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Abstract—Designing a dependable system by reducing costs
is a challenging issue. Traditional design strategies replicate
resources in order to improve fault-tolerant capabilities of the
system, which leads to increasing the hardware cost. Originated
from over-dimensioning decisions, we outline an approach to
identify and gather inherent compatible resources of the system
to accomplish equivalent functions. Inference of reconfiguration
strategies from the inherent design redundancies of the system
not only decreases the hardware cost, but also maintains, or
even improves the dependability of the system.

Keywords-Dependable design, distributed and reconfigurable
systems, shared (quasi) redundancy.

I. INTRODUCTION

When designing a dependable system [1], redundancies
improve system safety and availability. However, the aggre-
gation of resources leads to higher costs and more failure
sources. Consequently, reliability decreases. Therefore, a
trade-off analysis between dependability and cost objectives
is necessary to design a dependable system.

In order to perform a function within distributed net-
worked control systems (NCSs), remote devices work in
cooperation. A sensor performs a measurement function and
sends it to a control algorithm through the network. The
control algorithm acts in consequence and sends actuation
commands to the remote actuator. Traditionally, sensors and
actuators accomplish a single function, while processing
units (PUs) handle multiple tasks. However, why not exploit
sensor and actuator strengths to perform as many functions
as they can?

Our design approach focus on NCSs operating under
massively networked scenarios, where a lot of PUs and
sensors are connected to a network for different purposes.
E.g., a train where the resources of each car are replicated
throughout the train cars or a building where room and floor
resources are replicated.

In this paper, we propose a system design approach for the
systematic identification of replaceable functions including
those performed by sensors and actuators. To do so, the
physical location is the key driver. Subsequent steps allow
associating and deducing inherent design redundancies of the
system. This approach allows improving specifically system

availability and generally system dependability without ad-
ditional hardware cost.

The remainder of this paper is organised as follows: Sec-
tion II gives an overview of related research work. Section
III describes the generic functional modelling approach.
Section IV describes an overall reconfiguration process for
designing a dependable system. Finally, Section V addresses
limitations and future objectives of our research.

II. BACKGROUND RESEARCH

This section is divided into two subsections: Subsection
II-A points out inspirations of our research and Subsection
II-B identifies conceptually aligned works.

A. Research Inspiration

A straightforward way to add redundancies to a system
design is to explicitly replicate components. The objective
of the added resources is to provide failover capabilities to a
dedicated component failure. These replications are usually
done using passive and active redundancies.

Shared-redundancy [2] and quasi-redundancy [3] con-
cepts emerge from the utilization of components to compen-
sate for a failure, despite not being primarily used with this
objective. Replication of control functions over distributed
processing units (PUs) is done in such a way, that failed
functions are compensated using existing components. These
redundancies are implemented reconfiguring the communi-
cation routes of the network and PUs.

Passive and active redundancies replicate the nominal
operation of the failed function and shared- and quasi-
redundancies make the failed function operate under de-
graded conditions. Note that shared- and quasi-redundancies
are a form of passive redundancies, i.e., they work only
when the primary resource fails.

In order to simplify the nomenclature, we name homo-
geneous resources those needed to perform passive/active
redundancies where the nominal operation is replicated and
heterogeneous resources those needed to perform shared-
/quasi-redundancies where failure of the nominal operation
is compensated (i.e., degraded operation).
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We reuse existing concepts grouping them to consider the
trade-off between the replication of resources and the reuse
of existing ones. Homogeneous resources lead to increasing
the hardware cost. However, the integration and implementa-
tion of these resources is not as difficult as with the heteroge-
neous resources. The identification of replaceable functions
and the adaptation of the existing architecture to benefit
from compatibilities are the main challenges. Therefore, our
aim is to complement existing approaches with a method
to identify heterogeneous resources. This process enables a
systematic characterization of the replaceability properties of
the system, including those involving sensors and actuators.

B. Related Works

There is an increasing interest in automotive, avionics
and space industry for reusing existing hardware and/or
extracting system reconfiguration behaviour.

DySCAS middleware [4] partially addresses our con-
siderations using a context-aware adaptation mechanism,
specified by execution and architecture aware contexts. The
former context uses distributed policies to detect deviations
and react, while the latter embeds meta-information of con-
figuration reasoning (resource dependencies, QoS contracts,
compatibility, composability and dependability) within dy-
namically reconfigurable components. The approach deals
with task migrations to cope with hardware failures and
network balancing. A global node dynamically maintains for
the entire network the intentions of every node and decides
the possible configurations based on their requirements.
Each node locally performs admission control deciding if a
task is schedulable considering resource limitations (mem-
ory, CPU, bandwidth) and optimization of resources. The
middleware consolidates and disseminates the distributed
information.

Adler et al. [5] proposed a component-based modelling
and verification method for adaptive embedded systems. The
approach aims at exploiting implicitly available redundan-
cies to react to system failures. It provides methodological
support for identifying and gathering reasonable system con-
figurations. To do so, each port of the functional component
is attached with a quality attribute (QA), which provides
means to connect compatible components. Based on QAs,
the adaptation behaviour of each component is determined
with the required qualities for activation (preconditions) and
influences on the provided qualities (postconditions). In or-
der to ensure the causality of the reconfiguration sequences,
well-definedness properties are verified by using model-
checking and theorem proving techniques.

Integrated Modular Avionics (IMA) paradigm defines ro-
bust partitioning in onboard avionic systems so that one
computing module (Line Replaceable Unit (LRU)) is able
to execute one or more applications of different criticality
levels independently. The standardized generic hardware

modules forming a network leads to looser coupling between
hardware and software applications.

SCARLETT project [6] aims at designing reconfigurable
IMA architectures in order to mitigate the effect of failures
implementing functional and mitigation functions. Monitor-
ing and fault detection function aims at detecting com-
ponent failures. Once a permanent failure is detected, the
reconfiguration supervisor manages the modifications of
configurations given the current configuration and failed
module. Verification activities check the correctness of the
system configuration and the loaded data in the LRU. The
centralized supervisor determines a suitable configuration
based on a reconfiguration graph, which contains all pos-
sible configurations. Reconfiguration policies and real-time
and resource constraints, define the set of reachable safe
transitions and states. In order to analyse the reconfiguration
behaviour when failures occur, a safety model leads to
finding the combinations of functional failures. Based on
the same concepts, DIANA project [7] aims at distributing
these functionalities. This approach improves availability of
reconfiguration mechanisms at the expenses of relying on a
complex, resource consuming communication protocol.

Based on the potential of the IMA paradigm as a means to
provide fault containment strategies, Montano and McDer-
mid [8] presented an autonomous dynamic reconfiguration
system. Different information required for an effective dy-
namic reconfiguration (task scheduling, hardware resources,
operating modes, mission objectives, faults and dependabil-
ity requirements) is gathered based on interactive Constraint
Satisfaction Problem theory. The approach divides hard con-
straints and soft constraints. While the former is compiled
off-line the latter can be added and retracted dynamically.
Additionally, human interaction is allowed by translating
his requirements into soft constraints and weighting the
reconfiguration constraints so that higher priority decisions
can be controlled.

All these approaches address the integration of reconfig-
urability and dependability aspects. System reconfiguration
requires being aware of the system health, its operating
modes as well as the behavioural and dependability re-
quirements. These tasks should be implemented in a (au-
tonomous) centralized or distributed supervisor and coordi-
nated by a communication algorithm. However, the system-
atic identification of compatible resources has received scant
attention. Adler et al. [5] intuitively characterize the quality
attributes of the system components so that inter-component
compatibilities are identified. To the best of our knowledge,
no one is identifying and gathering replaceable resources
based on the physical location of hardware components. This
viewpoint may provide a useful systematic characterization
about the effect of placing components in determined places.
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III. GENERIC FUNCTIONAL DESIGN MODEL

The goal of this section is to formalize design concepts so
as to provide a systematic consideration of system functions,
resources and the relation between them. In order to identify
systematically compatible subfunctions, this model accounts
for the physical location early in the design phase. The
system is characterized in a top-down manner, parting from
a set of high-level (HL) functions (cf. Figure 1).

...

...

...

...

High-Level Function1 High-Level Function2

Main Function1 Main Function2

Physical LocationA Physical LocationB Physical LocationC

Subfunction4Subfunction3Subfunction2Subfunction1

Res.3BRes.3ARes.2BRes.2A

Res.1BRes.1A

Impl.1A
(N)

Impl.1A
(D)

Impl.1B
(N)

Impl.2B
(N)

Impl.2A
(N)

... Impl.3B
(FS)

Impl.3B
(N)

Impl.3A
(N)

Figure 1. Generic Functional Design Model

Depending on the system HL functions, these are further
refined into a set of main control functions (MFs). Our
design considerations focus on system refinement from MFs
downwards to limit the scope of the analysis without losing
its generality. The physical location (PL) characterizes the
place in which these MFs are performed. A single MF
may cover different PLs or it may be replicated for each
PL (e.g., Temperature Control). A set of subfunctions (SFs)
define necessary and sufficient means to perform the MFs.
Hence, the characterization of the system MFs is specified
as follows:

MainFunction.PhysicalLocation.Subfunction.Implementation

There may exist different versions of SF implementations
determined by the availability of resources. The resources
provide means to perform a SF using a set of hardware
resources, which may allocate software functions. Based on
the system means to perform the same SF with different re-
sources, we differ nominal, degraded and fail-safe versions.

The nominal (N) version, performs under initial functional
design characteristics. The set of Input (I), Control (C)
and Output (O) SF components necessary to perform the
nominal MF, in conjunction with the necessary resources to
address the system requirements, form the nominal design
configuration.

When the I, C or O subfunction is lost due to the failure
of some resource, the configuration to achieve an acceptable
outcome may have to change. There may be subfunctions,
which provide a degraded (D) but acceptable service, even
in presence of faults. Fail-safe (FS) versions emerge from
the need to cope with the insurmountable loss of resources,

which result in hazard occurrences. Predetermined solutions
should be defined so as to avoid these situations.

According to this classification, we define the con-
cept of compatible subfunctions. Two SFs are compati-
ble if their SFs match and they are within a compati-
ble PL. This compatibility would determine the accept-
able value for the produced outcome. The compatibility
of the PL depends upon the examined SF component.
The PL of each SF specify whether we are dealing with
a zone-level (e.g., Train.car.zone) or specific-level (e.g.,
Train.car.zone.location) SF. For I/O SFs performed within
the zone-level and depending on the I/O type itself, we con-
sider that the difference (if it exists) between the produced
outcomes of compatible subfunctions is acceptable (e.g.,
Temperature Control in adjacent compartments). However,
specific PLs, confine the compatibility within a specific
physical space. Generally, output SFs are gathered within
this group, due to their specific actuation space. C subfunc-
tions, do not have an explicit dependency on the PL. They
are able to perform the C function provided it receives the
corresponding I values of the specific PL.

Emerging from these concepts, we make a comparison
between homogeneous and heterogeneous resources (cf. Ta-
ble I). To do so, we centre on the nominal MF configuration
(cfg) and those which use homogeneous and heterogeneous
resources. Remember that since heterogeneous resources
focus on reusing distributed compatible resources, the MF
configuration will vary from the nominal design implemen-
tation.

Table I
COMPARISON BETWEEN HETEROGENEOUS/HOMOGENEOUS

RESOURCES AND NOMINAL IMPLEMENTATION

Resources SF PL I C O cfg

Homogeneous = = = = = =

Heterogenous = ≡ ≡,= ≡,= ≡,= ≡

same(=); compatible(≡)

IV. RECONFIGURATION PROCESS

The process described throughout this section is based
on the application of the generic functional design model
(cf. Section III) to model, identify and gather compatibilities
and extract customized reconfiguration mechanisms. We rely
on a running example in order to discuss and evaluate the
process.

A. Modelling Functions and Resources

The goal of the modelling process is to identify and gather
compatible functions performed with alternative resources.
The design model, makes these tasks possible, tracing from
system functions towards physically distributed implementa-
tions. For instance, consider the temperature control (MF1)
within a train car (cf. Figure 2).
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Figure 2. Train Physical Topology

From MF1, temperature measurement, user’s temperature
reference, temperature control and heating SFs are charac-
terized (cf. Table II).

Table II
CHARACTERIZATION OF TRAIN CAR TEMPERATURE CONTROL

Main Function PhysicalLocation Subfunction Implementation

Temperature
Control

Car1.ZoneA

MeasureTemp SensorA

RefTemp RefButtonA

TempControlAlgorithm PID Control

Heating HeaterA

Car1.ZoneB

MeasureTemp SensorB

RefTemp RefButtonB

TempControlAlgorithm PID Control

Heating HeaterB

If we proceed to model all functions, heterogeneous re-
sources are systematically identified. This process consist of
matching SF and PL tokens, in order to identify compatible
resources.

B. Identification of Possible Redundancies

The layered modelling of functions, resources and physi-
cal locations allows identifying inherent redundancies from
multiple system functionalities. The systematic utilization of
the described modelling process permits gathering initially
different, but suitable, functions.

For instance, consider MF1 for both compartments (zone
A, B) of the train car (cf. Table II). Redundancies may
appear at input and control SFs. Input redundancies originate
from the utilization of a single temperature sensor for differ-
ent zones. Similarly, contiguous compartment temperature
reference values can be used to provide a degraded, but
acceptable, subfunction. Control SFs may be implemented
on any PU depending on its capabilities (e.g., memory,
execution time).

Once heterogeneous resources and possible redundancies
are identified, a strategy to avoid single point of failures
(SPOFs) could be to add homogeneous resources. As an
example, consider the management of heterogeneous re-
sources at the actuator level. Unless actuators are supplied
with explicit redundancies or compatible functions actuate
in a shared physical space, heterogeneous resources become
infeasible. Heating SF is not replaceable due to the lack of
suitable SFs within the same space. In these cases, homo-

geneous resources should be supplied in order to provide
switch over capabilities.

C. Resource Allocation

When analysing the resource allocation for MF1, some
architectural assumptions are made for exemplifying how
to customize the approach to a fully distributed system. It
is considered that sensors, user temperature references and
actuators are distributed in such a way, that they need a PU
in order to reach the rest of components using a network
communication protocol.

Additionally, even if for the purposes of this example
communication, fault detection and reconfiguration failures
are not considered, we are expanding the modelling of
functions and resources to include them. The idea we are
developing is to attach fault detection algorithms to each
subfunction so that component and communication failures
can be detected. We also need to attach reconfiguration
algorithms to each main function, which are responsible for
changing the homogeneus/heterogeneus resources using the
aforementioned fault detection outcomes.

Consequently, one sensor, one reference button, three PUs
and a heater connected through a communication network
constitute the nominal configuration for the train car temper-
ature control for each zone (cf. Figure 3). Each PU allocates
different control algorithms so as to assure functionalities
in case of input subfunction failures: Open Loop (OL)
algorithm manages the omission of temperature measure-
ment and a default Set Point (SPA) enables handling user’s
temperature reference failure. Each SF must be allocated to
the available resources. To do this, the model defined in
Subsection IV-A needs to be completed in order to address
the resource allocation decisions:

MF1.Car1.ZoneA.MeasureTemp.SensorA
MF1.Car1.ZoneA.MeasureTemp.SensorB
MF1.Car1.ZoneA.RefTemp.RefButtonA
MF1.Car1.ZoneA.RefTemp.RefButtonB

MF1.Car1.ZoneA.RefTemp.SPA.PUA1,A2,A3
MF1.Car1.ZoneA.TempControlAlgorithm.PID.PUA1,A2

MF1.Car1.ZoneA.TempControlAlgorithm.OL.PUA3
MF1.Car1.ZoneA.Heating.HeaterA

From the previous model, we can observe that there is
only one implementation for the Heating SF and therefore,
we can deduce that it is a SPOF. This method allows an
straightforward identification of SPOFs.

D. Inference Process and Reconfiguration

Once resource allocation decisions have been adopted,
this approach enables the extraction of alternative system
configurations. For instance, for MF1 in the train car, the
system configurations transit from nominal (N) configu-
rations, in which the initial resources are working (W)
correctly, to degraded configurations. These configurations
allow handling for example the failures of sensorA (Da),
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both sensors (Db), reference buttonA (Dc) and both reference
button failures (Dd). Further degradation occurs when the
communication network fails (De). These configurations are
illustrated in the Table III. Note that the purpose of this
example is not to provide an exhaustive analysis of all
existing configurations, but rather we want to illustrate a
subset of these configurations, to show the application of
the method without losing its generality.

Table III
CONFIGURATION EXAMPLES FOR ZONE A

Compatible Tokens: Implementations N Da Db Dc Dd De

MF1.Car1.ZoneA.MeasureTemp.SensorA W F F W W F

MF1.Car1.ZoneA.MeasureTemp.SensorB W F F

MF1.Car1.ZoneA.RefTemp.RefButtonA W W W F F F

MF1.Car1.ZoneA.RefTemp.RefButtonB W F F

MF1.Car1.ZoneA.RefTemp.SPA.PUA2 W F

MF1.Car1.ZoneA.RefTemp.SPA.PUA3 W

MF1.Car1.ZoneA.TempControlAlg.PID.PUA1 W W W W F

MF1.Car1.ZoneA.TempControlAlg.OL.PUA3 W W

MF1.Car1.ZoneA.Heating.HeaterA W W W W W W

We need to assign priorities to each implementation for
the SF components. This allows an automated generation
of configurations in the case of failure occurrences, e.g.,
the priorities for the MeasureTemp SF for MF1.Car1.ZoneA
would be {SensorA, SensorB}.

Figure 3 shows the network and the data flow between
different PUs. The thick lines represent the physical mea-
surements of the sensors. The solid lines represent the
data transfers in nominal operation mode. The dashed lines
represent data transfers in a degraded operation mode when
PUA1 and PUB1 fail. Finally, the dotted lines with empty
arrowheads represent the data transfers in a degraded oper-
ation mode when PUA1, PUB1, PUA2 and PUB2 fail. In this
configuration, PUA3 and PUB3 manage the temperature using
OL algorithms and default reference temperature values.

ZoneA ZoneBCar1

SensorA UserRefA UserRefB SensorB

PUA1 PUA2 PUB2 PUB1

Network

PUA3

HeaterA

PUB3

HeaterB

Figure 3. Train Car Logical Reconfiguration Topology

V. CONCLUSION AND FUTURE WORK

In this paper, a dependable design strategy has been
sketched. Dedicated replication of system components sat-
isfy the avoidance of SPOFs. However, in some environ-
ments it is feasible and desirable to make use of existing

resources so that other compatible functions are supplied
with heterogeneous resources (e.g., trains, buildings).

Identification and implementation of the proposed recon-
figuration strategies will incur an extra cost. However, for
a given dependability level, this approach would reduce the
overall system hardware cost as heterogeneous resources are
systematically identified. Note that this is only true in the
previously mentioned environments.

We are developing the approach to support fault detection
and reconfiguration. This will complete the method and we
will be able to evaluate the dependability gains and cost
trade-offs of this approach. Kazman et al. [9] propose a
trade-off analysis method, which enable the architectural
dependability-cost evaluation. This method could be inte-
grated with this approach. The final goal is to obtain a
complete method, where a quasi-optimal solution is obtained
in a massively networked scenario.

In the cases where the dependability is critical, greater
architectural details should be considered (e.g., power sup-
plies, communication routes). This would allow evaluating
the needed homogeneus/heterogeneous resources.
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