Strongly Possible Keys in Incomplete Databases with Limited Domains

Munqath Alattar
Department of Computer Science and Information Theory
Budapest University of Technology and Economics Budapest, Hungary
Email: m.attar@cs.bme.hu

Attila Sali
Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
Budapest, Hungary
Email: sali.attila@renyi.mta.hu

Abstract

Missing values that may occur in the key attributes of a database table is an extensive problem and handling it is an important and challenging task, as the records need to contain distinct and total values in their key part. The existing effective approaches include an imputation operation for each occurrence of a null in the key part of the data. In this paper, we assume the situation when the attributes domains are not known. For that, a new concept of keys called strongly possible keys in databases with null values is introduced. It lies between possible keys and certain keys introduced by Köhler et. al. earlier. The definition uses only information extractable from the database table. Furthermore, an approximation concept of the strongly possible key is provided.

Keywords-Strongly possible keys; null values; approximation of keys.

I. Introduction

A basic approach to treat null values in keys of relational databases is an imputation operation for each occurrence of a null in the key part of the data with a value from the attribute domain as explained by [1]. We investigate the situation when the attributes' domains are not known. For that, we only consider what we have in the given data and extract the values to be imputed from the data itself for each attribute so that the resulting complete dataset after the imputation would not contain two tuples having the same value in their key. Köhler et al. [1] used possible worlds by replacing each occurrence of a null with a value from the corresponding attribute's (possibly infinite) domain. They defined a possible key as a key that is satisfied by some possible world of a non total database table and a certain key as a key that is satisfied by every possible world of the table. In many cases, we have no proper reason to assume existence of any other attribute value than the ones already existing in the table. Such examples could be types of cars, diagnoses of patients, applied medications, dates of exams, course descriptions, etc. We define a strongly possible key as a key that is satisfied by some possible world that is obtained by replacing each occurrence of null value from the corresponding attribute existing values. We call this kind of a possible world a strongly possible world. This is a data mining type approach; our idea is that we are given a raw table with nulls and we would like to identify possible key sets based on the data only.

The remainder of the paper is organized as follows. In Section 2, some definitions are stated. In Section 3, strongly possible keys, their discovery, and characterization of the implication problem of systems of strongly possible keys are
provided. Approximation measures are studied in Section 4. Section 5 presents concluding remarks and future research directions.

II. Definitions

Let $R=\left\{A_{1}, A_{2}, \ldots A_{n}\right\}$ be a relation schema. The set of all the possible values for each attribute $A_{i} \in R$ is called the domain of A_{i} and referred as $D_{i}=\operatorname{dom}\left(A_{i}\right)$ for $i=$ $1,2, \ldots n$. And if $X \subseteq R$ then $D_{X}=\prod_{K} D_{i}$. An instance $T=\left(t_{1}, t_{2}, \ldots t_{s}\right)$ over R is a set of tuples that each tuple is a function $t: R \rightarrow \bigcup_{A_{i} \in R} \operatorname{dom}\left(A_{i}\right)$ and $t\left[A_{i}\right]$ is in the $\operatorname{dom}\left(A_{i}\right)$ for all A_{i} in R. For a tuple $t_{r} \in T$, let $t_{r}\left[A_{i}\right]$ be the restriction of the $r^{t h}$ tuple of T to A_{i}.

In practice, data models may contain an unknown information about the value of some tuple $t_{j}\left[A_{i}\right]$ for $j=0,1, \ldots s$ that is denoted by $\perp . t_{1}$ and t_{2} are weakly similar on $X \subseteq R$ denoted as $t_{1}[X] \sim_{w} t_{2}[X]$ as defined by Köhler [1] if:

$$
\forall A \in X \quad\left(t_{1}[A]=t_{2}[A] \text { or } t_{1}[A]=\perp \text { or } t_{2}[A]=\perp\right)
$$

Furthermore, t_{1} and t_{2} are strongly similar on $X \subseteq T$ denoted by $t_{1}[X] \sim_{s} t_{2}[X]$ if:

$$
\forall A \in X \quad\left(t_{1}[A]=t_{2}[A] \neq \perp\right)
$$

For the sake of convenience, we write $t_{1} \sim_{w} t_{2}$ if t_{1} and t_{2} are weakly similar on R and the same for strong similarity. For a null-free table, a set of attributes $K \subset R$ is a key if there are no two distinct tuples in the table that share the same values in all the attributes of K :

$$
t_{a}[K] \neq t_{b}[K] \forall 0 \leq a, b \leq s \text { such that } a \neq b
$$

The concepts of possible and certain keys were defined by Köhler et al [1]. Let $T^{\prime}=\left(t_{1}^{\prime}, t_{2}^{\prime}, \ldots t_{s}^{\prime}\right)$ be a table that represents a total version of T which is obtained by replacing the occurrences of \perp in all attributes $t\left[A_{i}\right]$ with a value from the domain D_{i} different from \perp for each $i . T^{\prime}$ is called a possible world of T . In a possible world $T^{\prime}, t_{i}^{\prime}$ is weakly similar to t_{i} and T^{\prime} is completely null-free table. A possible key K denoted as $p\langle K\rangle$, is a key for some possible world T^{\prime} of T, so that:

$$
t_{1}^{\prime}[K] \neq t_{2}^{\prime}[K], \quad \forall t_{1}^{\prime}, t_{2}^{\prime} \in T^{\prime}
$$

Similarly, a certain key K referred as $c\langle K\rangle$, is a key for every possible world T^{\prime} of T. The visible domain of an
attribute $A\left(V D_{A}\right)$ is the set of all distinct values except \perp that are already used by tuples in T :

$$
V D_{i}=\left\{t\left[A_{i}\right]: t \in T\right\} \backslash\{\perp\} \text { for } A_{i} \in R
$$

The term visible domain refers to the data that already exist in a given dataset. For example, if we have a dataset with no information about the attributes' domains definitions, then we use the data itself to define their own structure and domains. This may provide more realistic results when extracting the relationship between data so it is more reliable to consider only what information we have in a given dataset.

A possible world T^{\prime} is called strongly possible world if $T^{\prime} \subseteq V D_{1} \times V D_{2} \times \ldots \times V D_{n}$.

A subset $K \subseteq R$ is a strongly possible key (in notation $s p\langle K\rangle$) in T if \exists a strongly possible world $T^{\prime} \subseteq V D_{1} \times$ $V D_{2} \times \ldots \times V D_{n}$ such that K is a key in T^{\prime}.

III. Results

Table I implies $s p\langle A B\rangle$ as a strongly possible key because there is a strongly possible world in Table II where $A B$ is a key. On the other hand, Table I implies neither $s p\langle A C\rangle$ nor $s p\langle B C\rangle$ because there is no strongly possible world T^{\prime} that has $A C$ or $B C$ as keys.

TABLE I. A DATASET WITH NULLS

A	B	C	D
3	2	\perp	0
15	1	2	10
\perp	2	2	\perp

TABLE II. A STRONGLY POSSIBLE WORLD OF TABLE I

A	B	C	D
3	2	2	0
15	1	2	10
15	2	2	10

Let Σ be a set of strongly possible keys and θ a single strongly possible key over a relation schema R. Σ logically implies θ, denoted as $\Sigma \models \theta$ if for every instance T over R satisfying every strongly possible key in Σ we have that T satisfies θ.

Theorem 1: $\Sigma \models s p\langle K\rangle \Longleftrightarrow \exists Y \subseteq K$ s.t. $s p\langle Y\rangle \in \Sigma$.
Proof: $\Leftarrow: \exists T^{\prime}$ s.t. $t_{i}^{\prime}[Y] \neq t_{j}^{\prime}[Y], \forall i \neq j$, so $t_{i}^{\prime}[K] \neq$ $t_{j}^{\prime}[K], \forall i \neq j$ holds, as well.
\Rightarrow : Suppose indirectly that $\operatorname{sp}\langle Y\rangle \notin \Sigma \forall Y \subseteq K$. Consider the following instance consisting of two tuples $t_{1}=$ $(0,0, \ldots, 0), t_{2}[K]=(\perp, \perp, \ldots, \perp)$, and $t_{2}[R \backslash K]=$ $(1,1, \ldots 1)$ as in Table III . Then, the only possible t_{2}^{\prime} in T^{\prime} is $t_{2}^{\prime}(0,0, \ldots, 0,1,1, \ldots, 1)$. Furthermore, $\forall Z$ where $s p\langle Z\rangle \in \Sigma$, there must be $z \in Z \backslash K$, thus $t_{1}^{\prime}[Z] \neq t_{2}^{\prime}[Z]$ but $t_{1}^{\prime}[K]=t_{2}^{\prime}[K]$ showing that $\left(t_{1}, t_{2}\right)$ satisfies every strongly possible key constraints from Σ, but does not satisfy $s p\langle K\rangle$.

TABLE III. INCOMPLETE DATA INSTANCE

Note 1: If $\Sigma \models \neg s p\langle K\rangle$ and $Y \subseteq K$ then $\Sigma \models \neg s p\langle Y\rangle$.

Note 2: If $\Sigma \models \operatorname{sp}\langle K\rangle$, then $\Sigma \models p\langle K\rangle$ but the reverse is not necessarily true, since $D_{K} \supseteq V D_{K}$ could be proper containment so K could be made a key by imputing values from $D_{K} \backslash V D_{K}$. For example, in Table III, it is shown that $\neg s p\langle K\rangle$ holds, but $p\langle K\rangle$ may hold in some T^{\prime} if there is at least one other value in the domain of K rather than the zeros to be placed instead of the nulls in the second tuple so that $t_{1}^{\prime}[K] \neq t_{2}^{\prime}[K]$ results.

Note 3: If $\Sigma \models c\langle K\rangle$, then $\Sigma \models s p\langle K\rangle$. As certain keys hold in any possible world, they hold also if this possible world is created using visible domain.

Note 4: For a single attribute $A, s p\langle A\rangle \Longleftrightarrow t[A] \propto_{w}$ $t^{\prime}[A] \forall t, t^{\prime}$ s.t. $t \neq t^{\prime}$, i.e., if there are no nulls occurrences in A.

In other words, a single attribute with a null value cannot be a strongly possible key. That is because replacing an occurrence of null with a visible domain value results in duplicated values for that attribute.

Let us consider a schema $R=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ and let $\mathcal{K}=\left\{K_{1}, K_{2}, \ldots K_{p}\right\}$ be a collection of attribute sets and $T=\left\{t_{1}, t_{2}, \ldots, t_{s}\right\}$ be an instance with possible null occurrences. Our main question here is whether $\Sigma=$ $\left\{s p\left\langle K_{1}\right\rangle, s p\left\langle K_{2}\right\rangle, \ldots, s p\left\langle K_{p}\right\rangle\right\}$ holds in T ? Let $E_{i}=\left\{t^{\prime} \in\right.$ $\left.V D_{1} \times V D_{2} \times \ldots \times V D_{n}: t^{\prime} \sim_{w} t_{i}\right\}$. Let $S \subseteq V D_{1} \times V D_{2} \times$ $\ldots \times V D_{n}$ be the union $S=E_{1} \cup E_{2} \cup \ldots \cup E_{s}$ and define bipartite graph $G=(T, S ; E)$ by $\left\{t, t^{\prime}\right\} \in E \Longleftrightarrow t \sim_{w} t^{\prime}$ for $t \in T$ and $t^{\prime} \in S$. Let $\left(S, \mathcal{M}_{0}\right)$ be the transversal matroid (see [2]) defined by G on S, that is a subset $X \subseteq S$ satisfies $X \in \mathcal{M}_{0}$ if X can be matched into T. Furthermore, consider the partitions

$$
\begin{equation*}
S=S_{1}^{j} \cup S_{2}^{j} \cup \ldots \cup S_{p_{j}}^{j} \tag{1}
\end{equation*}
$$

induced by K_{j} for $j=1,2, \ldots, p$ such that S_{i}^{j},s are maximal sets of tuples from S that agree on K_{j}. Let $\left(S, \mathcal{M}_{j}\right)$ be the partition matroid given by (1). We can formulate the following theorem.

Theorem 2: Let T be an instance over schema $R=$ $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ and let $\mathcal{K}=\left\{K_{1}, K_{2}, \ldots K_{p}\right\}$ be a collection of attribute sets. $\Sigma=\left\{s p\left\langle K_{1}\right\rangle, s p\left\langle K_{2}\right\rangle, \ldots, s p\left\langle K_{p}\right\rangle\right\}$ holds in T if and only if the matroids $\left(S, \mathcal{M}_{j}\right)$ have a common independent set of size $|T|$ for $j=0,1, \ldots p$

Proof: An independent set T^{\prime} of size $|T|$ in matroid (S, \mathcal{M}_{0}) means that tuples in T^{\prime} form a strongly possible world for T. That they are independent in $\left(S, \mathcal{M}_{j}\right)$ means that K_{j} is a key in T^{\prime}, that is $s p\left\langle K_{j}\right\rangle$ holds.

Conversely, if $\Sigma=\left\{s p\left\langle K_{1}\right\rangle, s p\left\langle K_{2}\right\rangle, \ldots, s p\left\langle K_{p}\right\rangle\right\}$ holds in T, then there exists a strongly possible world $T^{\prime}=$ $\left\{t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{s}^{\prime}\right\} \subseteq V D_{1} \times V D_{2} \times \ldots \times V D_{n}$ such that $t_{i} \sim_{w} t_{i}^{\prime}$. This means that $T^{\prime} \subseteq S$ and that T^{\prime} is independent in transversal matroid $\left(S, \mathcal{M}_{0}\right)$. sp $\left\langle K_{j}\right\rangle$ holds implies that tuples t_{i}^{\prime} are pairwise distinct on K_{j}, that is T^{\prime} is independent in partition matroid $\left(S, \mathcal{M}_{j}\right)$.

Unfortunately, Theorem 2 does not give a good algorithm to decide the satisfaction of a system Σ of strongly possible keys, because as soon as Σ contains at least two constraints, then we would have to calculate the size of the largest common independent set of at least three matroids, known to be an NPcomplete problem [3].

In case of a single strongly possible key $s p\langle K\rangle$ constraint, Theorem 2 requires to compute the largest common independent set of two matroids, which can be solved in polynomial time [4]. However, we can reduce the problem to the somewhat simpler problem of matchings in bipartite graphs.

If we want to decide whether $s p\langle K\rangle$ holds or not, we can forget about the attributes that are not in K since we need distinct values on K as a matching from $V D_{A_{1}} \times V D_{A_{2}} \times \ldots \times$ $V D_{A_{b}}$ to $T=\left.\left\{t_{1}, t_{2} \ldots t_{r}\right\}\right|_{K}$ where $K=\left\{A_{1}, A_{2} \ldots A_{b}\right\}$. Thus, we may construct a table T^{\prime} that is formed by finding all the possible combinations of the visible domains of $\left.T\right|_{K}$ that are weakly similar to some tuple in $\left.T\right|_{K}$.
$T^{\prime}=\left\{t^{\prime}: \exists t \in T: t^{\prime}[K] \sim_{w} t[K]\right\} \subseteq V D_{1} \times V D_{2} \times \ldots \times V D_{b}$
Finding the matching between T and T^{\prime} that covers all the tuples in T (if it exists) will result in the set of tuples in T^{\prime} that needs to be replaced in T so that K is a strongly possible key.

Let $c_{v}(A)$ denote the number of tuples that have value v in attribute A, that is $c_{v}(A)=|\{t \in T: t[A]=v\}|$. Next are some necessary conditions to have a strongly possible key.

Proposition 1: Let $K \subseteq R$ be a set of attributes. If $s p\langle K\rangle$ holds, then

1) No two tuples t_{i}, t_{j} are strongly similar in K.
2) $|T| \leq \prod_{\forall A \in K}\left|V D_{A}\right|$.
3) $\forall B \stackrel{\forall A \in K}{\in} K$, number of nulls in $B \leq$ $\sum_{\forall v \in V D_{B}}\left(\frac{\prod_{\forall A \in K}\left|V D_{A}\right|}{\left|V D_{B}\right|}-c_{v}(B)\right)$.
4) For all $v \in V D_{B}$ we have $c_{v}(B) \leq \frac{\prod_{\forall A \in K}\left|V D_{A}\right|}{\left|V D_{B}\right|}$

Proof: The first condition is obviously required so that K is a strongly possible key, where the strong similarity means that the two tuples are total and equal to each other in the key part and this violates the general key definition. In addition to that, for any set of attributes, the maximum number of distinct combination of their values is the size of the multiplication of their visible domain, and this proves (2). Moreover, to prove conditions (3) and (4), when K is $s p\langle K\rangle$ in T then there should exist a T^{\prime} with no two tuples having the same values in all K attributes after filling all their nulls. So for each set of tuples S that has the same value v in the attribute B, the number of distinct combinations of the other attributes is the multiplication of their $V D$'s, means the number of tuples in S should not be more than $\prod_{\forall A \in(K \backslash B)} V D_{A}$. Thus, the number of times value v can be used to replace a null in attribute B is at most $\frac{\prod_{\forall A \in K}\left|V D_{A}\right|}{V D_{B}}-c_{v}(B)$.

Note that $s p\langle K\rangle$ holds if a matching covering T exists in the bipartite graph $G=\left(T, T^{\prime} ; E\right)$ defined as above, $\left\{t, t^{\prime}\right\} \in$ $E \Longleftrightarrow t[K] \sim_{w} t[K]^{\prime}$. We can apply Hall's Theorem to obtain

$$
\forall X \subseteq T, \text { we have }|N(X)| \geq|X|
$$

for $N(X)=\left\{t^{\prime}: \exists t \in X\right.$ such that $\left.t[K]^{\prime} \sim_{w} t[K]\right\}$

IV. Strongly Possible Keys Approximation

To measure the degree of how much a strongly possible key holds in a given dataset, we use the g_{3} measure introduced in [5]. g_{3} is based on the idea that the degree to which $A S P$ key is approximate is determined by the minimum number of tuples
that need be removed from T so that K becomes an $A S P$ key. To find the tuples that we need to remove, we suggest to construct the maximum matching in graph $G=\left(T, T^{\prime} ; E\right)$.

$$
g_{3}(K)=\frac{|T|-\nu(G)}{|T|}
$$

where $\nu(G)$ denotes the maximum size of a matching in graph G.

Let \mathcal{M} be the collection of connected components in graph G that hold the strongly possible key condition, i.e., there is a matching cover all T tuples in that set $\left(\forall_{M \in \mathcal{M}} \nexists X \subseteq M \cap T\right.$ such that $|X|>N(X)$). Let $C \subseteq G$ be defined as $C=$ $G \backslash \bigcup_{\forall M \in \mathcal{M}} M$ and let \mathcal{M}^{\prime} be the set of connected components of C. In addition to that, we use the term V_{M} to denote the set of vertices of T in a component M. So, the maximum matching can be written as $\sum_{M \in \mathcal{M}}\left(\left|V_{M}\right|\right)+\sum_{\forall M^{\prime} \in \mathcal{M}^{\prime}} \nu\left(M^{\prime}\right)$. Therefore we can reformulate the g_{3} measure as:

$$
g_{3}(K)=\frac{|T|-\left(\sum_{M \in \mathcal{M}}\left(\left|V_{M}\right|\right)+\sum_{M^{\prime} \in \mathcal{M}^{\prime}} \nu\left(M^{\prime}\right)\right)}{|T|}
$$

Figure 2 shows 7 tables that represent the key part only of the data where each table has more than one attribute. Tables A, B and C have $2 n$ tuples, tables E and F have n tuples, and table D has $n+l$ tuples while table G has $k n$ tuples. Table D includes a variable $0 \leq \beta \leq \frac{n}{2}$. We intend to use these cases to illustrate the differences and give a bound of g_{3} / g_{3}^{c} where it is always true that $g_{3}-g_{3}^{c} \geq 0$. The graphs show the weak similarity relationship between the data tuples and the visible domains combinations. The visible domains combinations are shown on Figure 1. For example, in table A, the first two tuples of T in the left side of the graph can have a unique weakly similar tuples in T^{\prime} for each, while for the rest, every two tuples in T form a connected component that have only one weakly similar tuple in T^{\prime}. On other hand, all the tuples of table E form connected component of size n that have a weakly similar relation (matching) to one tuple in T^{\prime}.

Measuring the strongly possible keys approximation can be more appropriate by take into consideration the effect of each connected component in the graph on the matching. More specifically, \mathcal{M} represents the sets of tuples that do not require any tuple to be removed to get a strongly possible key, while the components of \mathcal{N}^{\prime} represent the sets of tuples that contain some tuples which need to be removed to have a strongly possible key. We consider the components of \mathcal{M} to get their effect doubled in the approximation measure because they represent a part of the data that is not affected by any tuples removal. So, we propose a derived version of g_{3} measure named g_{3}^{c} that considers the effects of these components.

$$
g_{3}^{c}(K)=\frac{|T|-\left(\sum_{M \in \mathcal{M}}\left(\left|V_{M}\right|\right)+\sum_{M^{\prime} \in \mathcal{M}^{\prime}} \nu\left(M^{\prime}\right)\right)}{|T|+\sum_{M \in \mathcal{M}}\left|V_{M}\right|}
$$

Theorem 3: For any table T and set of attributes K we have either $g_{3}(K)=g_{3}^{c}(K)$ or $1<g_{3}(K) / g_{3}^{c}(K)<2$. Furthermore, for any rational number $1 \leq \frac{p}{q}<2$ there exist tables of arbitrarily large number of tuples with $g_{3}(K) / g_{3}^{c}(K)=\frac{p}{q}$.

Proof: $g_{3}(K)$ and $g_{3}^{c}(K)$ are different only in the denominator part. The number of tuples of the components in \mathcal{M} can't be more than the total number of tuples in the table, so $0 \leq \sum_{M \in \mathcal{M}}\left|V_{M}\right| \leq|T|$ and $\sum_{M \in \mathcal{M}}\left|V_{M}\right|=|T|$ iff every

(A)	$t_{i}^{\prime}=(i-1,0) i=1,2, \ldots, n+1$
(B)	$t_{i}^{\prime}=(i-1,0) i=1,2, \ldots, n+1$
(C)	$t_{i}^{\prime}=(i-1,0) i=1,2, \ldots, n+1$
(D)	$t_{i}^{\prime}=(i, 0,0)$ for $i=1,2, \ldots, n-\beta$, and $t_{n-\beta+j}^{\prime}=(0,0, j-1)$ for $j=1,2, \ldots, l+1$
(E)	$t_{1}^{\prime}=(0,0)$
(F)	$t_{i}^{\prime}=(i, 0) i=1,2, \ldots, n-1$
(G)	$t_{j n+i}^{\prime}=(j n+i+j, 0)$ for $i=1,2, \ldots, n-j-1$ and $j=0,1, \ldots, k-1$

Figure 1. Visible Domains Combinations of Tables of Figure 2
tuple is a member of some connected component in \mathcal{M}. In the latter case $g_{3}(K)=g_{3}^{c}(K)$, otherwise the denominator of $g_{3}^{c}(K)$ is less than twice the denominator of $g_{3}(K)$ that proves the inequlaties of the ratio. Table E proves that $g_{3}(K)=g_{3}^{c}(K)$ can hold for arbitrarily large tables. Now let $1<\frac{p}{q}<2$ be given with $\frac{p}{q}=1+\frac{p^{\prime}}{q^{\prime}}$. Consider Table D where

$$
g_{3}(K) / g_{3}^{c}(K)=\left(\frac{\beta-1}{n+l}\right) /\left(\frac{\beta-1}{n+2 l}\right)
$$

which can simply be written as $1+\frac{l}{n+l}$. Now taking $n=$ $\alpha\left(q^{\prime}-p^{\prime}\right), l=\alpha p^{\prime}$ and any β between 2 and $\left\lfloor\frac{n}{2}\right\rfloor$ we obtain that

$$
g_{3}(K) / g_{3}^{c}(K)=1+\frac{p^{\prime}}{q^{\prime}}
$$

Note that $g_{3}(K)$ ranges between $1 / n$ and $1 / 2$ depending on the choice of β.

V. Conclusion and Future Directions

The main contributions of this paper are as follows:

- We introduced and defined strongly possible keys over database relations that contain some occurrences of nulls.
- We provided some properties, observations, and number of necessary conditions so that a strongly possible key holds in a given dataset. We show that deciding whether a given set of attributes is a strongly possible key can be done by application of matchings in bipartite graph, so Hall's condition is naturally applied.
- We showed that deciding whether a given system of sets of attributes is a system of possible keys for a given table can be done using matroid intersection. However, we need at least three matroids, and matroid intersection of three or more matroids is NP-complete, which suggests that our problem is also NP-complete.
- We studied systems of strongly possible keys and we gave characterization of the implication problem.
- An approximation concept of the strongly possible key was introduced to measure how close approximation of a strongly possible key holds in a data relation, using g_{3} measure. We derived the measure g_{3}^{c} from g_{3} and gave bounds of the two measures.

Strongly possible keys are special cases of possible keys of relational schemata with each attribute having finite domain. So, future research is needed to decide what properties of implication, axiomatization of inference remain valid in this setting. Note that the main results in [1] consider that at least one attribute has infinite domain.

We plan to extend our research from keys to functional dependencies. Weak and strong functional dependencies were introduced in [6]. A wFD $X \rightarrow_{w} Y$ holds if there is a possible world T^{\prime} that satisfies FD $X \rightarrow Y$, while sFD $X \rightarrow_{s} Y$ holds if every possible world satisfies FD $X \rightarrow Y$. Our strongly possible world concept naturally induces an intermediate concept of functional dependency. Future research on possible keys of finite domains might extend our results on strongly possible keys.

Finally, Theorem 2 defines a matroid intersection problem. It would be interesting to know whether this particular question is NP-complete, which we strongly believe it is.

References

[1] H. Köhler, U. Leck, S. Link, and X. Zhou, "Possible and certain keys for sql," The VLDB Journal, vol. 25, 2016, pp. 571-596.
[2] D. Welsh, Matroid Theory. Academic Press, New York, 1976.
[3] M. Garey and D. Johnson, Computers and Intractability. A Guide to the Theory of NP-Completeness. Freeman, New York, 1979.
[4] E. Lawler, "Matroid intersection algorithms," Mathematical Programming, vol. 9, 1975, pp. 31-56.
[5] J. Kivinen and H. Mannila, "Approximate inference of functional dependencies from relations," Theoretical Computer Science, vol. 149, 1995, pp. 129-149.
[6] G. L. Mark Levene, "Axiomatisation of functional dependencies in incomplete relations," Theoretical Computer Science, vol. 206, 1998.

(A)

(C)

(E)

(F)

A_{1}	A_{2}
0	0
1	\perp
2	\perp
2	\perp
3	\perp
3	\perp
\vdots	\vdots
n	\perp
n	\perp

A_{1}	A_{2}
0	0
0	\perp
1	\perp
1	\perp
\vdots	\vdots
$n / 2$	\perp
$n / 2$	\perp
$n / 2+1$	\perp
$n / 2+2$	\perp
\vdots	\vdots
$3 n / 2$	\perp

A_{1}	A_{2}
1	0
1	\perp
2	\perp
\vdots	\vdots
$n-1$	\perp

(G)

A_{1}	A_{2}
1	0
1	\perp
2	\perp
\vdots	\vdots
$n-1$	\perp
$n+1$	0
$n+1$	\perp
$n+2$	\perp
\vdots	\vdots
$2 n-1$	\perp
\vdots	\vdots
$n(k-1)+1$	0
$n(k-1)+1$	\perp
$n(k-1)+2$	\perp
\vdots	\vdots
$k n-1$	\perp

Figure 2. Sample Tables for Comparison Results

TABLE IV. MAIN COMPARISON RESULTS

	A	B	C	D	E	F	G
g_{3}	$\frac{n-1}{2 n}$	$\frac{n-1}{2 n}$	$\frac{1}{4}$	$\frac{\beta-1}{n+l}$	$\frac{n-1}{n}$	$\frac{1}{n}$	$\frac{1}{n}$
g_{3}^{c}	$\frac{n-1}{2 n+2}$	$\frac{n-1}{3 n}$	$\frac{1}{6}$	$\frac{\beta-1}{n+2 l}$	$\frac{n-1}{n}$	$\frac{1}{2 n-2}$	$\frac{1}{2 n-2}$

