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Abstract—Software-based fault simulation can support all 

abstraction levels, is flexible and allows reliability assessment at 

different stages in the design process. Fault diagnosis and 

reliability analysis are increasingly important in circuit design 

and determine the product’s time-to-market. In this paper, we 

provide a new efficient method and systematic scheme for 

reducing the time for simulation for multiple simultaneous 

faults and/or multiple failure modes per element in an analogue 

circuit. By arranging similar multiple faults in groups, some 

failure classes can be interpolated with an adequate precision 

rather than being evaluated by time-consuming simulation. The 

technique can be used to perform efficient multiple fault 

diagnosis based on multiple fault injection. Finally, the 

implemented procedure is validated experimentally. 

Keywords—Fault simulation; fault modeling; multiple fault 

injection; fault diagnosis; reliability prediction 

I.  INTRODUCTION  

Fault diagnosis of circuits is a well-developed research 

field with a long tradition. The first scientific publications are 

from early 1960s. Circuit simulation is nowadays an accepted 

standard in the development of electronic circuits. Small to 

complex analogue, digital and mixed signal circuits can be 

tested and verified with appropriate simulation software. A 

lot of progress has been made in the development of software 

tools for the design and verification of analogue and/or 

mixed-signal circuits, both in the open-source and in the 

commercial sector. Already two decades ago the method of 

analogue fault modelling has been suggested to enable both 

fault diagnosis and reliability evaluation. Different appro-

aches have been developed for fault simulation of analogue 

and mixed-signal circuits. Previous work on analogue fault 

modelling focuses on parametric defects (soft faults) and 

catastrophic defects (hard faults). Parametric faults are 

typically simulated with parameter modifications, while open 

and short defects are dealt with via injecting a high or low 

resistance on transistor level, respectively. Fault simulation is 

generally done by injecting a fault on transistor level and 

analysing the circuit’s behaviour by applying single DC, 

transient or AC simulation for linear or nonlinear circuit 

models. Also software tools for automatic fault injection and 

efficient test generation have been developed. However, 

mostly single faults have been considered in the past. Test 

cases for fault injection have been generated often by hand 

from an understanding of the design and fault expectations of 

major circuit elements. Most of the fault simulators for 

analogue circuits presented in the literature cover only 

parameter or catastrophic faults. Some tools have attempted 

to automate test generation and the fault simulation process 

for analogue circuits. Most existing fault simulators use the 

Simulation Program with Integrated Circuits Emphasis 

(SPICE) and modify SPICE net lists to represent faults  

[1] - [7]. The fault simulation software [8] used for the work 

presented in this paper defines circuit faults in Visual Basic 

(VB-Script) language and allows flexible and very accurate 

fault modelling. The main goal of this paper is to speed up 

the simulation for multiple faults. 

II. DIAGNOSIS OF ANALOGUE CIRCUITS 

Test and fault diagnosis of analogue circuits are necessary 

despite the ongoing digitalization. Analogue circuits are 

always required to form the interface to the physical 

environment. Analogue signals do not consist of just "low" 

or "high" values like in the digital field. In principle, infinite 

numbers of signal values are conceivable. The time and 

frequency characteristics of analogue signals bring another 

dimension, and are an additional issue within circuit assess-

ment. The propagation of faults is more difficult than in the 

digital field. Typically it does not occur in just one direction, 

but could be from any element in all directions towards 

neighbour elements within the circuit. A particular fault in an 

element (like resistor, capacitor, transistor, etc.) does not 

provide explicit information about the resulting signal values. 

Therefore a calculation of signal values (done by circuit 

simulation) is always necessary. Nonlinear models, parasitic 

elements, charges between elements or energy-storing 

elements make diagnosis and reliability analysis more 

complex [9]. Because of these reasons, the automation level 

of fault diagnosis procedures for analogue circuits has not yet 

achieved the development level realized in the digital field. 

The reason for the limited automation is simply due to the 

nature of analogue circuits. The predominant design metho-

dology for analogue circuits is still individual optimization of 

reusable topologies.  

The simulation of multiple simultaneous faults is even 

more complex. The consideration of multiple faults is 

important for the following reasons. Different fault modes 

can be present in the elements of complex circuits. Their 

occurrence increases even more in rough environments. Also, 
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multiple parametric faults can be present in the field as a 

result of ageing, environmental stress and design errors. 

Moreover, multiple fault diagnosis is relevant when a new 

circuit design is introduced and a high failure density exists. 

The restriction to single fault simulation can lead to incorrect 

evaluation results. 

One of the main issues in software-based fault simulation 

is the relatively long runtime in case of complex analogue 

circuits. In general, the runtime increases rapidly with the 

circuit size and the number of faulty elements (fault depth) 

and the failure modes per element. When performing fault 

simulation, the runtime is mostly determined by the number 

of fault injections. Each injection of a multiple fault has to be 

simulated separately. Usually the simulation time for single 

faults (at transistor level) is tractable because of available 

computer performance. Also the performance of Electronic 

Design Automation (EDA) tools has been increased during 

the last decade. However, multiple fault injection is a 

challenge with respect to runtime. 

The fault simulation framework [8] used for the work 

presented in this paper can deal with several fault modes 

injected simultaneously into elements of a circuit. We con-

sider permanent hard (open and short circuit) and soft faults 

(parametric faults). Please note, that even shorts and opens 

are dealt with as analogue (not digital) faults, because the 

simulator generates the analogue signal throughout the 

complete circuit in the case of these faults.  Figure 1 shows 

how the total simulation time (here number of simulation 

runs) is influenced by the number of multiple faults and the 

failure modes per element. The diagram shows a medium-

sized circuit example composed of 20 elements where faults 

are injected, each of which leads to two different failure 

modes. The solid line represents the number of simulation 

runs for all necessary test cases. This quantity increases 

rapidly with the number of multiple faults. The dashed line 

shows that the quantity of simulation runs can be reduced 

significantly by assuming monotonic behaviour as follows: 

When a set F of simultaneous faults is not tolerated, then also 

a superset of F will not be tolerated. Consequently the 

superset needs not be simulated. The assumption of mono-

tonic behaviour is slightly pessimistic, because experience 

has turned out that in practice there are only few exceptions. 

This monotonicity does not always exist. Instead we have 

observed that it exists in overwhelming majority of cases with 

only very few exceptions.  

III. STRATEGIES FOR REDUCING SIMULATION TIME 

To reduce the runtime for simulation with fault injection 

the following two general approaches are possible: reduce the 

number of test cases (simulation runs) or speed up the 

simulation procedure for each test case. Several approaches 

are described in the literature to speed-up the simulation 

process, including fault or test case ordering [10] - [13] and 

distributed fault simulation [14][15]. Several approaches for 

multiple fault generation [16][17] and simulation [18][19] for 

reliability analysis are described in the literature. A general 

rule (if applicable) is the assumption of monotonic behaviour 

(see previous section). Two joint faults will not be tolerated, 

if at least one of them is not tolerated when injected as single 

fault. By “tolerated” we mean that the circuit under diagnosis 

(CUD) is still providing its function according to a given 

maximum deviation from the ideal output. The monotony 

assumption has the advantage that many irrelevant multiple 

fault combinations can be discarded before being simulated. 

The effect to the number of test cases (simulation runs) is 

quite substantial. Discarding dual faults will also result in a 

smaller number of considered triple faults, and so on. The 

simulation time is reduced for all fault depths (see Figure 1). 

In general, the monotony assumption reduces the number of 

both considered elements and failure modes per element. 

In the remainder of the paper, we present a further method 

how the number of simulation runs can be reduced, see 

Sections 4 and 5. Before we describe the method we will 

formalize the selection of test cases to achieve a better 

precision in the description of the fault classes the new 

method is making use of. 

 
Figure 1. Complexity of fault simulation for an example medium sized 

circuit (20 elements with two fault modes per element). 

Formally, the relationship between faults, elements of the 

circuit, injections and simulation runs is defined by the 

following tuples and functions:  

1) C = {c0, … , cm} is the set of circuits to be evaluated, 

c0  C is the fault-free circuit. 

2) E = {transistor1, transisitor2, ..., resistor1,  ... , … } 

is the set of elements of the circuit c0. 

3) F = {short_circuit, open_circuit, 

        parameter_modification, ... } 

is the set of considered fault modes of the circuit c0. 

4) I = { (f, e) F  E : probability of fault f in element e} 

is the set of potential injections. 

5) I* = { i*  I : (x  i*, y  i*, x y) x|E  y|E } 

is the set of potential multiple injections. I* is a subset 

of the power set of I. By x|E and y|E we denote the 

element of injection x or injection y, respectively. 

The inequality x|E  y|E excludes joint injection of 

different faults to the same element of the circuit.  
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6) Q : F  E  [0, 1] 

is the probability of fault f  F in a faulty element 

e  E. If a fault f  F is not applicable to an element  

e  E then Q(f, e) = 0. For a given faulty element e  E 

the sum of fault probabilities is always 1:   

fF: Q(f, e) =1. 

Example: If we assume only two fault modes F = {open, 

short} and only two elements E = {R1, R2}, there may be four 

injections I = {(open, R1), (open, R2), (short, R1), (short, R2)} 

and four double injections. In all we obtain:   

I*  =  { {(open, R1)},  {(open, R2)},  {(short, R1)},   

{(short, R2)},  {(open, R1), (open, R2)},   

{short, R1), (short, R2)},  {(open, R1), (short, R2)},   

{short, R1), (open, R2)} }. 

If shorts are more likely for R1 and opens are more likely for 

R2 we may get, say, 

Q(open, R1) = 0.2,   Q(short, R1) = 0.8    (0.2 + 0.8 = 1). 

Q(open, R2) = 0.4,   Q(short, R2) = 0.6    (0.4 + 0.6 = 1). 

P : E  [0,1] is the function indicating the probability that 

element e  E is fault-free. 

Function R: I*{0,1} is a simulation run with joint 

injection of all faults from i  I*. The method returns 1 if the 

injected faults are tolerated according to the tolerance 

criterion, otherwise 0. In the following the fault simulation 

procedure is described for single, double, triple, fault 

injection. 

 

Single faults: 

I1 = I is the set of single fault injections to be evaluated by 

simulation.  

T1 = { i  I1 : R( {i} ) = 1 } is the set of single injections that 

have been tolerated. The function 

𝑃1  = ∑ R(i)  (1 –  P(i|E))  Q(i|F)iI1
∏ P(y|E)y (I1\i)   

expresses the probability of tolerated single injections. 

 

Double faults:  

I2 = {{(f, e), (f’, e’)} :  (f, e)  T1,  (f’, e’)  T1,  e  e’ } 

is the set of double injections to be evaluated by simulation. 

I2 has been defined on the basis of T1, not I1, because the non-

tolerated injections from the complement I1 \ T1 are excluded 

due to the assumption of monotony. 

T2 = {i*  I2 : R(i*) = 1} is the set of double injections that 

have been tolerated. 

𝑃2 = ∑ R(i∗)∏ (1– P(x|E))Q(x|F)xi∗i∗I2
∏ P(y|E)y(I2\i∗)   

expresses the probability of tolerated double injections. 

 

Triple faults:   

I3={{(f, e), (f',e’), (f’’,e’’)} : {(f, e), (f’, e’)}T2,  

(f’’, e’’)T1,  e  e’,  e  e’’,  e’  e’’}  is the set of triple 

injections to be evaluated by fault simulation. Again, the non-

tolerated previous injections have been excluded due to the 

assumption of monotony.  

T3 = {i*  I3 : R(i*) = 1} is the set of triple injections that 

have been tolerated.  

𝑃3 = ∑ R(i∗)∏ (1– P(x|E))Q(x|F)xi∗i∗I3
∏ P(y|E)y(I3\i∗)  

expresses the probability of tolerated triple injections. 

The injections of higher numbers of joint faults are 

defined accordingly. 

IV. FAULT CLASS ALGORITHM 

Our new algorithm is an heuristic approach that is based 

on an observation of simulation results [8] of so-called fault 

classes. A fault class is a set of test cases (series of fault 

injections) all of which have the same number of faults and 

the same fault modes, independent of the elements where the 

faults are injected. 

Experimental results show that three fault classes FC1, 

FC2 and FC3 for multiple faults mostly exhibit a monotoni-

cally increasing degree of tolerance, when the fault distance 

between FC1 and FC2 is 1, and also the fault distance 

between FC2 and FC3 is 1. By a fault distance d(FC, FC’) 

(similar to the Hamming distance), we understand the number 

of fault modes that differ between FC and FC’. The degree t 

of tolerance is defined by the number of tolerated test cases 

divided by the number of all test cases of a fault class. 

The case d(FC1, FC2) = d(FC2, FC3) = 1 means that each 

pair of fault classes differs by just one fault mode. For 

example, consider the following fault classes:   

FC1 (open, open, open),   

FC2 (open, open, short),   

FC3 (open, short, short).  

The fault distances are d(FC1, FC2) = d(FC2, FC3) = 1 and 

d(FC1, FC3) = 2. Typically this leads to   

either  t(FC1) ≤ t(FC2) ≤ t(FC3)   

or t(FC1) ≥ t(FC2) ≥ t(FC3).  

From this observation we developed an algorithm that can be 

characterized as follows: 

 Search for fault classes FC1, FC2, FC3 satisfying the 

condition above – or search for even longer chains of fault 

classes with this property. 

 Determine which of the chains will typically lead to  

an ascending or descending degree of tolerance. To 

decide that, analysing the fault classes of the previous 

fault depth is necessary, see Step 2 of this section below.  

 Quantify the tolerance of the first and the last fault class 

of a chain by simulation. 

 Quantify the tolerance of the remaining fault classes of a 

chain by interpolation. 

Fault classes are defined by the modes of the injected 

faults and their number of simultaneously injected faults.  

FC2(x, y) denotes a fault class for two joint injections, namely 

fault modes x and y. Since the fault classes  

FC2(x, y) and FC2(y, x) are identical, we enforce a unique 

notion by assuming an order among the fault modes. Since 

fault modes x and y may be identical (injection of two faults 

of identical mode into different elements), we require x  y 

for FC2(x,y). For an arbitrary fault class FCn(x1, x2, …, xn) 

we require x1  x2  …  xn. Then, a fault class for double 

fault injection is defined as follows:  
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FC2(x, y)  =  { {(f, e), (f’, e’)}  I2 : f = x, f’ = y }  

A fault class for the injection of n faults is defined accord-

ingly: FCn(x1,…, xn) = {{(f1, e1),…, (f1, e1)} In : fi = xi}. 

The subset of test cases in a fault class FCn(x1,…, xn) that 

has been tolerated is called tolerance class TCn(x1,…, xn). The 

following holds: TCn(x1,…, xn)  FCn(x1,…, xn). Moreover, 

TCn(x1,…, xn) = FCn(x1,…, xn)  TCn. The quotient of the 

cardinality of TCn(x1,…, xn) and the cardinality of  

FCn(x1,…, xn) is called tolerance degree tn(x1,…, xn). Thus 

t𝑛(x1, … ,  x𝑛) =  
|TC𝑛(x1, … ,  x𝑛)|

|FC𝑛(x1, … ,  x𝑛)|
 

The heuristic approach is defined in the following steps 

and the algorithm is shown in Figures 2 and 3. We assume 

that the tolerance classes TC1(…) and TC2(…) have already 

been generated by the respective fault simulations. 

Consequently, the tolerance degrees t1(…) and t2(…) are 

known. Then the following steps describe how the fault 

classes FC3(…) for triple fault simulation – or interpolation! 

– are formed. 

A. Step 1 – Generation Of Fault Classes 

A fault class FC3(x, y, z) with 3 faults is generated by 

combining all test cases of T2 with all test cases of TC1 in the 

following way: Each union of a test case tc2  TC2(x,y) and 

a test case tc1  TC1(z) form a test case tc3  FC3(x,y,z) 

provided  x, y and z inject faults into different elements. Since 

we avoid double injections into a single element, the 

respective combined injections {x, y, z} are filtered out. The 

corresponding algorithm is shown in Figure 2. In the 

algorithm we denote the fault mode of injection x by x|F. 

 
Figure 2. Generate Fault Classes. 

B. Step 2 – Search Fault Class Chains 

The search of fault class chains starts with a search in TC2. 

We inspect all pairs of tolerance classes TC2(x, y) and  

TC2(x’, y’) and filter out those with a fault distance of 1 and, 

moreover, with “significantly unequal” tolerance degrees 

(the difference should be at least). Formally: 

d(TC2(x, y), TC2(x’, y’)) = 1 and |t2(x, y) – t2(x’, y’)|   

where  may be in the range of 5% of the absolute values. 

From the fault distance 1 we can conclude that either 

x = x’ or y = y’. In the following we assume x = x’ and  

y  y’ without loss of generality. 

From the two tolerance classes TC2(x, y) and TC2(x, y’) 

we derive the following chain of three fault classes:  

< FC3(x, y, y),  FC3(x, y, y’),  FC3(x, y’, y’) > 

According to the observation of likely monotonicity (see 

beginning of section IV) we only simulate the test cases of 

the first and the last fault class in the chain to obtain the 

tolerance degrees t3(x, y, y) and t3(x, y’, y’), respectively. The 

tolerance degree t3(x, y, y’) of the inner fault class in the chain 

is obtained by interpolation:  

t3(x, y, y’) = (t3(x, y, y) + t3(x, y’, y’)) / 2.  

The algorithm can be seen from Figure 3. 

 
Figure 3. Search Fault Class Chains. 

C. Step 3 – Calculation of Probabilities 

The simulations of FC3(x, y, y) and FC3(x, y’, y’) deliver 

the set of all tolerated test cases, this means the two tolerance 

classes TC3(x, y, y) and TC3(x, y’, y’). The probability of 

tolerating the respective triple faults can be calculated by the 

formula presented in section III. When this formula is applied 

to tolerance class TC3(x, y, y) we obtain 

∑ ∏ (1– P(x|E))Q(x|F)xi∗i∗𝑇𝐶3(𝑥,𝑦,𝑦) ∏ P(y|E)y(𝑇𝐶3(𝑥,𝑦,𝑦)\i∗)   

For tolerance class TC3(x, y’, y’) we obtain: 

∑ ∏ (1– P(x|E))Q(x|F)xi∗i∗𝑇𝐶3(𝑥,𝑦′,𝑦′) ∏ P(y|E)y(𝑇𝐶3(𝑥,𝑦′,𝑦′)\i∗)    

The probability of tolerating the triple faults of the inter-

polated fault class cannot be obtained directly, because the 

test cases of this class have not been simulated. For this 

reason we approximate the probability by multiplying the 

respective formula with the tolerance degree: 
 t3(x, y, y’) ∙

∑ ∏ (1– P(x|E)) Q(x|F)
xi∗i∗𝑇𝐶3(𝑥,𝑦,𝑦′) ∏ P(y|E)

y(𝑇𝐶3(𝑥,𝑦,𝑦′)\i∗
)

  

The tolerance class of the non-simulated fault class is gene-

rated by selecting a portion of t3(x, y, y’) test cases at random. 

For the injection of more than three joint faults, steps 1 to 3 

can be applied accordingly. 

V. EXPERIMENTAL RESULTS 

In this section, the efficiency of the proposed solution to 

reduce the simulation time is evaluated. The fault simulation 

framework [8] is used to evaluate the dependability of four 

example electronic circuits. It should be noted, that for used 

circuits only permanent faults (e.g. short, open or parameter 

deviations) have been considered. 

The simulation time (fault injection and simulation) 

depends on the number of elements, the number of injected 

Procedure 1 Generate Fault Classes 

for all test cases tc2  TC2 do 

   for all test cases tc1 e TC1 do 

   {  test case {x, y, z} = i j; 

       if x|E  y|E and x|E  z|E and y|E  z|E then 

          FC3(x|F, y|F, z|F) = FC3(x|F, y|F, z|F)  {x, y, z} 

   } 
 

 

 

Procedure 2 Search Fault Class Chains 

for all pairs (TC2, TC2’) of tolerance classes with two injections do 

   if d(TC2(x, y), TC2(x’, y’)) = 1 and |t2(x, y) – t2(x’, y’)|   then 
   { fault class FC = FC3(x, y, y), 

      fault class FC’ = FC3(x, y, y’), 

      fault class FC’’ = FC3(x, y’, y’); 
      t3(x, y, y) = simulation of FC3(x, y, y); 

      t3(x, y’, y’) = simulation of FC3(x, y’, y’); 

      t3(x, y, y’) = (t3(x, y, y) + t3(x, y’, y’)) / 2; 
   } 
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faults per element and the fault depth. Appropriate fault 

tolerance criteria have been defined on circuit outputs. 

All of the circuits have been evaluated twice: The first 

evaluation was without generation of fault classes (chains 

have not been formed and all test cases have been simulated 

with the monotonicity assumption). The second evaluation 

applied the new method with fault classes (only a portion of 

the test cases has been simulated). The remaining ones have 

been evaluated by interpolation according to the algorithm in 

steps 1 to 3). This way the new method can be compared 

directly to the solution without fault classes.  

The result is shown in table 1. The last but one column 

shows the speedup achieved by the new approach: 45% in the 

average. It has to be paid by an error in the results (see last 

column). The error refers to the number of tolerated test 

cases. A deviation of 2.62% has been noticed in the average. 

VI. CONCLUSION 

Fault simulation of analogue circuits with multiple faults 

is an important problem to deal with, since multiple faults 

appearance is unavoidable in real systems. In this paper we 

have introduced the fault class concept for our approach to 

reduce the simulation time of multiple fault analysis. We 

discussed the idea of faults classes, providing conditions that 

ensure chains of fault classes with ascending or descending 

degree of tolerance. We implemented the procedure and 

evaluated it experimentally. 

In this paper, we have successfully reduced the duration 

of software-based fault simulation for multiple faults and 

different fault modes. In the evaluated example circuits, our 

methodology shows that the number of simulation runs is 

significantly lower while preserving the precision quite well. 
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