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Abstract—The rapid development of high-speed networks has
created a massive amount of data. Storing and mining such data
is of great research value. Knowledge graphs and graph databases
have widely been studied and applied as an effective means
to mine the associated data in the past few years. Provenance
graphs provide powerful ways to observe the changes in a graph,
especially in graph analysis. The update operation will produce
massive provenance graphs from a given graph as time goes on. It
is a challenge to store and query these massive provenance graphs
efficiently. Meanwhile, the query performance itself must be
guaranteed. To address this challenge, this paper presents a graph
database storage engine called T-GDB (Temporal dimension -
Graph Database). This system binds the topology of the graph
to each vertex in the graph and rebuilds the graph in real-
time when analyzing the graph. T-GDB can analyze the changes
in a graph over time and can also access the provenance of
the specified graph through the index tree. T-GDB can support
these application scenarios such as the knowledge reasoning
of knowledge graphs and the information mining for specified
graphs. This paper describes the format of data storage, the
index, and the implementation of this system. Finally, this paper
compares the proposed graph database storage engine to several
existing mainstream graph databases to verify the feasibility and
efficiency of this design. Our experimental results demonstrate
that the proposed graph database storage engine has better
performance and more efficient graph analysis than existing
methods.

Keywords–Graph Database; Graph Analytics and Storage;
Provenance Graphs.

I. INTRODUCTION

In the age of big data, big graph analysis has widely been
studied in recent years because of its many applications in a
wide variety of practical fields. Many algorithms of graph com-
puting are NP-hard (non-deterministic polynomial-time hard)
problems such as Graph Partition [1]. It is challenging to study
how to store graph-structured data and reduce the computing
latency for graph computing. As a research field of artificial
intelligence, knowledge graphs [2] play an important role in
intelligent data analysis. Knowledge graphs can be stored in
Resource Description Framework (RDF) [3], XML (Extensible
Markup Language) [4], or other formats. Property graphs [5]
(see Figure 2) are also effective data models for applying
knowledge mining in graph databases. Graph databases can
efficiently query the properties attached to vertices and edges
of the graph, while RDF is less effective at doing that. NoSQL
(Not Only Structured Query Language) databases have several
storage types: Key-Value like Redis Graph [6], Document like
CouchDB [7], Column-oriented like Bigtable [8] and graph

database like Neo4j [9]. Therefore, graph database is one type
of NoSQL databases. However, existing graph databases still
employ several storage formats. In this paper, the storage
format of the storage engine is similar to Key-Value. The
simple statement queries of graph databases do not care much
about the memory usage. However, memory usage is vital for
graph analysis because it always traverses the whole graph.
To address this, Trinity [10] presented an optimized memo-
ry management for graph-structured models. Although graph
databases have great advantages in dealing with relationships
between data, graph indexing [11] is also necessary to speed
up graph computing. This paper’s contributions are as follows:

• Propose a unique tree-structured index for provenance
graphs and an efficient graph storage model for graph
traversal.

• Provide a storage engine architectural design. This
system can read, write and analyze the graph-
structured data conveniently and quickly.

The rest of this paper is structured as follows. This paper
describes the background of the system and the related work in
Section II. In Section III, this paper details the storage format
of the system, both in memory and on the disk. In Section IV,
this paper provides the architecture and implementation of the
system. This paper discusses the performance of T-GDB and
compares the results with other graph databases in Section V.
This paper discusses the future work related to the research in
Section VI.

II. BACKGROUND AND RELATED WORK

In many existing graph databases, the changes in a graph
over time can not be queried. Graph databases usually deal
with the relationships between data. However, many exist-
ing graph databases can not do anything about the relevant
causality of data. For example, the process of knowledge
reasoning will produce the relevant causality of data. Data
provenance has widely been studied in the field of databases.
Provenance graphs provide powerful ways to analyze the
graph-structured data like Ariadne [12]. However, developers
did not specially design effective storage for provenance graphs
in graph databases. Knowledge mining must be considered
in our system. Knowledge mining can mine the potential
information of the graph-structured data and can also deduce
new knowledge through knowledge mining algorithms. Cook
et al. [13] present the details of many kinds of graph mining
algorithms. In the research field of knowledge graphs, DBpedia
[14] is the leader in knowledge storage. Freebase [15] is
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a graph database for building human knowledge. However,
these previous studies can not query provenance graphs. Many
existing graph databases can also not query knowledge graphs
or lack support for knowledge mining. There are some major
graph databases, such as Neo4j, TigerGraph [16] and Janus-
Graph [17]. These major graph databases are not suitable
for storing knowledge graphs or provenance graphs. Neo4j
uses an orthogonal list to represent the graph-structured data.
JanusGraph uses an adjacency matrix to represent the graph-
structured data. However, T-GDB uses an array to represent
the graph-structured data. Neo4j uses the ID of vertices or
edges as the graph indexing. Neo4j reads the graph-structured
data from disk through the graph indexing. JanusGraph uses
the Key-Value to read the graph-structured data from disk.
These existing graph databases can not compactly store the
graph-structured data according to the characteristics of graph.
The compact storage can help graph databases read the graph-
structured data from disk sequentially. T-GDB provides a
special design for compact storage. The final goal of T-GDB
is to meet both OLAP (On-Line Analytical Processing) and
OLTP (On-Line Transaction Processing) requirements.

1

2

43

5

6

7

1 43 5 72 6
Time

Figure 1. The logical relationship of provenance graphs.

Knowledge reasoning [18] is a key technology in knowl-
edge graphs. Knowledge graphs deduce new knowledge over a
given graph according to different rules. Knowledge reasoning
may need to access the provenance of the specified graph and
reason repeatedly. That (see Figure 1) is a good explanation for
provenance graphs. Pugliese et al. [18] proposed a temporal
RDF model. Lu et al. [19] proposed a temporal data storage
based on TDSQL. Time is a key metadata to query the changes
in data according to [18] and [19]. Leskovec et al. [20] describe
the changes in graph over time. Knowledge reasoning can
form the logical relationship of provenance graphs (shown in
Figure 1) according to the above studies. Each node of the
tree-structure represents an index file for the special graph.
Time properties are also important for the graph databases to
observe the subtle changes in a graph.

III. DATA MODEL

The storage engine uses property graphs as the data model
in this paper. Property graphs are directed graphs consisting
of vertices, edges, and properties (see Figure 2). Labels and
relationship types are particular properties of vertices and
edges, respectively. Graph queries can filter out a lot of useless
data according to labels and relationship types. The time is

also a unique property in our storage engine. Because these
particular properties always play an essential role in graph
query, our storage engine stores them in different formats. This
storage engine has mainly two parts: memory storage format
and disk storage format. This paper will describe them in detail
below.
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Figure 2. An example of property graphs.

A. Memory Storage Format
Many existing graph databases usually use adjacency lists

or cross lists to store the graph-structured data. However, we
use arrays to store the graph-structured data in this paper.
Every vertex and edge of property graphs has a fixed-length
byte in arrays. Each vertex accesses its neighbors through
the array address. The time complexity is O(1) when this
system traverses property graphs. The storage format is an
excellent benefit for graph queries. Because all delete, update,
and insert operations of our graph database are done in an
append manner, this system has no restrictions on storing
graph-structured data in arrays. The graph has three parts:
vertices, edges, and topologies. The graph-structured data will
be serialized from disk to memory when graph queries need to
access the specified graph. However, simple graph queries can
get data directly through graph indexing without rebuilding the
graph.

TABLE I. THE STRUCTURE OF THE VERTEX.

type: uint32 uint32 uint32 uint32
vertex array: Pid+VertexId TopoOffset Flag+OEOffset Time

The structure of the vertex is shown in Table I. All vertices
of a graph are stored in a vertex array. Each vertex has a fixed-
length byte in the vertex array. The Pid is short for partition id.
Because a big graph will be divided into many subgraphs, the
partition id is the id of one subgraph. The VertexId is a unique
vertex number in one subgraph. The TopoOffset (Topology
Offset) is the topology index of topology array. The Flag field
is reserved for particular purposes. The OEOffset (OutEdge
Offset) is an offset relative to TopoOffset. This system needs
to distinguish incoming edges and outcoming edges by the
OEOffset. The Time is a property of the vertex. This system
can observe the subtle changes in a graph through the Time.
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Figure 3. The framework of T-GDB.

TABLE II. THE STRUCTURE OF THE EDGE.

type: uint32 uint32 uint32 uint32 uint32
edge array: Pid+SrcId Flag+DistId EdgeId RelType Time

The structure of the edge is shown in Table II. All edges
of a graph are stored in an edge array. Each edge has a fixed-
length byte in the edge array. The SrcId and DistId are the id of
source and destination of the edge, respectively. They are the
vertex index of vertex array. This system will assign a unique
EdgeId number to each edge. The EdgeId is the edge index
of edge array. Relationship types and labels will be stored in
a dictionary mode. The RelType is the dictionary number in
edge array.

TABLE III. THE STRUCTURE OF THE TOPOLOGY.

type: uint32 uint32 uint32 uint32 uint32
topo array: VertexId Flag Label OutEdgeId InEdgeId

Vertex Struct Prop_key

Edge Struct Prop_key

Topology Struct

...

Graph Block HeadProptery Block Head

Prop_value

Prop_value

Prop_value

...

Figure 4. Left is the storage of the graph, and Right is the properties of the
graph.

The structure of the topology is shown in Table III. The
topo array is an array containing all topologies of a graph. The
Label is the dictionary number of labels. The OutEdgeId is the
id of outcoming edges. The InEdgeId is the id of incoming

edges. The topology is attached to the vertex. The state of
topologies will be changed depending on the state of vertices
and edges. Meanwhile, this system can finish graph queries
within a limited time through the topology structure.

B. Disk Storage Format
The graph-structured data is stored in 4G-sized file blocks

(see Figure 4). The size of file blocks is 4G because of the
uint32 type. Meanwhile, our system will merge data on disk
periodically to speed up graph queries. It is also beneficial
to implement multiple replicas with 4G-sized file blocks. The
latest file block holds the newest data because new data is
appended to the existing one. The period information of file

Index Head

VertexId+Time Block+offset

EdgeId+Time Block+offset

Topo_flag Block+offset

...

Figure 5. The index files.

blocks can help this system speed up searching provenance
graphs. This system can directly access the properties of
vertices and edges through the prop key.

C. Index File
In this system, there is a unique index for provenance

graphs. There are parallel meanings and chronological order
between provenance graphs, according to the Figure 1. Our
storage engine stores the relationship between provenance
graphs in a multi-fork tree. Each node of the multi-fork tree
is an index file. An index file may be full or incremental
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index for a graph. The head of index file has some important
basic informations. This system can directly access the graph-
structured data through index files (see Figure 5). Index files
play a crucial role in building the graph or accessing partial
graph. Index files are compressed to reduce storage overhead
according to the contents of index files.

IV. IMPLEMENTATION

In this section, this paper details our storage engine im-
plementation written in C++ (see Figure 3). The core design
of our system reflects the features of provenance graphs. So
far, we have only implemented a stand-alone system. In future
work, we will implement a distributed graph database with
the ability to handle large-scale storage and graph computing.
The architecture of our storage engine is straightforward.
The architecture has three major parts: reading, writing and
merging the graph-structured data. The components of this
system are described in detail below.

1) Index Tree: The index tree is a critical component in
our storage engine. Each node of the index tree includes an
index file and the basic informations of provenance graphs.
The path from the root node to the leaf node in the index tree
represents the changes of provenance graphs. There are two
storage forms for index files. One is the incremental index
based on the parent index file. The other is the full index for
a graph. The form of index files depends on the changes of
provenance graphs. It takes a little time to read index files
because of the serialization of index files. The index tree is
beneficial for this system to observe the changes of provenance
graphs base on the timeline.

2) Updating and Building Graph: Although the graph-
structured data is updated by appending data, there is still
a memory buffer for a graph named Incremental graph. The
Incremental graph sorts the graph-structured data according to
the time in memory and puts the graph-structured data on disk.
The Incremental graph can store the same provenance graphs
together. It can reduce the reading time by reading data in
micro blocks. Meanwhile, the update operation must be logged
to ensure that the data can be recovered in the event of a system
crash.

Simple statement queries typically access a part of the
graph. This system can finish simple statement queries by the
index of vertices or edges. This system reads the particular
provenance graphs in micro blocks according to index files.
The size of micro blocks depends on the distribution informa-
tion of graph-structured data on disk. This system can batch
load the graph when it needs the whole graph. Our storage
engine is also very efficient for graph computing.

3) Merge Block: There will be hot and cold data because of
the graph changes based on the timeline. The fragmented data
of a graph is distributed across many file blocks. Therefore,
this system will regularly merge the data of a particular graph
on disk. The merge operation does not affect the previous
provenance graphs. At the same time, this system removes
the unused graph-structured data to increase disk utilization.
The merge operation is very effective for reading data.

V. PERFORMANCE EVALUATION

In the section, this paper presents experiments to demon-
strate the performance of the proposed system. These experi-
ments were based on a machine with Intel(R) Xeon(R) CPU

e5-2603@1.80GHz, ubuntu 16.04.10 server, 96GB RAM, and
300G SSD (DELL PERC H310 2.12). Because this system
is only a stand-alone version now in this paper, all of the
following experiments were tested on a single-core CPU to
achieve fairness.

The datasets having Graph500 [21] and com-Orkut [22]
for experiments are from the website of public datasets (see
Table IV). This paper performed the experiments according
to the benchmark of TigerGraph [23]. Neo4j, TigerGraph,
and JanusGraph were compared in the following experiments.
The version of Neo4j is community-3.4.17. The version of
TigerGraph is 2.5.0-developer. The version of JanusGraph is
0.2.1-hadoop2. This paper evaluates the performance of each
system according to three query types:

TABLE IV. THE INFORMATION OF DATASETS

data: vertices edges Description
Graph500 2396019 67108864 Synthetic Kronecker Graph
com-Orkut 3072441 117185083 Orkut online social network

A. The common query in graph database
The most common queries are the one-hop traversal of the

graph in graph databases. It means that the one-hop traversal
operation is executed from a source vertex to destination vertex
through the edge. Then queries can access the properties of
vertices or edges during one-hop traversal. The other common
query is the three-hop traversal of the graph. However, it puts
more pressure on the system.

This paper made ten thousand initial vertices to Graph500
and five hundred thousand initial vertices to com-Orkut in
one-hop traversal, respectively. Figure 6(a) and Figure 6(b)
are the result of a one-hop traversal query for Graph500 and
com-Orkut, respectively. Because the three-hop traversal can
almost traverse the whole graph, this experiment only made
ten initial vertices to Graph500 and com-Orkut in three-hop
traversal. Figure 7(a) and Figure 7(b) are the result of a three-
hop traversal query for Graph500 and com-Orkut, respectively.
It can seen that our system has an absolute advantage in the
one-hop query of Graph500 and com-Orkut from Figure 6.
Because our system does not have a cache yet, a vertex or edge
will be reread from disk each time. TigerGraph has a built-in
memory component that benefits from its data compression
technology to reduce the overhead of disk. Therefore, our
system is a little bit slower than TigerGraph in the three-hop
traversal query. However, our system still has more advantages
than the comparative databases.

B. The graph analysis
There are many complex queries, such as PageRank, SSSP

(Single Source Shortest Path), WCC (Weighted Community
Cluster). This experiment chose the classic PageRank [24]
algorithm. Figure 8 and Figure 9 are the results of the
PageRank query for Graph500 and com-Orkut, respectively.
It can see from Figure 8 and Figure 9 that our system still has
a great advantage in graph computing.

C. The query of provenance graphs
Our system has better performance in graph queries and

graph analysis from the above experimental results. Different
knowledge graphs can be deduced according to different rules
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Figure 6. (a): The average response time of one-hop query for Graph500. (b): The average response time of one-hop query for com-Orkut.
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Figure 7. (a): The average response time of three-hop query for Graph500. (b): The average response time of three-hop query for com-Orkut.
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Figure 8. The finish time of PageRank having 10 iterations in graph500, Test
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in knowledge reasoning. The subtle changes of the graph
can be observed through time properties. Because other graph
databases do not support this kind of queries, the paper only
does this queries experiment on our system. The experiment
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Figure 9. The finish time of PageRank having 10 iterations in com-orkut,
Test three times.

reads different provenance graphs from massive provenance
graphs. For example, the Gaph500 produces many provenance
graphs over a period of time (see Figure 1). This system
randomly updates the time properties of vertices or edges
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without changing the size of the Graph500.
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Figure 10. The cost of getting the different provenance graph.

The result of the query is shown in Figure 10. The costs are
almost the same when this system reads different provenance
graphs. The performance of our system does not change with
the amount of data and the length of time, only with the size of
the graph. Meanwhile, this system can detect partial changes
of the graph through the time properties. This experiment
demonstrates that the storage engine is useful for storing
provenance graphs in this paper.

VI. CONCLUSION AND FUTURE WORK

In this work, this paper proposed T-GDB, a high-
performance graph database storage engine for provenance
graphs. This system has a unique design to store provenance
graphs efficiently without affecting the performance of graph
queries and graph computing. We presented the index tree to
apply the function of the provenance graphs. In this system,
both index and data are stored in an append mode. The append
mode is effective to observe the changes in a graph over time.
Meanwhile, time plays a critical role to observe subtle changes
in a graph. Although our system does not fully support the
applying function of the time-series databases, it is a key to
support the graph query that having time properties. Another
critical point is that our system can support writing effectively
because of updating the data in an appended mode.

In future work, we will focus on implementing a distributed
graph database. We will ensure the data fault tolerance and the
consistency of the distributed graph database. Meanwhile, we
will support the application needs of artificial intelligence as
much as possible.
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