WORK

The simulation results have clearly shown that the proposed

signature technique with merging functionality significantly

improves the efficiency of agreement protocols and does not

affect the time taken to reach agreement.

The work on signature merging is still in progress. The

coverage of special fault cases affecting the signatures

themselves must be evaluated in detail. Besides bursts, bit

flips, wrong data, also signature-related faults like copy-

and-paste of signatures between messages, etc., have to be

assessed with respect to the achieved coverage. Moreover,

these results will be compared with 16-bit or 32-bit “light”

versions of existing cryptographic signature techniques.

ACKNOWLEDGMENT

The author gratefully acknowledges the helpful discussions

with Prof. Klaus Echtle who participated in the development

of the concept of signature merging.

REFERENCES

[1] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults”, JACM, vol. 27, Apr. 1980, pp. 228–234, doi:
10.1145/322186.322188.

[2] L. Lamport, R. Shostak, and M. Pease, “The byzantine
generalsproblem”, ACM and TOPLAS, vol. 4, July 1982, pp. 382–
401, doi:10.1145/357172.357176.

[3] H. Moniz, N. F. Neves, and M. Correia, “Turquois: Byzantine
consensus in wireless ad hoc networks”, IEEE, DSN, Chicago, IL, pp.
537-546, June 2010, pp. 537–546, doi: 10.1109/DSN.2010.5544268.

[4] M. Jochim and T. M. Forest, “An Efficient Implementation of the
SM Agreement Protocol for a Time Triggered Communication
Systems”, SAE International Journal of Passenger Cars - Electronic
and Electrical Systems, vol. 3, 2010, pp. 106-116, doi:10.4271/2010-
01-2320.

[5] O. Bousbiba, “ESSEN - An Efficient Single Round Signature
Protected Message Exchange Agreement Protocol for Wireless
Distributed Networks”, ACRS 28th, Workshop Proceedings, March
24 - 27, 2015, Porto, Portugal, ISEP, Berlin: VDE Verl., ISBN: 978-
3-8007-3657-7.

[6] K. Echtle and T. Kimmeskamp, “Fault-Tolerant and Fail-Safe Control
Systems Using Remote Redundancy”, ARCS 22th, Workshop
Proceedings, March 11, 2009, Delft, The Netherlands, Berlin: VDE
Verl., ISBN: 978-3-8007-3133-6.

[7] L. Martin, “Relative signatures for fault tolerance and their
implementation”, Dependable Computing – EDCC-1, Lecture Notes
in Computer Science, vol. 852, Oct. 1994, pp. 561–580,
doi:10.1007/3-540-58426-9_158.

[8] K. Echtle, “Avoiding Malicious Byzantine Faults by a New Signature
Generation Technique”, Depenable Computing – EDCC3, Lecture
Notes in Computer Science, vol. 1667, Sept. 1999, pp. 106-123,
doi:10.1007/3-540-48254-7_9.

Figure 2. The idea of signature merging. Communication complexity: (a) message transmission overhead (b) required number of redundant nodes.

32Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

