
Efficient Simulation of Multiple Faults for Reliability Analysis

of Analogue Circuits

Eduard Weber, Klaus Echtle

University of Duisburg-Essen

Dependability of Computing Systems

Essen, Germany

e-mail: (echtle, weber)@dc.uni-due.de

Abstract—Software-based fault simulation can support all

abstraction levels, is flexible and allows reliability assessment at

different stages in the design process. Fault diagnosis and

reliability analysis are increasingly important in circuit design

and determine the product’s time-to-market. In this paper, we

provide a new efficient method and systematic scheme for

reducing the time for simulation for multiple simultaneous

faults and/or multiple failure modes per element in an analogue

circuit. By arranging similar multiple faults in groups, some

failure classes can be interpolated with an adequate precision

rather than being evaluated by time-consuming simulation. The

technique can be used to perform efficient multiple fault

diagnosis based on multiple fault injection. Finally, the

implemented procedure is validated experimentally.

Keywords—Fault simulation; fault modeling; multiple fault

injection; fault diagnosis; reliability prediction

I. INTRODUCTION

Fault diagnosis of circuits is a well-developed research

field with a long tradition. The first scientific publications are

from early 1960s. Circuit simulation is nowadays an accepted

standard in the development of electronic circuits. Small to

complex analogue, digital and mixed signal circuits can be

tested and verified with appropriate simulation software. A

lot of progress has been made in the development of software

tools for the design and verification of analogue and/or

mixed-signal circuits, both in the open-source and in the

commercial sector. Already two decades ago the method of

analogue fault modelling has been suggested to enable both

fault diagnosis and reliability evaluation. Different appro-

aches have been developed for fault simulation of analogue

and mixed-signal circuits. Previous work on analogue fault

modelling focuses on parametric defects (soft faults) and

catastrophic defects (hard faults). Parametric faults are

typically simulated with parameter modifications, while open

and short defects are dealt with via injecting a high or low

resistance on transistor level, respectively. Fault simulation is

generally done by injecting a fault on transistor level and

analysing the circuit’s behaviour by applying single DC,

transient or AC simulation for linear or nonlinear circuit

models. Also software tools for automatic fault injection and

efficient test generation have been developed. However,

mostly single faults have been considered in the past. Test

cases for fault injection have been generated often by hand

from an understanding of the design and fault expectations of

major circuit elements. Most of the fault simulators for

analogue circuits presented in the literature cover only

parameter or catastrophic faults. Some tools have attempted

to automate test generation and the fault simulation process

for analogue circuits. Most existing fault simulators use the

Simulation Program with Integrated Circuits Emphasis

(SPICE) and modify SPICE net lists to represent faults

[1] - [7]. The fault simulation software [8] used for the work

presented in this paper defines circuit faults in Visual Basic

(VB-Script) language and allows flexible and very accurate

fault modelling. The main goal of this paper is to speed up

the simulation for multiple faults.

II. DIAGNOSIS OF ANALOGUE CIRCUITS

Test and fault diagnosis of analogue circuits are necessary

despite the ongoing digitalization. Analogue circuits are

always required to form the interface to the physical

environment. Analogue signals do not consist of just "low"

or "high" values like in the digital field. In principle, infinite

numbers of signal values are conceivable. The time and

frequency characteristics of analogue signals bring another

dimension, and are an additional issue within circuit assess-

ment. The propagation of faults is more difficult than in the

digital field. Typically it does not occur in just one direction,

but could be from any element in all directions towards

neighbour elements within the circuit. A particular fault in an

element (like resistor, capacitor, transistor, etc.) does not

provide explicit information about the resulting signal values.

Therefore a calculation of signal values (done by circuit

simulation) is always necessary. Nonlinear models, parasitic

elements, charges between elements or energy-storing

elements make diagnosis and reliability analysis more

complex [9]. Because of these reasons, the automation level

of fault diagnosis procedures for analogue circuits has not yet

achieved the development level realized in the digital field.

The reason for the limited automation is simply due to the

nature of analogue circuits. The predominant design metho-

dology for analogue circuits is still individual optimization of

reusable topologies.

The simulation of multiple simultaneous faults is even

more complex. The consideration of multiple faults is

important for the following reasons. Different fault modes

can be present in the elements of complex circuits. Their

occurrence increases even more in rough environments. Also,

23Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

multiple parametric faults can be present in the field as a

result of ageing, environmental stress and design errors.

Moreover, multiple fault diagnosis is relevant when a new

circuit design is introduced and a high failure density exists.

The restriction to single fault simulation can lead to incorrect

evaluation results.

One of the main issues in software-based fault simulation

is the relatively long runtime in case of complex analogue

circuits. In general, the runtime increases rapidly with the

circuit size and the number of faulty elements (fault depth)

and the failure modes per element. When performing fault

simulation, the runtime is mostly determined by the number

of fault injections. Each injection of a multiple fault has to be

simulated separately. Usually the simulation time for single

faults (at transistor level) is tractable because of available

computer performance. Also the performance of Electronic

Design Automation (EDA) tools has been increased during

the last decade. However, multiple fault injection is a

challenge with respect to runtime.

The fault simulation framework [8] used for the work

presented in this paper can deal with several fault modes

injected simultaneously into elements of a circuit. We con-

sider permanent hard (open and short circuit) and soft faults

(parametric faults). Please note, that even shorts and opens

are dealt with as analogue (not digital) faults, because the

simulator generates the analogue signal throughout the

complete circuit in the case of these faults. Figure 1 shows

how the total simulation time (here number of simulation

runs) is influenced by the number of multiple faults and the

failure modes per element. The diagram shows a medium-

sized circuit example composed of 20 elements where faults

are injected, each of which leads to two different failure

modes. The solid line represents the number of simulation

runs for all necessary test cases. This quantity increases

rapidly with the number of multiple faults. The dashed line

shows that the quantity of simulation runs can be reduced

significantly by assuming monotonic behaviour as follows:

When a set F of simultaneous faults is not tolerated, then also

a superset of F will not be tolerated. Consequently the

superset needs not be simulated. The assumption of mono-

tonic behaviour is slightly pessimistic, because experience

has turned out that in practice there are only few exceptions.

This monotonicity does not always exist. Instead we have

observed that it exists in overwhelming majority of cases with

only very few exceptions.

III. STRATEGIES FOR REDUCING SIMULATION TIME

To reduce the runtime for simulation with fault injection

the following two general approaches are possible: reduce the

number of test cases (simulation runs) or speed up the

simulation procedure for each test case. Several approaches

are described in the literature to speed-up the simulation

process, including fault or test case ordering [10] - [13] and

distributed fault simulation [14][15]. Several approaches for

multiple fault generation [16][17] and simulation [18][19] for

reliability analysis are described in the literature. A general

rule (if applicable) is the assumption of monotonic behaviour

(see previous section). Two joint faults will not be tolerated,

if at least one of them is not tolerated when injected as single

fault. By “tolerated” we mean that the circuit under diagnosis

(CUD) is still providing its function according to a given

maximum deviation from the ideal output. The monotony

assumption has the advantage that many irrelevant multiple

fault combinations can be discarded before being simulated.

The effect to the number of test cases (simulation runs) is

quite substantial. Discarding dual faults will also result in a

smaller number of considered triple faults, and so on. The

simulation time is reduced for all fault depths (see Figure 1).

In general, the monotony assumption reduces the number of

both considered elements and failure modes per element.

In the remainder of the paper, we present a further method

how the number of simulation runs can be reduced, see

Sections 4 and 5. Before we describe the method we will

formalize the selection of test cases to achieve a better

precision in the description of the fault classes the new

method is making use of.

Figure 1. Complexity of fault simulation for an example medium sized

circuit (20 elements with two fault modes per element).

Formally, the relationship between faults, elements of the

circuit, injections and simulation runs is defined by the

following tuples and functions:

1) C = {c0, … , cm} is the set of circuits to be evaluated,

c0 C is the fault-free circuit.

2) E = {transistor1, transisitor2, ..., resistor1, ... , … }

is the set of elements of the circuit c0.

3) F = {short_circuit, open_circuit,

 parameter_modification, ... }

is the set of considered fault modes of the circuit c0.

4) I = { (f, e) F E : probability of fault f in element e}

is the set of potential injections.

5) I* = { i* I : (x i*, y i*, x y) x|E y|E }

is the set of potential multiple injections. I* is a subset

of the power set of I. By x|E and y|E we denote the

element of injection x or injection y, respectively.

The inequality x|E y|E excludes joint injection of

different faults to the same element of the circuit.

24Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

6) Q : F E [0, 1]

is the probability of fault f F in a faulty element

e E. If a fault f F is not applicable to an element

e E then Q(f, e) = 0. For a given faulty element e E

the sum of fault probabilities is always 1:

fF: Q(f, e) =1.

Example: If we assume only two fault modes F = {open,

short} and only two elements E = {R1, R2}, there may be four

injections I = {(open, R1), (open, R2), (short, R1), (short, R2)}

and four double injections. In all we obtain:

I* = { {(open, R1)}, {(open, R2)}, {(short, R1)},

{(short, R2)}, {(open, R1), (open, R2)},

{short, R1), (short, R2)}, {(open, R1), (short, R2)},

{short, R1), (open, R2)} }.

If shorts are more likely for R1 and opens are more likely for

R2 we may get, say,

Q(open, R1) = 0.2, Q(short, R1) = 0.8 (0.2 + 0.8 = 1).

Q(open, R2) = 0.4, Q(short, R2) = 0.6 (0.4 + 0.6 = 1).

P : E [0,1] is the function indicating the probability that

element e E is fault-free.

Function R: I*{0,1} is a simulation run with joint

injection of all faults from i I*. The method returns 1 if the

injected faults are tolerated according to the tolerance

criterion, otherwise 0. In the following the fault simulation

procedure is described for single, double, triple, fault

injection.

Single faults:

I1 = I is the set of single fault injections to be evaluated by

simulation.

T1 = { i I1 : R({i}) = 1 } is the set of single injections that

have been tolerated. The function

𝑃1 = ∑ R(i) (1 – P(i|E)) Q(i|F)iI1
∏ P(y|E)y (I1\i)

expresses the probability of tolerated single injections.

Double faults:

I2 = {{(f, e), (f’, e’)} : (f, e) T1, (f’, e’) T1, e e’ }

is the set of double injections to be evaluated by simulation.

I2 has been defined on the basis of T1, not I1, because the non-

tolerated injections from the complement I1 \ T1 are excluded

due to the assumption of monotony.

T2 = {i* I2 : R(i*) = 1} is the set of double injections that

have been tolerated.

𝑃2 = ∑ R(i∗)∏ (1– P(x|E))Q(x|F)xi∗i∗I2
∏ P(y|E)y(I2\i∗)

expresses the probability of tolerated double injections.

Triple faults:

I3={{(f, e), (f',e’), (f’’,e’’)} : {(f, e), (f’, e’)}T2,

(f’’, e’’)T1, e e’, e e’’, e’ e’’} is the set of triple

injections to be evaluated by fault simulation. Again, the non-

tolerated previous injections have been excluded due to the

assumption of monotony.

T3 = {i* I3 : R(i*) = 1} is the set of triple injections that

have been tolerated.

𝑃3 = ∑ R(i∗)∏ (1– P(x|E))Q(x|F)xi∗i∗I3
∏ P(y|E)y(I3\i∗)

expresses the probability of tolerated triple injections.

The injections of higher numbers of joint faults are

defined accordingly.

IV. FAULT CLASS ALGORITHM

Our new algorithm is an heuristic approach that is based

on an observation of simulation results [8] of so-called fault

classes. A fault class is a set of test cases (series of fault

injections) all of which have the same number of faults and

the same fault modes, independent of the elements where the

faults are injected.

Experimental results show that three fault classes FC1,

FC2 and FC3 for multiple faults mostly exhibit a monotoni-

cally increasing degree of tolerance, when the fault distance

between FC1 and FC2 is 1, and also the fault distance

between FC2 and FC3 is 1. By a fault distance d(FC, FC’)

(similar to the Hamming distance), we understand the number

of fault modes that differ between FC and FC’. The degree t

of tolerance is defined by the number of tolerated test cases

divided by the number of all test cases of a fault class.

The case d(FC1, FC2) = d(FC2, FC3) = 1 means that each

pair of fault classes differs by just one fault mode. For

example, consider the following fault classes:

FC1 (open, open, open),

FC2 (open, open, short),

FC3 (open, short, short).

The fault distances are d(FC1, FC2) = d(FC2, FC3) = 1 and

d(FC1, FC3) = 2. Typically this leads to

either t(FC1) ≤ t(FC2) ≤ t(FC3)

or t(FC1) ≥ t(FC2) ≥ t(FC3).

From this observation we developed an algorithm that can be

characterized as follows:

 Search for fault classes FC1, FC2, FC3 satisfying the

condition above – or search for even longer chains of fault

classes with this property.

 Determine which of the chains will typically lead to

an ascending or descending degree of tolerance. To

decide that, analysing the fault classes of the previous

fault depth is necessary, see Step 2 of this section below.

 Quantify the tolerance of the first and the last fault class

of a chain by simulation.

 Quantify the tolerance of the remaining fault classes of a

chain by interpolation.

Fault classes are defined by the modes of the injected

faults and their number of simultaneously injected faults.

FC2(x, y) denotes a fault class for two joint injections, namely

fault modes x and y. Since the fault classes

FC2(x, y) and FC2(y, x) are identical, we enforce a unique

notion by assuming an order among the fault modes. Since

fault modes x and y may be identical (injection of two faults

of identical mode into different elements), we require x y

for FC2(x,y). For an arbitrary fault class FCn(x1, x2, …, xn)

we require x1 x2 … xn. Then, a fault class for double

fault injection is defined as follows:

25Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

FC2(x, y) = { {(f, e), (f’, e’)} I2 : f = x, f’ = y }

A fault class for the injection of n faults is defined accord-

ingly: FCn(x1,…, xn) = {{(f1, e1),…, (f1, e1)} In : fi = xi}.

The subset of test cases in a fault class FCn(x1,…, xn) that

has been tolerated is called tolerance class TCn(x1,…, xn). The

following holds: TCn(x1,…, xn) FCn(x1,…, xn). Moreover,

TCn(x1,…, xn) = FCn(x1,…, xn) TCn. The quotient of the

cardinality of TCn(x1,…, xn) and the cardinality of

FCn(x1,…, xn) is called tolerance degree tn(x1,…, xn). Thus

t𝑛(x1, … , x𝑛) =
|TC𝑛(x1, … , x𝑛)|

|FC𝑛(x1, … , x𝑛)|

The heuristic approach is defined in the following steps

and the algorithm is shown in Figures 2 and 3. We assume

that the tolerance classes TC1(…) and TC2(…) have already

been generated by the respective fault simulations.

Consequently, the tolerance degrees t1(…) and t2(…) are

known. Then the following steps describe how the fault

classes FC3(…) for triple fault simulation – or interpolation!

– are formed.

A. Step 1 – Generation Of Fault Classes

A fault class FC3(x, y, z) with 3 faults is generated by

combining all test cases of T2 with all test cases of TC1 in the

following way: Each union of a test case tc2 TC2(x,y) and

a test case tc1 TC1(z) form a test case tc3 FC3(x,y,z)

provided x, y and z inject faults into different elements. Since

we avoid double injections into a single element, the

respective combined injections {x, y, z} are filtered out. The

corresponding algorithm is shown in Figure 2. In the

algorithm we denote the fault mode of injection x by x|F.

Figure 2. Generate Fault Classes.

B. Step 2 – Search Fault Class Chains

The search of fault class chains starts with a search in TC2.

We inspect all pairs of tolerance classes TC2(x, y) and

TC2(x’, y’) and filter out those with a fault distance of 1 and,

moreover, with “significantly unequal” tolerance degrees

(the difference should be at least). Formally:

d(TC2(x, y), TC2(x’, y’)) = 1 and |t2(x, y) – t2(x’, y’)|

where may be in the range of 5% of the absolute values.

From the fault distance 1 we can conclude that either

x = x’ or y = y’. In the following we assume x = x’ and

y y’ without loss of generality.

From the two tolerance classes TC2(x, y) and TC2(x, y’)

we derive the following chain of three fault classes:

< FC3(x, y, y), FC3(x, y, y’), FC3(x, y’, y’) >

According to the observation of likely monotonicity (see

beginning of section IV) we only simulate the test cases of

the first and the last fault class in the chain to obtain the

tolerance degrees t3(x, y, y) and t3(x, y’, y’), respectively. The

tolerance degree t3(x, y, y’) of the inner fault class in the chain

is obtained by interpolation:

t3(x, y, y’) = (t3(x, y, y) + t3(x, y’, y’)) / 2.

The algorithm can be seen from Figure 3.

Figure 3. Search Fault Class Chains.

C. Step 3 – Calculation of Probabilities

The simulations of FC3(x, y, y) and FC3(x, y’, y’) deliver

the set of all tolerated test cases, this means the two tolerance

classes TC3(x, y, y) and TC3(x, y’, y’). The probability of

tolerating the respective triple faults can be calculated by the

formula presented in section III. When this formula is applied

to tolerance class TC3(x, y, y) we obtain

∑ ∏ (1– P(x|E))Q(x|F)xi∗i∗𝑇𝐶3(𝑥,𝑦,𝑦) ∏ P(y|E)y(𝑇𝐶3(𝑥,𝑦,𝑦)\i∗)

For tolerance class TC3(x, y’, y’) we obtain:

∑ ∏ (1– P(x|E))Q(x|F)xi∗i∗𝑇𝐶3(𝑥,𝑦′,𝑦′) ∏ P(y|E)y(𝑇𝐶3(𝑥,𝑦′,𝑦′)\i∗)

The probability of tolerating the triple faults of the inter-

polated fault class cannot be obtained directly, because the

test cases of this class have not been simulated. For this

reason we approximate the probability by multiplying the

respective formula with the tolerance degree:
 t3(x, y, y’) ∙

∑ ∏ (1– P(x|E)) Q(x|F)
xi∗i∗𝑇𝐶3(𝑥,𝑦,𝑦′) ∏ P(y|E)

y(𝑇𝐶3(𝑥,𝑦,𝑦′)\i∗
)

The tolerance class of the non-simulated fault class is gene-

rated by selecting a portion of t3(x, y, y’) test cases at random.

For the injection of more than three joint faults, steps 1 to 3

can be applied accordingly.

V. EXPERIMENTAL RESULTS

In this section, the efficiency of the proposed solution to

reduce the simulation time is evaluated. The fault simulation

framework [8] is used to evaluate the dependability of four

example electronic circuits. It should be noted, that for used

circuits only permanent faults (e.g. short, open or parameter

deviations) have been considered.

The simulation time (fault injection and simulation)

depends on the number of elements, the number of injected

Procedure 1 Generate Fault Classes

for all test cases tc2 TC2 do

 for all test cases tc1 e TC1 do

 { test case {x, y, z} = i j;

 if x|E y|E and x|E z|E and y|E z|E then

 FC3(x|F, y|F, z|F) = FC3(x|F, y|F, z|F) {x, y, z}

 }

Procedure 2 Search Fault Class Chains

for all pairs (TC2, TC2’) of tolerance classes with two injections do

 if d(TC2(x, y), TC2(x’, y’)) = 1 and |t2(x, y) – t2(x’, y’)| then
 { fault class FC = FC3(x, y, y),

 fault class FC’ = FC3(x, y, y’),

 fault class FC’’ = FC3(x, y’, y’);
 t3(x, y, y) = simulation of FC3(x, y, y);

 t3(x, y’, y’) = simulation of FC3(x, y’, y’);

 t3(x, y, y’) = (t3(x, y, y) + t3(x, y’, y’)) / 2;
 }

26Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

faults per element and the fault depth. Appropriate fault

tolerance criteria have been defined on circuit outputs.

All of the circuits have been evaluated twice: The first

evaluation was without generation of fault classes (chains

have not been formed and all test cases have been simulated

with the monotonicity assumption). The second evaluation

applied the new method with fault classes (only a portion of

the test cases has been simulated). The remaining ones have

been evaluated by interpolation according to the algorithm in

steps 1 to 3). This way the new method can be compared

directly to the solution without fault classes.

The result is shown in table 1. The last but one column

shows the speedup achieved by the new approach: 45% in the

average. It has to be paid by an error in the results (see last

column). The error refers to the number of tolerated test

cases. A deviation of 2.62% has been noticed in the average.

VI. CONCLUSION

Fault simulation of analogue circuits with multiple faults

is an important problem to deal with, since multiple faults

appearance is unavoidable in real systems. In this paper we

have introduced the fault class concept for our approach to

reduce the simulation time of multiple fault analysis. We

discussed the idea of faults classes, providing conditions that

ensure chains of fault classes with ascending or descending

degree of tolerance. We implemented the procedure and

evaluated it experimentally.

In this paper, we have successfully reduced the duration

of software-based fault simulation for multiple faults and

different fault modes. In the evaluated example circuits, our

methodology shows that the number of simulation runs is

significantly lower while preserving the precision quite well.

REFERENCES

[1] Z. R. Yang and M. Zwolinski, “Fast, robust DC and transient

fault simulation for nonlinear analogue circuits,” in Design,

Automation and Test in Europe Conference and Exhibition

1999. Proceedings, 1999, pp. 244–248.

[2] J. Jagodnik and M. Wolfson, “Systematic fault simulation in

an analog circuit simulator,” vol. 26, no. 7, pp. 549–554, 1979.

[3] Y. Cao, Z.-h. Cen, J.-l. Wei, X. Ma, B. Yang, and M. Li,

“FDSAC-SPICE: fault diagnosis software for analog circuit

based on SPICE simulation,” in International Conference on

Space Information Technology 2009: SPIE, 2010, pp.

765120–765120-8.

[4] C. Sebeke, J. P. Teixeira, and M. J. Ohletz, “Automatic fault

extraction and simulation of layout realistic faults for

integrated analogue circuits,” in the European Design and

Test Conference. ED&TC 1995, pp. 464–468.

[5] S. Spinks, “ANTICS analogue fault simulation software,” in

IEEE Colloquium on Testing Mixed 23 Oct. 1997, p. 13.

[6] Bernd Straube, Bert Müller, Wolfgang Vermeiren, Christoph

Hoffmann, Sebastian Sattler, “Analogue Fault Simulation by

aFSIM,” DATE 2000 - User Forum, Paris, 2000.

[7] H. Spence, “Automatic analog fault simulation,” in

Conference Record. AUTOTESTCON '96, pp. 17–22.

[8] Weber E, Echtle K, and 52nd IEEE International Reliability

Physics Symposium, IRPS 2014, “Simulation-based

reliability evaluation for analog applications,” (English),

IEEE Int. Reliab. Phys. Symp. Proc. IEEE International

Reliability Physics Symposium Proceedings, 2014.

[9] P. Kabisatpathy, A. Barua, and S. Sinha, Fault Diagnosis of

Analog Integrated Circuits. Boston, MA: Springer, 2005.

[10] Junwei Hou and A. Chatterjee, “Concurrent transient fault

simulation for analog circuits,” IEEE Trans. Comput.-Aided

Des. Integr. Circuits Syst, vol. 22, no. 10, pp. 1385–1398,

2003.

[11] P. N. Variyam and A. Chatterjee, “FLYER: fast fault

simulation of linear analog circuits using polynomial

waveform and perturbed state representation,” Tenth

International Conference on VLSI 4-7, pp. 408–412, 1997.

[12] A. V. Gomes, R. Voorakaranam, and A. Chatterjee, “Modular

fault simulation of mixed signal circuits with fault ranking by

severity,” IEEE International Symposium on Defects and

Fault Tolerance in VLSI Systems, pp. 341–348, 1998.

[13] H. Hashempour, J. Dohmen, B. Tasić, B. Kruseman, C. Hora,

M. van Beurden, and Yizi Xing, “Test time reduction in

analogue/mixed-signal devices by defect oriented testing: An

industrial example,” Design, Automation & Test in Europe,

2011.

TABLE I. COMPARISON OF EXPERIMENTAL RESULTS

Circuit name No. of simulation runs Speed-up factor Error

 Number of
simulation runs for

all possible fault

combinations

Number of
simulation runs

with monotonicity

assumption

Number of simulation
runs

for the new approach

with fault classes

Our approach over
simulation with

monotonicity

assumption

Our approach over
fault simulation

with monotonicity

assumption

Two stage BJT amplifier with
feedback (Fault depth 1-4)

22422 356 284 1.25 5.4 %

LM741 AMP [20]

(Fault depth 1-4)
3923175 2090 1612 1.30 0.6 %

Broadband VHF/UHF amplifier

[21] (Fault depth 1-3)
695525 18187 10928 1.66 1.8 %

Limiter BSP [22]

(Fault depth 1-4)
1045256 1208 758 1.59 2.7 %

Average: 1.45 Average.: 2.62 %

27Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

[14] T. Markas, M. Royals, and N. Kanopoulos, “On distributed

fault simulation,” Computer, vol. 23, no. 1, pp. 40–52, 1990.

[15] C. P. Ravikumar, V. Jain, and A. Dod, “Faster fault simulation

through distributed computing,” Tenth International

Conference on VLSI, pp. 482–487, 1997.

[16] S. Kajihara, T. Sumioka, and K. Kinoshita, “Test generation

for multiple faults based on parallel vector pair analysis,”

International Conference on Computer Aided Design

(ICCAD), pp. 436–439, 1993.

[17] H. H. Zheng, A. Balivada, and J. A. Abraham, A Novel Test

Generation Approach for Parametric Faults in Linear Analog

Circuits: Proceedings / 14th IEEE VLSI Test Symposium,

Princeton, New Jersey. Los Alamitos, Calif: IEEE Computer

Society Press, 1996.

[18] K. Saab, N. Ben-Hamida, and B. Kaminska, “Parametric fault

simulation and test vector generation,” Meeting on Design

Automation, pp. 650–656, 2000.

[19] Yong Chang Kim, V. D. Agrawal, and K. K. Saluja, “Multiple

faults: modeling, simulation and test,” 7th Asia and South

Pacific Design Automation Conference, pp. 592–597, 2002.

[20] National Semiconductor, LM741 Operational Amplifier.

Available: http://web.mit.edu/6.301/www/LM741.pdf (2015,

Mar. 05).

[21] C. G. Gentzler and S. K. Leong, “Broadband VHF/UHF

amplifier design using coaxial transformers,” High Frequency

Electronics, pp. 42–51,

http://www.polyfet.com/HFE0503_Leong.pdf and

https://awrcorp.com/download/faq/english/appnotes/uhf_vhf

_amplifier.aspx, 2003.

[22] AWR Corporation, Bipolar Limiting Amplifier Circuit.

Available:

https://awrcorp.com/download/faq/english/docs/Getting_Star

ted/Tonal_Analysis.html (2015, Mar. 05).

28Copyright (c) IARIA, 2015. ISBN: 978-1-61208-429-9

DEPEND 2015 : The Eighth International Conference on Dependability

