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Abstract—Analytical queries on big data consume a lot of 
resources and typically run for long time. Both resource 

utilization and execution time can be reduced by order of 

magnitude by transitioning to main memory systems, as well 

as by offloading part of the analytic computation to in-

memory clusters of special purpose analytic engines. These 

systems are highly optimized for certain patterns of query 

execution on main memory data, and can support high level 

of concurrency. Trading off optimization and specialization 

for operational completeness, such secondary systems are not 

always fully fledged transactional: they hold copies of the 

data and rely on refreshes being coordinated from the 

primary. In such heterogeneous systems, it is particularly 

challenging to support applications with strict consistency 

guarantees requiring transaction consistent query execution. 

The eventually-consistency model does not fit in this setup, 

yet eager propagation of changes imposes a huge 

unnecessary overhead. In this paper, we formalize the 

challenge of strictly consistent query execution in hybrid 

(primary plus in-memory secondary) systems as a real-time 

scheduling problem, and propose a scheduler that ensures 

consistent query execution and minimal overhead at both 

primary and secondary systems. We detail the system design 

with a focus on the query and change propagation scheduler 

and its interaction with other processes, explaining the 

advantages of our solution over alternatives. We argue that 

the proposed framework is easily extendable to incorporate 

different customized optimization goals. We conclude with 

preliminary promising performance evaluation of the 

implemented infrastructure part of the Data Processing Unit 

(DPU)-based hybrid database system.  
Keywords - Big Data Analytics; Replication; Consistency; 

Change Propagation; Real-time Scheduling. 
 

I. INTRODUCTION 
 

Analytical queries on Big Data consume a lot of 

resources and typically run for long time [8][17]. In-

memory databases speed up query performance by orders 

of magnitude - factor of 100x for some applications 

[7][9][16][21][22]. One opportunity is to use a cluster of 

in-memory databases, as a secondary database to speed up 

the performance of analytical queries [12][13][19][20]. 

One can consider such secondary database as a huge 

cache.       In this setup, and in presence of data updates or  
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changes, there is a need to ensure consistent query 

execution. That is, whenever a query runs against data in 

the secondary in-memory database, it should return the 

same results as when it runs against the data in the 

primary database. Eventually-consistent model [10] does 

not fit in this setup, since analytical queries are typically 

used to support decision making and policy changes. 

Therefore, analytical queries need to return accurate up-

to-date results. Yet, eager propagation of changes imposes 

a huge unnecessary overhead. In this paper, we propose a 

framework that ensures consistent query execution and 

minimal overhead at both primary and secondary 

databases. This framework includes all components of a 

consistent query execution starting with the capture of 

data changes, and the propagation and deployment of 

changes at the secondary system. In our solution, the 

secondary database does not need to run the same query 

execution engine as the primary, which makes the 

framework applicable to any hybrid database, as long as 

there is an agreed upon data exchange format that can be 

understood by both systems. Further, out design allows 

optimizing performance for user-defined performance 

goals. 
 

Our contributions can be summarized in the following 

points: 
 

1) We formalize change propagation from the primary 
to the secondary systems and query submission on the 
secondary system as a real-time scheduling problem. 
While real-time scheduling is a well-known subject [2]-
[6][11], its applicability to change and query propagation 
in heterogeneous systems is new, to the best of our 
knowledge. In particular, while the mechanism of 
capturing Data Manipulation Language (DML) activity 
may be common with the hybrid periodic change 
propagation method (of [1]), the formalization of DML 
activity as jobs and the definition of job granularity and 
job metadata are novel.  

2) We explain the design of a query and DML activity 
scheduler that runs on the primary, its system placement 
in database and interaction with database processes. The 
scheduler is a new component of the database, and 
subsequently its interaction with other activities in the 
database is novel. 
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3) As detailed in Section V, the scheduling 
mechanism is efficient – it achieves its goals, formulated 
via the scheduling policy. Most common goals in 
heterogeneous systems of our focus can be formulated via 
scheduling policies. 

The proposed scheduling system model is practical to 

achieve. We based our claim on a prototype implemented 

on heterogeneous database system and on preliminary 

promising performance evaluation. 
 

The remaining of this paper is organized as 
follows. Section II gives the necessary background. The 
problem formulation and our proposed scheduler are 
described in Section III and Section IV, respectively. 
Section V details the implemented prototype in the Oracle 
database and the RAPID Data Processing Unit (DPU)-
based in-memory accelerator [19][20], along with 
preliminary performance evaluation. The paper is 
concluded in Section VI. 
 

II. PRELIMINARIES 
 

The setup we are concerned with is one with two 
coupled-databases: a primary database and a secondary 
database that is optimized for analytical queries, such as 
the setup in [19][20] where a cluster of high-speed 
interconnected in-memory databases are used to boost 
analytical queries performance. The secondary database is 
not necessarily a fully-fledged Atomicity, Consistency, 
Isolation, and Durability (ACID) compliant database, and 
can be seen mainly as a query engine highly tuned to 
execute parts of SQL queries submitted through the 
primary. All activities are initiated through the primary 
database and execution on the secondary is transparent to 
the user. The user specifically loads some base tables into 
the target database at any point of time. When queries are 
submitted, the source database determines which queries 
or query-fragments, i.e., sub-queries, can be offloaded to 
the secondary database to boost query performance. Data 
changes, i.e., DMLs, are submitted and executed in the 
primary database. A change propagation protocol copies 
new or updated data to the secondary database, or informs 
the secondary about deletions.  

The main advantage of such heterogeneous database 
systems is that they combine the full ACID compliant 
features of a traditional database (the primary) with the 
high efficiency and potentially highly distributed query 
execution of an accelerator (the secondary). The 
accelerator does not need to support all the features of the 
primary – the tradeoff between generalization and 
optimization via specialization allows highly optimized 
code for a narrower functionality. Fronting all operations 
from the primary also allows gradual support over releases 
of more complex features in the accelerator, and 
offloading more and more operations outside of the 
primary.  

The source of truth, both in terms of data and query 
execution, in heterogeneous systems is the primary 

database. For space efficiency, only relations targeted to 
be queried in the accelerator are loaded into the secondary 
database. As all DML activity happens at the primary, the 
data has to be kept refreshed on the secondary after the 
initial load. As the secondary is not a fully-fledged 
transactional system, DML replication happens physically 
– by propagating the data that has changed from the 
primary to the secondary. However, there is no explicit 
requirement for synchronous data propagation. For 
instance, if DML activity happens on a relation not 
queried, then there is no need for the DML in the primary 
to “wait” until it is propagated to the secondary. The strict 
requirements are  

▪ When a query executes on the secondary, it returns 

the same results as when it is executed on the primary. 

Therefore, when a query executes in the secondary all the 

DML activity on the relations references in the query has 

to be up-to-date (more specifically, up to the query system 

commit number SCN). 
 

▪ Queries are offloaded to the secondary only when 
estimated to run faster than on the primary. The estimation 
should be such that applications run faster in the presence 
of the secondary and that the secondary is picked for 
execution whenever beneficial.  

Therefore, in systems of our focus we have both a 
change propagation and a query submission problem, and 
they are interconnected: (1) when and how should changes 
be propagated to the secondary, and (2) how to choose 
between executing queries on the secondary system vs. on 
the primary, in order to ensure the above requirements? 

Data replication has been utilized for decades either 
for availability reasons (i.e., backup and recovery) or for 
performance reasons (e.g., load balance). Therefore, 
propagation of data changes across data replicas is not a 
new problem. However, we argue that replication in 
analytic hybrid database systems of our focus poses new 
challenges. In heterogeneous database systems, the main 
purpose of the secondary database is to accelerate query 
execution and offload computation from the primary. In 
doing so, the hybrid system supports higher level of 
concurrency and faster query response than the primary 
system alone. The secondary database is neither a backup 
nor a replica of the primary database: queries are always 
submitted from the primary and within the primary a 
decision is taken to offload the query - if expected to run 
faster - to the secondary. If the primary goes down, the 
secondary is not accessible to users for query execution. 
Further, in most applications where replication is utilized 
for load balancing, data consistency can be sacrificed 
temporarily in order to maintain the performance at its 
best. For example, the eventually-consistent model [10] 
has been adopted by most key-value stores in this regard. 
However, in case of analytics queries, data consistency 
cannot be compromised or else wrong outdated 
conclusions may be deduced. Moreover, since the purpose 
of replication in data analytics is to boost performance, 
query performance cannot be compromised either. This 
poses a new challenge in efficiently and timely 
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propagating data changes. Therefore, existing solutions 
cannot be applied per se. This paper addresses these new 
challenges.  

The spectrum of choices of how and when to 

propagate changes, from a source to a target database, is 

quite wide. At one end, changes are propagated eagerly as 

soon as they are captured. On the other end, changes are 

propagated on – demand, i.e., only when needed at query 

time. Alternatives include periodic change propagation – 

refreshes are scheduled at certain time intervals. The pros 

and cons of each approach make each approach suitable 

for certain class of applications. For example, if changes 

are very frequent and queries are scarce, then one can 

argue that the lazy approach of pushing changes on-

demand is a better choice, as it amortizes the overhead of 

the propagation protocol. On the other hand, if query 

response time is critical, a proactive approach of 

propagating changes as soon as they are committed would 

be needed to minimize query response time. This, 

however, comes at the expense of incurring high 

overhead. 
Typically, most systems that employ one or the other 

method leave it to the user or the database administrator 
(DBA) to choose between the methods. For instance, the 
secondary system can be exposed as a cache that can be 
configured for one or the other types of refreshes [15]. 
The assumption is that the user has an expectation of the 
workload and pattern of data changes. Switching between 
different methods dynamically in response to deviations 
from the expected usage is not typically available. 

One optimization is to combine propagating changes 
on-demand when a query needs them, with a periodic 
change propagation approach and an eager propagation of 
bulk appends [1]. The goal of such a propagation scheme 
is to minimize the amount, or size, of data needed to be 
propagated at query time to minimize the query delay. It is 
also meant to address run-time variations in workloads of 
a certain pattern – sporadic append-mainly large DMLs 
(such as nightly bulk data ingestion) at times of low 
volume of queries, with regular small online transaction 
processing (OLTP)-type transactions. Therefore, this 
approach works perfect if changes are mainly scarce and 
small at times of high query traffic, and it ensure strict 
consistency – queries are not chosen for execution on the 
accelerator until all dependent changes are visible to the 
accelerator. However, even such a hybrid scheme does not 
answer the following questions:  

▪ What is a reasonable or good enough time for a query 
to wait for dependent changes? 

▪ How to detect the case when changes exist while the 

query does not need these changes? That is, when to skip 

vs. when to delay a certain propagation to minimize query 

wait time? For example, if the changes are of a later 

system change number (SCN) than the query SCN, then 

the query does not depend on these changes and therefore 

does not need to wait for them to be propagated. (Note 

that this is similar to the query/update independence 

analysis of [25]-[27].) 
 

▪ In the presence of multiple changes and concurrent 
queries, in what order should changes be propagated, and 
in what order should queries be submitted to the 
secondary?  

▪ How to efficiently adapt to deviations in the expected 
pattern of DML and query activity? 

There is a need to precisely formalize the change 
propagation model in order to answer the above questions 
and address the new challenges in compliance with the 
optimization goal. 
 

III. PROBLEM FORMALIZATION 
 
We formalize the change propagation problem as a real - 

time scheduling problem. Tasks to schedule are (a) the 

data changes to propagate, and (b) the analytic queries 

offloaded to the target database, that is we propose a dual 

query and change-propagation scheduler infrastructure. 

The scheduler maintains as part of its metadata the 

dependency information between change propagation 

tasks and queries. This dependency is detected and 

maintained to ensure valid schedules. Each task is 

assigned a priority based on the optimization goal. Based 

on the dependency between tasks and their priority, the 

scheduler can answer the questions that arise in case of 

concurrent queries and multiple data changes. For 

example, given the priority of each query, the scheduler 

can prioritize which required data change to propagate 

first. Also, by assigning a deadline for each query-task, as 

we shall explain later, the scheduler can determine when it 

is too long to wait for updates to be propagated, and when 

it is not. Finally, the scheduler can adapt different 

scheduling policies to suit the application and 

performance optimization desired. For example, one 

policy can optimize query throughput, another can 

maximize number of queries executed on the target 

database, say to minimize energy, and a third can 

minimize the query wait response time, etc.  
Further, the scheduler provides infrastructure for 

several other functionalities. For example, one opportunity 
is to utilize the scheduler as a resource manager which 
monitors workload both on source and target databases. 
This allows us to add load-balance functionality. Further, 
the DBA or the user can monitor the system and indicate 
at run-time a change in the scheduling policy. In a more 
evolved implementation of the system, the switch between 
policies could happen by automatic collection of system 
performance and usage of simple rules for picking from 
available scheduling policy. 
 
A. Change Propagation: A Scheduling Problem 

Definition 1: There are two types of tasks:  
- query-task (read only) - In our scheduling model 

a query-task actually means a query-fragment  
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Figure 1. System Model – Workflows Example for TPC-H 
 

that is offloaded to be executed in the secondary 

database to boost performance. Hence, there may 

be more than a one query-task per query. 

- update-task - set of committed DMLs per 

object/table belonging to the same transaction. 
 
Note that for simplicity we focus here on change 

propagation of committed DMLs, but the model can be 
naturally extended to consider uncommitted DMLs and 
queries submitted in a transaction after uncommitted 
DMLs. We note here for completeness that in the system 
of focus it was considered acceptable for queries running 
on relations in the secondary system but with 
uncommitted changes to be up-front executed only on the 
primary. Physically, update tasks can be represented in 
multiple formats – for instance, full post images of the 
changed or new rows can live in the buffer cache, on disk 
or in the redo log; they may also live in in-memory caches 
built for optimizing query execution by providing faster 
data access.  

The dependency between tasks is defined as follows: 
 

Definition 2: A query-task qi and/or update-task uj 

depends on update- task uk if and only if (1) there is a 

common data object, and (2) uk is executed before qi and 

uj. 
 

We model the set of tasks as workflows: 
 

Definition 3: A workflow is a set of tasks that has 
acyclic dependency relations. 
  

A single task may then be logically present in multiple 
workflows. Figure 1 shows an example of seven tasks that 
form four workflows. The Customer update-1 task, 
belongs to two workflows, the first (blue) and the second 
(red) one. Each task (see Figure 2) has a deadline and a 
cost. The deadline is primarily execution driven (i.e., 
driven from estimated time-cost if executed in the primary 
database). 

Definition 4: The deadline di  of a query-task qi  is its 

estimated execution cost on the primary database (ci,src). 

The deadline di of an update-task ui is 
–   Infinity, if there is no query that depends on ui  

–   min{dj , for all j, such that. query qj depends on ui,}. 
  
 

 
  

 
 
 
 
 
 
 
 

Figure 2. System Model – Individual Task  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. System Architecture 

 
A deadline of an update-task may change, depending 

on arrival (addition) and departure (finish execution) of 
depending query-tasks. A depending query may finish 
before the update task it depends on, only if it is executed 
in the primary database, i.e., in case of fallback.  

Note that the definition of cost of a query fragment is 
not the focus of this paper; here we rely on the fact that 
heterogeneous systems of our focus use a cost-based 
optimizer for planning a query and they are extended with 
cost models for execution of different query operators on 
the accelerator.  

What is novel, however, is the usage of a query 
fragment cost as a deadline. In our implementation, it was 
a challenge to maintain, the query fragment cost as we 
shall discuss in Section IV. Similarly, the cost model for 
update tasks is not the focus of this paper. We rely on the 
fact that such cost models are practical, and we utilized 
such cost models in our prototype. 
 
B. Change Propagation Scheduler– High Level  
We assume a single propagation process with a single 

Propagation Priority Queue (PPQ) for the single -instance 

case. Figure 3 shows the System Architecture of this case. 

It shows that the scheduler - of queries and updates - runs 

in a separate process. It maintains its priority queue and 

tasks metadata, including dependency, in its process  
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Figure 4. Communication Between Foreground And The  

Scheduler Process 

 

private memory area. The query foreground processes 

communicate with the scheduler process to add tasks and 

receive scheduling decisions. This communication is 

depicted in Figure 4. 

When a query is submitted for execution in the 

primary database, the query compiler determines which 

query fragments can be executed in the target database to 

boost performance. The foreground process then 

communicates to the scheduler each query fragment as a 

query-task, providing its metadata (i.e., cost, deadline, 

data objects, etc.). 

Similarly, when a DML is submitted in the source 

database, updates for each data object are captured. At 

commit time, an update task is communicated to the 

scheduler process. Upon receiving a task, the scheduler 

updates the priority queues and tasks dependency 

metadata. When a DML task is due for execution, the 

scheduler dispatches the task shipping the updates to the 

secondary database. For query-tasks, on the other hand, 

the scheduler makes one of three decisions: (1) proceed to 

execute in secondary database, (2) fallback to execute on 

primary database, or (3) Wait. The Wait decision is 

basically wait for other higher priority queries, or to wait 

for update-task(s) this query depends on to be propagated 

to the secondary database first. In the following Section 

we provide the details of the scheduler for a single 

instance case. 
 

IV. QUERIES AND DML SCHEDULER – DETAILS 
 
In this section we detail the objectives and design for the 

scheduler. 

 A. Scheduler Objective  
Our scheduler has two objectives: (1) maximize hit 

ratio, and (2) minimize query response time as perceived 

by the end-user. The hit ratio is the percentage of query 

tasks that execute within their deadlines vs. the total 

number of query tasks. That is the ratio of queries that 

meet the deadline. A task that falls back to the primary 

database is considered a miss. This scheduling objective 

also encapsulates maximizing the usage of the secondary 

database, which is installed to boost performance of 

complex analytical queries.  
Existing approaches typically utilize some hybrid 

form of such objectives, such as MIX [2], Multiple 

Attribute Integration [4], and EDF & Random Hybrid [5]. 

All these hybrid models, however, require system 

parameters. An adaptive, parameter-free hybrid approach 

to minimize tardiness was proposed in [3]. We need a 

parameter-free adaptive hybrid method to maximize the 

hit -ratio. Shortest Remaining Processing Time (SRPT) 

scheduling policy is proven to provide minimal response 

time in case of soft-deadlines [6], i.e., when a task is 

allowed to run beyond its deadline. Our case however is 

similar to the hard-deadline one, with queries falling back 

to the primary. 

To achieve the above two scheduling objectives, we use 

the invert of deadline times its secondary database cost 

(pi=1/(di×ci,sec)) for the task priority. Using the inverted 

deadline gives higher priority to more urgent tasks, to 

maximize hit ratio. Whereas using the inverted cost 

(similar to SRPT) gives higher priority to tasks that would 

minimize response time. 

B. Scheduler Priority Queue  
Each task that has no dependency, i.e., depends on no 

update-tasks, is inserted in the priority queue to represent 
a workflow. Upon task addition, (1) task dependency 
information is detected, and (2) if existing task priority 
changes (e.g., if the new task is a query then the deadline 
of update tasks it depends upon may get updated), then (a) 
the task is inserted in the list of tasks, and (b) the priority 
queue is updated.  

The priority queue is updated when a new ready task is 
inserted, and when existing tasks’ priority change, to 
reflect new priorities. At each scheduling point, the task 
on top of the priority queue is selected as the next task to 
be executed in secondary database. Note that for parallel 
tasks we dispatch a number of tasks that equals to the 
execution parallel degree. 

Upon completion of a task, the workflow is updated: 
the ready task is deleted from list of tasks and from the 
priority queue. The dependency information is updated for 
the task(s) that depends on this completed task. If there 
are new ready task(s), then they are inserted into the 
priority queue.  

Whenever the priority queue is updated, all the query-
tasks in the priority queue below where the update took 
place are examined if they can still meet the deadline. If 
not, the task is scheduled to fallback, as it would take 
longer if it waits to get executed in the secondary 
database. 
 
C.  Cost Model  

A precise estimation of query and DML costs is 

crucial for the success of our proposed scheduler, which 

makes cost-based decisions. Estimating a query cost is a 

very hard problem. However, similar to query optimizers, 
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all that we need is a reliable cost model that enables us to 

compare costs of different tasks. That is, accuracy of the 

cost-model is relative in a sense. Therefore, we propose to 

use the compiler’s estimated cost as the cost of a query 

task. In particular, the cost of a query fragment if executed 

in the secondary database is the query-task cost. Similarly, 

we use the primary database cost of this query fragment 

(fallback cost) to be the deadline of this query-task. 
Estimating the fallback cost is not straightforward 

because we expose both the access path and the join order 
in the secondary system during query optimization in the 
primary. That is, there is no separate in-primary vs. in-
secondary query optimization. As a result, we can retain 
an access path type - such as full table scan vs. index-
based scan - as well as the join order that were estimated 
as best in the secondary system, while later on during 
optimization we decide to execute a larger fragment in the 
primary system. To provide accurate fallback cost the 
optimization phase had to be enhanced to remember at 
any point the best purely in-primary cost of each access 
path and join. 

For update-tasks, factors that affect the cost include: 
(1) update granularity: cardinality of the delta relation, (2) 
network bandwidth/speed, (3) overhead to prepare the 
changes, and (4) overhead to apply the changes at the 
secondary database. 

These cost factors are extremely hard to estimate and 

are workload and system-specific. Our proposed effective 

and accurate cost model is simply the moving-average 

load rate. Specifically, we maintain the load-rate as 

follows. While loading the table for first time to the 

secondary database, we observe the overall load rate LR, 

which measures how long it takes to load a single row of 

that table, on average. Then, we use LR times the number 

of updated rows as the cost for each DML task on that 

table. Once this change is uploaded, we measure the 

actual new load rate: LR’. LR is then updated to be the 

average of LR and LR’ to have a new, more accurate load 

rate to estimate the cost of future DML tasks on this table. 

This way, if a table grows over time that its updates 

become more expensive, this will be captured by this cost 

model, and vice versa. In the next section we detail why it 

is possible for us to know the accurate number of rows for 

each DML task and why we do not need to rely on any 

typical secondary structure – like indexes – for this 

purpose. 

V. IMPLEMENTED PROTOTYPE 
 

We have implemented a prototype [18] of the 
proposed scheduler infrastructure and the above detailed 
scheduling policy in the Oracle general purpose database 
system as the primary database and the recent RAPID 
Data Processing Unit (DPU)-based accelerator system 
developed at Oracle Labs [19] 
[20]. The RAPID accelerator is a main-memory system 
with a bandwidth-optimized architecture for big data 
computation. Relations in the primary are loaded into the 

DPUs at a given SCN, by reformatting the data in a 
hybrid-columnar format. In the primary database, changes 
post initial load are represented in memory resident 
transactional journals, just as typically maintained for in-
memory optimized RDBMS relations [9]. As rows are 
logged into the journals, corresponding tasks are defined 
and messaged to the scheduler.  
The scheduler is designed to run on both the primary and 
the secondary (the accelerator). The primary-side 
scheduler is the main scheduler that captures and 
maintains dependency and priority information, and 
decides when and what queries and DMLs to push to 
RAPID. It also communicates the dependency and priority 
information to the RAPID-side scheduler. During the 
initial load into the secondary system, data is scanned in 
parallel from the primary instance; whether the scan 
happens through the buffer cache, or from direct path 
from secondary storage, or directly from in-memory 
compression units using the IMCU Oracle format, we read 
the data at the level of the scan row source level; at this 
point data is vectorized, encodings can be applied, and 
distributed to the secondary system. In this process we 
know the exact number of rows we load into the Rapid 
nodes, and we maintain this information, together with 
encoding statistics, into a segment of each instance shared 
memory, which we call the Rapid global state. For each 
table loaded into the secondary system we enable in-
memory journal tracking – by using the already developed 
Oracle mechanism to keep in the shared memory of each 
Oracle instance per relation journals of changed rows at 
their corresponding SCNs. Note that this journaling 
activity happens even if we do not require the relation to 
be maintained in IMCU formats – that is, for the purpose 
of the prototyped in-memory journaling feature has been 
decoupled from in-memory data encoding. As the journals 
are scanned and DML tasks are generated, we keep track 
of the exact number of rows that have been journaled at 
each SCN, per relation. This information is available 
therefore to the scheduler, and it is also used to update the 
number of rows loaded into the secondary and 
compression statistics in the Rapid global state. Once the 
global state statistics are updated and changes are 
acknowledged applied by the Rapid nodes, the in-memory 
journals can be truncated in case of memory pressure. For 
the case of direct insert/load, we make an exception and 
do not journal the changes; instead, entire data blocks for 
the appended data are scanned and changes are applied in 
Rapid before the transaction ends in the primary; 
nevertheless, in this case we also know the exact number 
of rows sent to Rapid and we can update the statistics in 
the global state. On a general note, there is no concept of 
pieced row in Rapid, as data is maintained in hybrid 
columnar format. If a pieced row is encountered during 
initial load or during direct path insert, the next piece is 
scanned recursively until the entire row is constructed, 
and then each column within the row is added to the 
respective column vector, before the vector is compressed. 
When scanning journaled rows, if a row is pieced we 
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similarly traverse the links in the journal for retrieving all 
the pieces. The typical case when pieced rows are 
recurrent is when the shape of the relation is such that 
majority of rows are pieced (for instance, when the 
number of columns exceeds a certain limit); in such cases, 
the initial load as well as DML tasks significantly involve 
pieced rows. As the per-row initial cost for a relation is 
computed during initial load, for such typical cases this 
cost reflects the overhead of handling multiple pieces 
before forming the full row image and this overhead 
applies to DML tasks as well. 

The RAPID-side scheduler is a distributed 
independent version of the scheduler that acts as an 
actuator: independently on each DPU, a scheduler 
instance makes sure that tasks are run in the right order 
communicated by the primary-side scheduler. By running 
independently, we avoid any overhead of coordination or 
hand-shaking protocols.  

The primary-side scheduler was implemented as a 
background process. We used basic data structures to 
implement the scheduler metadata. In particular, the list of 
tasks and priority queue were implemented as linked lists. 
We relied on existing database system layer for inter-
process communication. The goal of this prototype was to 
prove functionality and the relative benefits of the 
scheduler module. Our implementation was for single-
instance and no parallelism, for the primary-side 
scheduler. In this prototype, we implemented the cost 
model and scheduling policy explained above. However, 
we implemented the hooks to enable the addition of 
different scheduling policies. In particular, the scheduling 
policy is configured as an Oracle startup parameter. 

 

D. Preliminary Results  
Using the 22 standard TPC-H [28] queries and the 

TPC-H refresh streams, we were able to demonstrate that 
the scheduler sometimes decides for certain query-tasks to 
fallback to primary database, when it is pending on many 
update tasks that cost more than the query deadline. 
Surprisingly this was the case for very small or simple 
queries, in addition to the intuitive case where query is 
pending on large updates. The reason is that for simple 
queries, the cost is typically very small, and hence the 
deadline is very close. Thus, for any reasonably large 
update, the query would fall back to the primary system.  
We also measured the scheduler overhead on X4 

machines, and with this basic implementation and 

experiments on small scale TPC-H (up to F=64), we 

found that the total query overhead ranges between 50 and 

100 micro-seconds. Most of this overhead is due to inter-

process communication, whereas the overhead of 

maintaining the scheduler metadata (i.e., the priority 

queue and the list of tasks) was in the order of few micro-

seconds. Further, the overhead of maintaining the list of 

task as the priority queue grows was almost flat, i.e., 

grows very slowly as the priority queue grows. This 

shows that a scheduler module is feasible, beneficial, and 

has very minimal overhead that can be further optimized. 

The expectation is that the scheduler overhead and load do 

not correlate to the workload size, since an update-task or 

a query-task is still a single task weather it processes 

gigabyte or petabytes of data.  

VI. CONCLUSIONS 
 
In this paper, we proposed a novel infrastructure for 

prioritizing and scheduling queries and updates between a 

primary and secondary database. We detailed the system 

model and architecture for single instance primary 

database case. We gave details of our implemented 

prototype in which we adopt a scheduling policy that 

maximizes hit ratio and minimizes response time. The 

runtime overhead incurred due to the scheduler activity 

was measured using TPC- H queries, with no code 

optimizations, and results show that the scheduler module 

has negligible overhead. This demonstrates that the 

scheduler is feasible, beneficial and effective. 
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