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Abstract—Human reasoning in visual analytics of data networks
relies mainly on the quality of visual perception and the capability
of interactively exploring the data from different perspectives. Vi-
sual quality strongly depends on networks’ size and dimensional
complexity while network exploration capability relies upon the
intuitiveness and expressiveness of user frontends. The approach
taken in this paper aims at addressing the above by decomposing
data networks into multiple networks of smaller dimensions
and building an interactive graph query language that supports
full navigation across the sub-networks. Within sub-networks
of reduced dimensionality, structural abstraction and semantic
techniques can then be used to enhance visual perception further.

Keywords–Visual analytics; labelled graph; graph query lan-
guage; visualisation; patents and publications

I. INTRODUCTION

According to an English idiom, “A picture is worth a
thousand words”. Visual analytics aims to combine the power
of visual perception with high performance computing in order
to support human analytical reasoning. Since Wong et al. [1]
in 2004, visual analytics has been widely used in various
fields, such as biology or national security but also in other
fields, such as climate monitoring [2][3] or social networks
analysis, the field originally addressed by the Collaboration
Spotting project (CS). Multidimensional networks built out
of interconnected elements contained in datasets and repre-
sented as directed and labelled graphs are a natural means
of representing data for visual analytics. These graphs - often
referred to as knowledge graphs - comprise labelled nodes and
relationships and their data schemas are graphs of labels that
correspond to the networks’ dimensions.

Graphs as database models and graph query languages
defined over these models have been investigated for some 30
years [4]. These models and languages have been used in many
applications using a wide spectrum of data (e.g., biology, social
network and criminal investigation data), clearly indicating that
the combination of visual analytics with graph query languages
has become quite popular.

According to Wong et al. [5], one of the biggest challenges
in visual analytics is User-Driven Data Reduction which
calls for “a flexible mechanism that users can easily control
according to their data collection practices and analytical
needs” to reduce the amount of data [6]. This essentially
entails an improvement of the visualization clarity and an
escalation of data processing performances irrespective of the
increasing complexity of the data over the years. To meet
this challenge, semantic and structural abstraction techniques,
such as clustering, collapsing, extraction and demonstration

of relationships among graph entities can be used [7] at the
expanse of a loss of information on the network content [8].

Dimension reduction is central to the visualization of data
networks since it enables users to increase their insight into the
data. The approach taken in the Collaboration Spotting project
is to reduce the dimensional complexity of data networks while
maintaining the information about their content. It consists
in decomposing directed and labelled graphs into multiple
directed and weighted graphs of lesser dimensions - named
views - and in building an interactive graph query language
that supports user-specified views and full navigation across
the data networks using these views as a support to the op-
erations of the language. Within a view, structural abstraction
techniques can then be used to enhance the visual perception
further. The novelty of the approach taken is to combine Visual
graph representation and User interactions [9] at the graph
query language level with a view to supporting interactive
dimension reduction based on the concept of blueprint where
the architectural plan is distributed across different navigable
views. In this context, users can select and combine labels
according to their semantic understanding of the network
models and visualize the corresponding network structures.

Section II gives a short overview on visualisation tech-
niques for visual analytics (focusing on social networks) and
on graph query languages fit to data networks. Section III gives
a short description of the mathematical background supporting
the approach. Section IV, introduces how views are constructed
and Section V shows how the basic operations of the query
language enable users to conduct their analysis. In Section VI,
the use-case that inspired the Collaboration Spotting project
and the graphical query language are presented. This paper
ends with conclusions and future work in Section VII.

II. RELATED WORK

The related work is twofold since it combines multiple
visual analytics techniques with the power of graph query
languages. In the last 15 years, a lot of visual analytics
articles were published with the aim of showing processes
of transformation of multidimensional data into node-link
diagrams [9][10].

A lot of articles have been published, especially on the
coordinated multiple views topic, which introduces a visual
analytics paradigm supported by an interactive query language
or by a set of operations. These articles can be divided into
four different groups:

• OLAP [11] inspired paradigms that are using opera-
tions like slice, roll-up, dice, etc. The most relevant pa-
pers are PivotGraph [12], ScatterDice [13], GraphDice
[14], MatrixCube [15] and Orion [16].
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• Relational algebra-related solutions such as Cross-
filter views [17] which uses grouping, filtering, pro-
jection and selection operations, Polaris [18] that
introduces and maps its algebra to SQL and Ploceus
[19], which works with first-order logic language.

• Other solutions such as Cross-filter views with hyper-
graph query language [20], JUNG [21] and Gephi [22]
that allow users to use other programming languages
(JAVA in these cases).

• Literature on graph query languages is huge [23]–
[30]. It covers the use of different graph models
reflecting the variety of requirements for applications
and languages.

The visual analytics model introduced in this paper pro-
motes a different approach to graph query language. The
language operates on a directed, labelled graph that is managed
via user interactions treated as query inputs and follows the
semantic web query language concepts, SPARQL [31] and
Cypher [32][33]. This approach allows users to generate graph
patterns and evaluate them directly on the graph. Reducing
the complexity of network is not a novel idea [34]. The main
differences between existing solutions and the one proposed
in this paper are i) the introduction of a proper mathematical
model based on labelled graphs; ii) a label-based complexity
reduction (views); iii) basic operations to support navigation
across views and iv) an intuitive user interface to drive these
operations.

III. BASIC GRAPH AND VIEWS

Let graph G be a directed, labelled graph defined as a four-
element tuple G = (V,E, L, α) where V represents a set of
nodes and E ⊆ V × V , a set of edges defined as a subset
of the Cartesian products of these nodes. L is a set of node
labels and α : V → L is a mapping function from nodes to
the corresponding labels. Figure 1 shows an example of such
a graph. We define the reachability graph over graph G as
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Figure 1. Example of graph G where V = {v1, . . . v15} and
L = {label1, . . . label7}

Greachability = (L,Ereachability) where nodes are labels of
graph G, Ereachability ⊆ L × L is defined as the Cartesian
product of the labels where any two nodes of Greachability

are connected if and only if there exists two connected nodes
in graph G and their respective labels correspond to the
two nodes of graph Greachability. Graph Greachability is a
description of graph G, it is also called the graph schema
of graph G. Graph schema helps users view graph G via
different sub-graphs of lesser dimensionality using labels of G
as dimensions and facilitates the generation of approximately
optimal user-defined graph queries. Let graph Gpattern =
(Vpattern, Epattern) be a graph pattern where Vpattern ⊆ L
and Epattern ⊆ Ereachability ∩Vpattern×Vpattern. To process
the answer to a graph query, one needs to find all possible
isomorphic subgraphs of G that are homomorphic to a graph
pattern Gpattern corresponding to the query. This is a graph
pattern matching problem, a well-known part of Mathematics
[35]. In this case, one defines Graph G′ = (V ′, E′, L, α), a
subgraph of graph G as a sample matching the graph pattern
Gpattern if and only if:

• ∀v′ ∈ V ′ : ∃v ∈ Vpattern, α(v′) = v,
• ∀(u′, v′) ∈ E′ : (α(u′), α(v′)) ∈ Epattern.

The answer to a graph query is a view containing the set of
subgraphs of G matching Gpattern. To build such a view, one
needs first to introduce the graph pairing function pair and
the set Pattern. Let Gpattern1

and Gpattern2
be two graph

patterns. These graph patterns are paired iff

• Vpattern1
= Vpattern2

and
• ∃!a, b ∈ Vpattern1

:
path(a,b) ∈ Epattern1 and path(a,b) 6∈ Epattern2 ,
path(b,a) 6∈ Epattern1

and path(b,a) ∈ Epattern2
,

Epattern1
\ path(a,b) = Epattern2

\ path(b,a).
Where a path is an alternate non-empty sequence of nodes
and edges, starting and ending with nodes and requiring that
all edges and nodes be distinct from one another. path(a,b) ∈
Epattern1

indicates that all edges of this path are in set
Epattern1

. The pair function is defined as

pair(Gpattern) :=

{
Gpair

pattern if Gpair
pattern pair of Gpattern

(∅, ∅) else.

And Pattern, the set of these pairs is defined as Pattern :=
{(g, g′)|g, g′are patterns, g′ = pair(g)}.

A view of graph G is defined as a six-element tuple Gq =
(Cq, Bq, Eq, Lq, εq, υq, ) where

• Cq ⊂ V,LC := {α(v)|v ∈ Cq},
• Bq ⊂ V,LB := {α(b)|b ∈ Bq},
• Lq ⊆ L and Lq = LC ∪ LB ,
• Eq := {(u, v)|

u, v ∈ Cq,∃G′, G′′ ⊆ G,
∃(Gpattern, pair(Gpattern)),
(G′pattern, pair(G

′
pattern)) ∈ Patterns :

G′ matches to Gpattern,
G′′ matches to pair(G′pattern),
∃b ∈ Bq : path(u, b) ∈ G′, path(b, v) ∈ G′′},

• εq : Eq → P(Bq), εq((u, v)) = {b|
b ∈ Bq,∃G′, G′′ ⊆ G,
∃(Gpattern, pair(Gpattern)),
(G′pattern, pair(G

′
pattern)) ∈ Patterns :

G′ matches to Gpattern,
G′′ matches to pair(G′pattern),
path(u, b) ∈ G′, path(b, v) ∈ G′′},
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• υq : Cq → P(Bq), υq(u) = {b|b ∈ Bq,
∃G′ ⊆ G,∃(Gpattern, pair(Gpattern)) ∈ Patterns :
G′ matches to Gpattern, path(u, b) ∈ G′}.

The use of multiple graph patterns for the construction of graph
Gq is required since the cardinality of set LB and set LC are
not necessary equal to 1 (see details in Section IV-A). To ease
the reading, graph Gq is noted GLC

LB
to refer directly to the set

of labels used in the construction of the view. Also, in practice,
we use an aggregation function on edges, respectively on nodes
in graph Gq for determining their respective weights instead of
the elements in set Bq (for instance, the number of elements).
Figure 2 shows an example of a view when the two graph
patterns are Gpattern = ({label1, label3}, {(label1, label3)})
and pair(G′pattern) = ({label1, label3}, {(label3, label1)}).

label3
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label3

v7

label3

v8

label3

v9

{v1} {v2, v3}

{v3} {v2}

{v2}

Figure 2. Example of a view where Cq = {v6, . . . , v9},
Bq = {v1, . . . , v3}, LC = {label3}, LB = {label1}.

IV. GRAPH CREATION FROM USER INTERACTIONS

In this section, we introduce how graph patterns and views
can be created as a result of the following user interactions:
• Selection of different nodes in the current view,
• Removal of all nodes with the same label selected in

one of the previous views,
• Navigation from one view to another.

Users can modify set LC and set LB when performing any
of the above interactions. Let F ⊆ V be the set of nodes
corresponding to a user selection, we define from F :

1) LF := {l ∈ L|∃f ∈ F : α(f) = l} which contains
the labels of nodes in set F and,

2) F|L∗ := {f ∈ F |α(f) ∈ L∗} with L∗ ⊆ L, a subset
of set F , restricted to nodes having their respective
labels in set L∗.

In order for set F to operate as a filter, the matched sample
definition of Section III has to be restricted by requiring that
∀v′ ∈ V ′, α(v′) ∈ LF ⇒ v′ ∈ F . Example 1 below shows the
content of LF for user selection F = {v4, v6, v7, v13} from
the graph G depicted in Figure 1.

Example 1.
F = {v4, v6, v7, v13} (1)
LF = {label2, label3, label5} (2)

A. Graph pattern construction
This section shows how to construct a graph pattern with

set LF containing all the labels of nodes in set F . We exploit
the fact that graph patterns are actually only needed when
constructing edges in GLC

LB
and their respective weights. A

pair of graph patterns are required for each combination of
labels in set LC and set LB since paths connecting nodes
from set LC and set LB can have different directions, due to
the construction of edges between nodes of Cq and nodes of
Bq . Each pattern has to satisfy the following criteria:

• It must be a connected and directed graph,
• It must be minimal,
• Labels from set L \ LF can be used as intermediate

nodes in the pattern.

These requirements exactly fit a Steiner Minimal Tree problem
[36], known to be NP-complete[37] and for which we use a
minimal spanning tree solver as an approximation algorithm.
Algorithm 3 describes the full process of pair generation.
Figure 4 shows the graph schema of graph G depicted in Figure
1 and the generated patterns pair for {v4, v6, v7, V13} as set F ,
with LC = {label4} and LB = {label1}.

Algorithm 3 Pattern generator algorithm

1: function PATTERNGENERATOR(FL, LB , LC)
2: Patterns← ∅
3: B ← LB

4: while B 6= ∅ do
5: from,B ← from ∈ B,B \ {from}
6: E ← LC

7: while E 6= ∅ do
8: to, E ← to ∈ E,E \ {to}
9: Left← SpanningTree(

FL ∪ {from, to}, from, to)
10: Right← SpanningTree(

FL ∪ {from, to}, to, from)
11: Patterns← Patterns ∪ {(Left,Right)}
12: end while
13: end while
14: return Patterns
15: end function

B. Connecting user interactions and views
Now that graph patterns (Patterns) have been created

using set F , set LC and set LB , one can introduce the
gen function gen : P(V ) × P(L) × P(L) → GLC

LB
that

generates views from user interactions, (F ⊆ P(V ) and
LC , LB ⊂ P(L)) as
gen(F,LC , LB) := FGLC

LB
= (FCq,

F Bq, Eq, Lq, υq, εq)
where

FCq :=

{
V ∩ F|LC

if V ∩ F|LC
6= ∅

V|LC
else

are the nodes of graph FGLC

LB
and

FBq :=

{
b ∈ V ′|LB

∣∣∣∣∣ ∃G
′ = (V ′, E′, L, α) ⊆ G, :

G′ matches to Gpattern,∀v′ ∈ V ′ :
(v′ ∈ F or α(v′) 6∈ LF )

are the “interconnection” nodes: The other members of the
six-tuple Gq are unchanged since
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Figure 4. On the left hand-side, the graph schema of graph G; On the
middle and on the right hand-side, an example of a graph pattern pair.

• labels (set Lq) are not modified and since
• edge definition (set Eq) and weighting functions (υq

and εq) only depend on set FCq and set FBq .

V. OPERATIONS ON GRAPHS

User interactions will result in the following graph opera-
tions:

• Selection: The user selects nodes in a view,
• Expansion: The user expands a view by removing in

his previous selection, nodes having the same labels,
• Navigation: The user navigates from a view to another.

To define these operations one needs first to introduce the con-
cepts of visual equivalence and minimal views since there can
be views with nodes of null weight that are hidden to the user
and hence non-selectable. Let F1 and F2 be two different filters
on the same view complying with F1 \ F1|LC

= F2 \ F2|LC
.

In essence, this means that there is no difference in the sets of
nodes with labels contained in L\LC which technically should
be empty. View F1GLC

LB
and view F2GLC

LB
generated using F1

and F2 are said to be visual equivalent if and only if

Definition 1. (Vis-equivalent)

F1GLC

LB
∼̇ F2GLC

LB
⇔ ∀v ∈ V1 \ V2 : υq(v) = ∅,
∀v′ ∈ V2 \ V1 : υq(v

′) = ∅,

where V1 (V2) represents the nodes of view F1GLC

LB

(F2GLC

LB
). Intuitively visual equivalence guaranties that nodes

that are not common to two views have empty weights. It
provides equivalence classification on views. It is easy to prove
that for each class of views there is only one which does
not have nodes with empty weights. This view is called the
minimal view.

A. Selection on graphs
Let Fselect be the set of user selected nodes within a view.

Fselect ⊆ V and Fselect ⊆ V ′ where V ′ is a set of nodes from
the minimal view which is visual-equivalent to graph FGLC

LB
.

The selection operator σ : Gq × P(V )→ Gq is defined as

Definition 2. (Selection)

σ(FGLC

LB
, Fselect) := gen((F \ F|LC

) ∪ Fselect, LC , LB),

where F|LC
= {f |f ∈ F, α(f) ∈ LC}. It is to be noted

that at view creation the selection operator uses a more general
definition of the gen function. Figure 6a and 6b show how the
selection operator works. As a result of applying this operator,
set LC and LB will only contain those nodes that are “related”
to this user selection.

B. Expansion on graphs
The expansion operator ξ is in some sense the “inverse” of

the selection operator. It is defined as

Definition 3. (Expansion)

ξ(FGLC

LB
, LC′) := gen(F \ F|LC′

, LC′ , LB).

The expansion operator changes view when LC′ 6= LC and
removes all nodes in set F that are labelled with labels in LC .
Figure 6d and 6e show how the expansion operator works.

C. Navigation through graphs
By selecting a subset of labels from LC one can build views

of graph G with reduced dimensional complexity. Navigation
across views is required to enable users to apprehend the full
graph G. Therefore the navigation function η goes from view
FGLC

LB
to a view labelled as LC′ and LB′ and is defined as:

Definition 4. (Navigation)

η(FGLC

LB
, LC′ , LB′) := gen(F,LC′ , LB′)

Figure 6b and 6c show how the navigation between views
works.

D. Navigation history
The navigation history can be represented as a navigation

graph Gnav where nodes represent navigation states and edges
navigation steps between states. Gnav = (Nnav, Enav) com-
plies to

• Nnav ⊂ P(V )× P(L)× P(L).
• Enav ⊆ Nnav ×Nnav × {σ, ξ, η},

where there is a navigation step between node n1 =
(F1, LC1

, LB1
) to node n2 = (F2, LC2

, LB2
) if and only if

one of the following statements is true:

1) σ(gen(F1, LC1 , LB1), F2 \ F1) =
gen(F2, LC2 , LB2), and LC1 = LC2 , LB1 = LB2 ;

2) ξ(gen(F1, LC1 , LB1), LC2) = gen(F2, LC2 , LB2),
and F2 = F1 \ F1|LC2

, LB1 = LB2 ;
3) η(gen(F1, LC1 , LB1), LC2 , LB2) =

gen(F2, LC2 , LB2) and F1 = F2.

In Enav , the third component of an edge is always one
of the operations σ, ξ or η. It indicates how the step was
processed. The proper size of Nnav is 2n ∗ (3m − 2m+1 + 1)
where n = |V | and m = |L|. A particular navigation history
corresponds to a walk in Gnav . An example of such a walk is
given below.

Example 2 (Walk on graph).

(F0, LC0 , LB0), η, (F1, LC1 , LB1), σ, . . . , ξ, (Ff , LCv , LBb
)
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In practice, a particular set of labels LC0
is used to create

an entry view from which all the above mentioned operations
can then be performed.

VI. USE-CASE

In the framework of AIDA [38], an FP7 project on Ad-
vanced European Infrastructures for Detectors at Accelerators,
researchers needed to identify key players from academia
and industry for technologies considered as strategic for the
particle physics programme. To this end, the Collaboration
Spotting project was launched in 2012 with a view to enabling
users to search for terms describing particular technologies in
titles and abstracts of publications and patents and viewing
the organisation, subject category, keywords, city and country
landscapes for each of these searches individually. Individual
technology searches are represented as nodes in a view named
Technogram, used as the user entry view in which edges
represent publications and/or patents common to searches.

A. Data
Two different sources are used for searching. The meta-

data records of publications from Web of ScienceTM Core
Collection [39] developed by Clarivate Analytics (in the past,
Thomson Reuters) and the metadata records of patents from
PATSTAT developed by the European Patent Office [40].
Although the two sources have a number of labels in common,
such as Organisation, City and Country there are others like
Subject Category and Keyword that only belong to publica-
tions. The subset of data from the two sources corresponding
to the labels of interest for users was used to construct graph
G and its schema Greachability .

B. Storing data in a graph database (Neo4j)
Graph G is stored in a Neo4j graph database [41], in

which individual metadata records are stored as subgraphs
of labelled nodes using Published item, Organisation, Subject
Category, Author Keyword, City, Region and Country as labels.
Figure 5 represents the reachability graph (graph schema) of
this network (Light color nodes represent nodes uploaded by
the data administrator and the dark nodes are created by the
system itself by using search and authentication modules).
Besides these labels, additional labels have been introduced
to support user authentication and authorisation (User) and
technology searches (Graph and Technology). Searches use full
text indices of the Apache Lucene project [42] that have been
integrated into the Neo4j database as legacy indices [41].

Statistic of the graph data: Searches on publications and
patents metadata records from the 2000 - 2014 period can
be performed. The resulting data network contains 45 million
nodes and 150 million edges. Its breakdown is given in Table
I. and Table II.

As can be noticed, the number of region edges is smaller
than the number of country edges due to the use of the 2nd
level of Nomenclature of Territorial Units For Statistic [43]
created by the European Commission, which covers Europe
only.

C. Navigation
The entry point for this use case is individual users. Using

the terminology introduced above, the initial values for set F
are user IDs.

Subject 
Category

Organis.

Technol.

Region

City Country

Author 
Keyword

Published 
Item

Graph

User

Figure 5. The database schema (reachability graph)

TABLE I. NUMBER OF NODES BY NODE LABELS

TYPE OF NODES NUMBER OF NODES
Patents 15.000.442
Publications 20.087.904
Organisations 2.918.060
Author Keywords 8.193.604
Subject Categories 230
Cities 7.741
Regions 946
Countries 128
Total 46.209.055

TABLE II. NUMBER OF EDGES BY NODE LABELS. A PATENT DOES
NOT HAVE AUTHOR KEYWORDS OR SUBJECT CATEGORIES

PROPERTY

PATENTS PUBLICATIONS TOTAL
Organ. 12.440.903 36.672.677 49.113.580
Author Key. - 48.941.098 48.941.098
Subject Cat. - 32.566.806 32.566.806
Cities 3.193.709 8.826.222 12.019.931
Regions 265.421 2.504.441 2.769.862
Count. 3.156.449 8.020.648 11.177.097
Total 19.056.482 137.531.892 156.588.374

Limitations: In the current implementation there is a re-
striction on the size of LC and LB fixed to a single label
Published Item and the visualization system only supports
undirected edges. This calls for the generation of only one
graph pattern instead of two making the system faster.

In Figure 6, a series of pictures illustrate how navigation
operations work. A user enters the system in a technology view
(nodes are labelled with the Technology label). In the example,
this view contains four “technologies” (obtained as results
of searches using Lucene-indices), namely Database, Lan-
guage, Graph Language and Visual Analytics. Links between
nodes indicate publications and patents common to technology
searches. As indicated in the reachability graph of Figure
5, users can access other views via nodes labelled with the
Published Item label. The user selects two technology nodes
from Figure 6a, giving Fselect ={Visual Analytics, Language}.
Figure 6b shows the result of this selection: Language and
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(a) Technology view: (LC = {Technology}, LB = {Published Item});
Selecting two technologies (Fselect = {Visual Analytics, Language})

(b) Result of the selection

(c) Navigation to the “Subject Category view” (d) Selecting a cluster in the Subject Category view; expanding the view
and going back to the Technology view

(e) Technology view with F = {Language, Lingustics . . .Rehabilitation}
filter

Figure 6. Example of operations; navigation, selection and expansion on views

Visual Analytics. Changing set LC from value {Technology}
to value {Subject Category} enables the navigation operation

to reach the Subject Category view corresponding to the two
previously selected technology nodes. Figure 6c shows the
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view resulting from this operation. It is optained using the
(LC = {Subject Category}, LB = {Published Item}, F =
{Language, Visual Analytics}) triplet. In Figure 6d, the user
selects a few nodes from the view of Figure 6c (i.e., the F filter
was extended with Linguistic, ..., values). After selection of
the value {Technology} for LC , the expansion and navigation
operations bring the user back to the technology view of
Figure 6e. This view shows the technology nodes having
publications with nodes labelled with the Subject Category
label corresponding to the last user selection.

VII. CONCLUSION AND FUTURE WORK

The current version of Collaboration Spotting running at
CERN [44] addresses the implementation of the concepts
using patents and publications metadata records. It is a new
experimental service that aims to provide the High Energy
Physics community (such as HEPTech [45]) with information
on Academia & Industry main players active around key
technologies, with a view to fostering more inter-disciplinary
and inter-sectoral R&D collaborations, and giving the procure-
ment service the opportunity of reaching a wider selection
of high-tech companies for bidding purposes. Collaboration
Spotting is generic in its concepts and implementation. It
can support visual analytics of any kind of data and its
backend is implemented using a Neo4j graph database [41].
Conference papers, technical & business news, trademarks &
designs and financial data are amongst the data targeted to
enrich the information on technologies that one can obtain
from publications and patents. The choice of data sources
will depend on users’ priorities. The tool can be of use to
other communities, in particular in dentistry [46] but also to
policy makers and investors if data in the knowledge graph
is enriched with technical & business news and financial data.
Collaboration Spotting also addresses other types of data, such
as compatibility and dependency relationships in software and
meta-data [47][48] of the LHCb experiment at CERN.

As an interactive graph query language, Collaboration
Spotting is intended to provide a fully customisable visual
analytics environment. In the current version, data processing
supports searches and contextual queries. In the future, labelled
& directed relationships and attributes on nodes will be in-
cluded in the labelled property graph representation of the data
network and the processing will be extended to more complex
operations directly on the graph resulting from searches and
queries with a view to enhancing the visual perception of users.
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[26] R. H. Güting, “GraphDB: modeling and querying graphs in databases,”
in Proc. 20th Int. Conf. Very Large Data Bases, ser. VLDB ’94. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1994, pp. 297–
308, ISBN 1-55860-153-8.

[27] H. S. Kunii, “DBMS with graph data model for knowledge handling,” in
Proc. 1987 Fall Joint Computer Conf. Exploring Technology: Today and
Tomorrow, ser. ACM ’87. Los Alamitos, CA, USA: IEEE Computer
Society Press, 1987, pp. 138–142, ISBN 0-8186-0811-0.
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