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Abstract—Whenever column-oriented main-memory databases 
require both, a space efficient storage of strings and an 
efficient evaluation of operations on these strings, a 
compressed indexed sequence of strings might be a good choice 
to fulfill these requirements. A data structure that compresses 
the string sequence and at the same time supports efficient 
evaluation of basic read and write operations is the Wavelet 
Trie. In this paper, we extend the Wavelet Trie by different 
set-oriented read operations relevant for column-oriented 
databases like union, intersection and range-queries, and 
describe how they can be implemented on top of the Wavelet 
Trie. Furthermore, in our evaluations, we show that 
performing typical operations on string sequences like 
searching for exact matches or prefixes, range queries, insert, 
or delete operations, and operations on two string sequences 
like merge or intersection, can be performed faster directly on 
the Wavelet Trie than simulating these operations on bzip2- or 
gzip-compressed data. 

Keywords- Column-oriented database management systems; 
compression; compressed indexed sequences of strings. 

I. INTRODUCTION  
Column-oriented DataBase Management Systems 

(DBMS) organize their data tables within column stores, 
each containing an ordered sequence of entries. This data 
organization technique is preferable especially when used 
for read-intensive applications like data warehouses, where 
in order to analyze the data, queries and aggregates have to 
be evaluated on sequences of similar data contained in a 
single column [1]. A second advantage of column-oriented 
data stores is that they can be compressed stronger than row 
oriented data stores, as each column and therefore each 
contiguous sequence of data contains data from the same 
domain and thus contains less entropy. 

As long as main-memory availability is a run-time 
bottleneck, data compression is beneficial to virtually 
“enhance” the capacity of the main-memory, i.e., column-
oriented data stores can benefit from storing their string 
columns in form of compressed indexed sequences of 
strings. A major challenge when using a compressed data 
structure for a string column is to support typical database 
operations in efficient time without full decompression of 
the compressed data structure. 

Column stores like, for instance, C-STORE [1], Vertica 
[2] or SAP HANA [3] typically rely on combinations of 
compression techniques like Run-Length Encoding, Delta 

Encoding, or dictionary-based approaches. These 
compression techniques do not contain a self-index, but 
have to occupy additional space to store an index that allows 
for efficient operations like, for instance the evaluation of 
range queries. When main-memory availability is the major 
run-time bottleneck, we consider this to be a disadvantage.  

In contrast, the Wavelet Tree is a self-index data 
structure and can be regarded as an enhancement of variable 
length encodings (e.g. Huffman [4], Hu-Tucker [5]) that 
rearranges the encoded string S in form of a tree and thereby 
allows for random access to S. Variations of the Wavelet 
Tree use the tree topology to enhance Fibonacci encoded 
data [6] or Elias and Rice variable length encoded data [7]. 
In [8] an n-ary Wavelet Tree is used instead of a binary 
Wavelet Tree (e.g., a 128-ary Wavelet Tree by using bytes 
instead of bits in each node of the Wavelet Tree). A pruned 
form of the Wavelet Tree is the Skeleton Huffman tree [9] 
leading to a more compressed representation. Although 
avoiding the need for an additional index, Wavelet Trees 
have the disadvantage that common prefixes in multiple 
strings are stored multiple times.  

This disadvantage is avoided by the Wavelet Trie 
[10][11], which is a self-index, i.e., avoids the storage of 
extra index structures, and can be regarded as a 
generalization of the Wavelet Tree [12] for string sequences 
S and the Patricia Trie [13]. That is why in this paper, we 
use a Wavelet Trie to store compressed indexed sequences 
of strings.  

Wavelet Tries support the following basic operations 
that are used within column-oriented DBMS: the operations 
access(n) that returns the n-th string of this column and that 
is used for example when finding values of the same 
database tuples contained in other columns, or 
search(s)/searchPrefix(s) that searches for all positions 
within the current column that contains the value s (or that 
have the prefix s). Beside these elementary search 
operations, Wavelet Tries support elementary data 
manipulation operations on the compressed data format as, 
e.g., to insert a string at a given position, to append a string, 
or to delete a string from the sequence. 

[10] and [11] introduce the concept of the Wavelet Trie 
and discuss the complexity of the following operations:  
• Access(pos) returns the pos-th string of the sequence 
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• Rank(s, pos)/RankPrefix(s, pos) return the number of 
occurrences of string s (or strings starting with prefix 
s) up to position pos 

• Select(s, i)/SelectPrefix(s, i) returns the position of the 
i-th string s (or string starting with prefix s) of the 
sequence 

• Insert(s,  pos) inserts the string s before position pos 
• Append(s) appends s to the end of the sequence 
• Delete(pos) deletes the string at position pos 

which is sufficient to support the most elementary 
database operations in column stores.  

However, in order to support more enhanced data 
analysis, efficient query processing should go beyond these 
elementary operations. Here, the main remaining challenge 
is to support efficient complex read operations like range 
queries, union, and intersection on column stores without 
decompression of large parts of the compressed data. 

Our goal is that these operations on compressed data are 
executed not only with a smaller main-memory footprint, 
but also faster on compressed data compared to a 
decompress-read approach that first decompresses the data 
before a read operation (or write operation) is done. 

Our first contribution is to extend the Wavelet Trie 
[10][11] published in 2012 by Grossi and Gupta by concepts 
and efficient implementations of enhanced database 
operations (intersection, union, and range queries). 

Our second contribution is an evaluation, comparing the 
performance of the Wavelet Trie with bzip2 and gzip. We 
show that performing typical operations on string sequences 
like searching for exact matches or prefixes, range queries, 
or update operations like insertion or deletion, or operations 
on two string sequences like merge or intersection, directly 
on the Wavelet Trie is faster than simulating these 
operations on bzip2- and gzip-compressed data.  

In Section 2, we introduce the basic concepts used in the 
following sections. In Section 3, we explain different 
operations on the Wavelet Trie and discuss how to 
implement them. In Section 4, we show an extensive 
performance evaluation in which we compare the 
performance of these operations on the Wavelet Trie with 
the performance of the gzip and bzip2 compression. 

 

II. BASIC CONCEPTS  
Similarly to [10][11], we define the Wavelet Trie as 

follows: 
 
Definition (Wavelet Trie): Let S be a non-empty, prefix 

free sequence of binary strings, S=(s0,..., sn), si ∈ {0,1}*, 
whose underlying string set Sset={s0,…,sn} is prefix-free. 
The Wavelet Trie of S, denoted WT(S), is built recursively 
as follows: 

(i) If the sequence consists of a single element only, i.e., 
s0 = … = sn, the Wavelet Trie is a node labeled with α = s0 = 
… = sn. 

(ii) Otherwise, let α be the longest common prefix of S. 
For any 0 ≤ i < n, we can write si = αbiγi, where bi is a single 
bit. For b ∈ {0,1}, we can then define two sequences Sα0 = 
(γi | bi=0) and Sα1 = (γi | bi=1), depending on whether the 
string si begins with α0 or α1, and the bitvector β = (bi). The 
bitvector β discriminates whether the suffix γi is in Sα0 or 
Sα1.Then, the Wavelet Trie of S is the tree whose root is 
labeled with α and β, and whose children (respectively 
labeled with 0 and 1) are the Wavelet Tries of the sequences 
Sα0 and Sα1. 

 
Remarks:  

    The requirement that S has to be a prefix free 
sequence, i.e., no string si is allowed to be a prefix of a 
string sj, is not a critical restriction, as a prefix free set of 
strings can be easily constructed for any set S, by adding a 
terminal symbol not occurring in S to each string s ∈ S. 

    If the sequence consists of a single element only, we 
know by the number of corresponding bits within the β of 
the parent node the size n of the sequence. If the node does 
not have a parent node, we cannot derive the size of the 
sequence. In that case, we could either store the size 
externally or add a binary string snew, snew≠si, i ∈ {0,…,n} to 
the end of the sequence S. 

In order to apply the Wavelet Trie to a sequence of 
words W=(w0,…,wn), we compute the sequence of binary 
strings SW=(ht(w0),…,ht(wn)), where ht(w) applies the Hu-
Tucker algorithm [5] to the word w, yielding a 
lexicographic Huffman code for w, i.e., ht(wi) <lexi ht(wj) ⇔ 
wi <lexi wj, where <lexi denotes “less than in lexicographical 
order”. 

Whenever we describe operations that work on two 
Wavelet Tries, we assume that both Wavelet Tries are based 
on the same Hu-Tucker-Encoding. 

III. DATABASE OPERATIONS ON TOP OF THE WAVELET TRIE 
In the following sections, we denote the left child of a 

Wavelet Trie node as its 0-child, and the right child of a 
Wavelet Trie node as its 1-child. 

A. Search/Query Operations 

This operation searches for the positions of all binary 
strings equal to or starting with the given binary string s. 

As an auxiliary method, we use the generalization of the 
select operation to a list of positions: B.select(b, 
(p1,…,pn))=(B.select(b,p1),…,B.select(b,pn)), where 
B.select(b, pn) denotes the position of the pn

th bit b in a 
binary string B.  

Figure 1. Search operation, if α is a prefix of search string s.  
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In order to search for all positions of the string s in the 
Wavelet Trie’s root node, we go down the tree representing 
the Wavelet Trie recursively, until we have found all bits of 
the binary string s. If we require an exact match, we have 
found all bits, and we have reached the end of the α of a leaf 
node, we “translate” the positions of the leaf node into the 
corresponding positions of the root node with the help of the 
select operation. That is, if r=(p1,…,pn) is the result 
computed for the n’s b-child, then n.β.select(b, (p1,…,pn)) is 
the result for node n. Similarly, if we search for all positions 
of binary strings starting with the given prefix s, and have 
found all bits of s on the current path in the Wavelet Trie, 
we do not care, whether or not we have reached a leaf node, 
and translate the current positions into positions of the 
Wavelet Trie’s root node. 

In more detail, the search works as follows: Let the 
current node n with label α (and β, if n is no leaf node) have 
a parent node pa, such that n is the b-child of pa and β of pa 
contains k b-bits and assume that we search for binary 
strings starting with a prefix s. 

If s=α, or s is a prefix of α, we return the list of positions 
(1,…, k). 

Furthermore, if s≠α, α is a prefix of s and n is no leaf 
node, s is of the form s=αbγ (with a potentially empty γ; c.f. 
Figure 1). In this case, we perform the search operation for 
binary string γ on n’s b-child, resulting in a list of positions 
(p1,…, pn). In this case, we return the list of positions 
n.β.select(b, (p1,…,pn)). 

If none of the above cases matches, the Wavelet Trie 
does not contain a binary string matching the search criteria, 
and we return an empty list of positions. 

B. Between/Range Queries (less than, greater than) 

The operation between(s1,s2) returns a set of positions of 
strings r, such that s1≤r≤s2. Similarly, the operation 
lessThan(s) returns a set of positions of strings r, such that 
r≤s, and the operation greaterThan(s) returns a set of 
positions of strings r, such that r≥s. In this section, we 
explain how to implement the operation greaterThan(s). To 
adapt this operation in order to implement between(s1,s2) or 
lessThan(s) is quite straightforward. 

Again, we use as auxiliary operations the generalization, 
B.select(b, (p1,…,pn)) := (B.select(b, p1),…,B.select(b, pn)), 
of the select operation to a list of positions. Furthermore, we 
use the operation B.selectAll(b) := 
B.select(b,(1,…,rank(b,|B|)) which returns the positions of 
all bits b within the sequence B. 

Let the current node n be a node with labels α and β. 

If α=s or s is a prefix of α, i.e., α=sbδ (with a potentially 
empty δ), we know that all strings represented by the 
Wavelet Trie rooted in n are greater than or equal to s, i.e., 
we return the set of positions {1, …, |β|}. 

In the other case, if α is a prefix of s, i.e., s= αbλ, we 
have to consider the value of b. If b=1, all strings 
represented by the Wavelet Trie rooted in n’s 0-child are 
less than s. Therefore, we have to apply the operation 
r’=greaterThan(λ) to n’s 1-child n1, and return r=β.select(1, 
r’). If b=0, the result set r consists of two sub-sets r1 and r2 
with r=r1∪r2 which are computed as follows. As all strings 
represented by the Wavelet Trie rooted in n’s 1-child are 
greater than s, r1= β.selectAll(1). Afterwards, we have to 
apply the operation r’=greaterThan(λ) to n’s 0-child, to get 
r2= β.select(0, r’) (c.f. Figure ). Finally, we return r=r1∪r2. 

Note that we can similarly create a Wavelet Trie that 
consists of strings greater than or equal to s, if we do not 
only return the list of results, but delete all strings not 
belonging to a result positions. 

C. Intersection 

This operation computes the set-intersection of two 
Wavelet Tries t1 and t2, i.e., it computes a Wavelet Trie that 
represents a lexicographically ordered list of all strings s 
that occur in both, t1 and in t2. 

Let n1 be the current node of t1 and n2 be the current 
node of t2, where n1 has the labels α1 and β1 and n2 has the 
labels α2 and β2. 

If α1=α2 and n1 and n2 are leaf nodes, return n1 as 
resulting Wavelet Trie. 

If α1=α2 and n1 and n2 are inner nodes, compute the 
result node r0 of the intersection of the 0-child of n1 and of 
the 0-child of n2 and the result node r1 of the intersection of 
the 1-child of n1 and of the 1-child of n2. Then return a new 
node n, with α=α1, β consists of |r0| 0 bits followed by |r1| 1 
bits, and n has r0 as 0-child and has r1 as 1-child. 

Let now either α1 be a prefix of α2 or vice versa. Let us 
assume w.l.o.g. that α2 is a prefix of α1, i.e., α1=α2bγ (c.f. 
Figure ). In this case, we change α1 into α1=γ and intersect 
this new node with the b-child of n2. If after the intersection, 
the β of the result node contains only 1 bits or only 0 bits, 
we collapse it with its single child node b-child nb and 
thereby delete its (1-b)-child. 

Let n0 be the 0-child of nb and n1 be the 1-child of nb. Let 
furthermore αb and βb be the labels of node nb. Then the new 
labels of node n are α=αnbαb and β=βb. Furthermore, n0 
becomes the new 0-child of n and n1 becomes the new 1-
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Figure 3. Intersection if α1 is a prefix of α2. 

Figure 2. greaterThan if α is a prefix of search string s. 
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child of n. Figure  shows the state before and after 
collapsing the node for b=0. 

In all other cases, the intersection is empty. This 
includes the case that neither α1 is a prefix of α2 nor α2 is a 
prefix of α1 nor α1=α2 and the case that α1=α2 and exactly 
one node of n1, n2 is a leaf node and the other is an inner 
node. 

 

D. Merge/Append + Union 

This operation unites/merges two Wavelet Tries t1 and t2, 
i.e., it inserts the string sequence s2 represented by Wavelet 
Trie t2 at a given position pos into the string sequence s1 
represented by Wavelet Trie t1. Note that this operation is 
only defined if the set s1∪s2 is prefix free.  

Let n1 be the current node of t1 and n2 be the current 
node of t2, where n1 has the labels α1 and β1 and n2 has the 
labels α2 and β2. 

If α1=α2 and n1 and n2 are leaf nodes, nothing has to be 
done, and the operation is finished. If α1=α2 and both nodes 
are inner nodes, we insert β2 at position pos into β1, merge 
the 0-child of n2 at position β1.rank(0,pos) into the 0-child of 
n1 and merge the 1-child of n2 at position β1.rank(1,pos) into 
the 1-child of n1. Note that the cases that n1 is a leaf node, 
but n2 is not a leaf node, and vice versa, cannot occur, as 
s1∪s2 is prefix free. 

If α1 is a prefix of α2, i.e., α2=α1bδ, we insert b |β2| times 
at position pos into β1. We change α2 into δ and merge n2 
into the b-child of n1 at position β1.rank(b,pos). 

If α2 is a prefix of α1, i.e., α1=α2bλ, we create a new 
node n with labels α=α2 and β consisting of |β1| bits b in 
which we insert β2 at position pos. The b-child of the node n 
is then the result of merging the b-child of n2 at position 
β1.rank(b,pos) into a node with labels α=γ and β=β1, having 
the children of n1 as children. The (1-b)-child of the node n 
is the (1-b)-child of n2. 

Otherwise, α1 and α2 share a common prefix. Let γ be 
the common prefix of α1 and α2, and let us assume w.l.o.g. 
that α1=γ1δ and α2=γ0λ (c.f. Figure ). Then, we create a 
new node n with labels α=γ and β consisting of |β1| bits 1 in 
which we insert |β2| bits 0 at position pos. The 0-child of 
node n is then a node with α=λ and β=β2 having the 
children of n2 as child nodes, and the 1-child of node n is a 
node with α=δ and β=β1 having the children of n1 as child 
nodes. 

E. Insert/Append 

This operation inserts a binary string s into the Wavelet 
Trie at position pos (or appends it to the end, if pos refers to 
a position after the number i of entries in the Wavelet Trie. 

We consider the current node n of the Wavelet Trie 
(initially the root node) having the labels αn and βn and the 
binary string s to be inserted at position pos. As we require 
the Wavelet Trie before and after the insertion to be prefix 
free, we know that s must not be a prefix of αn. 

If αn is a prefix of s, i.e., s=αnbδ, where b is a bit, we 
insert bit b at position pos into βn, and insert the binary 
string δ into the b-child of n at position rank(b,pos). 

If n is a leaf node of the Wavelet Trie, and αn=s, we are 
completed and do not need to do anything else. 

Let γ be the common prefix of αn and s and let us 
assume w.l.o.g. that αn=γ1δ and s=γ0λ. Note that γ might 
even be an empty binary string. Let n0 be the 0-child of n, 
and let n1 be the 1-child of the current node. In this case, we 
change n into a node with α=γ, and β consists of |βn| 1-bits 
and one 0-bit at position pos. The new 0-child of n is a node 
n’ with α=λ. The new 1-child of n is a node n’’ with α=δ 
and β=βn. n’’ gets n0 as 0-child and n1 as 1-child. Figure  
shows this case after having inserted s into αn.  

F. Delete 
This operation deletes the binary string spos at position 

pos from the Wavelet Trie. 
In order to delete the binary string spos at position pos 

from the current node n (initially the root node), we delete 
the bit b at position pos from β. If β afterwards still contains 
0-bits and 1-bits and n’s b-child is not a leaf node, we 
continue to delete the bit at position rank(b,pos) from n’s b-
child. 

If β contains either only 0-bits or only 1-bits (i.e., β=0* 
or β=1*, in general β=b*), we have to collapse the current 
node with its b-child nb and thereby delete its (1-b)-child as 
described in Section 2.  

Figure 5. Appending Tries t1 and t2 if α1 and α2 share a common prefix. 
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IV. EVALUATION 
We compared our implementation of the Wavelet Trie 

with the common compressors gzip and bzip2. We did not 
compare our implementation with delta-encoding as delta-
encoding has the following disadvantage. Delta-encoding 
cannot support any of the range queries, i.e., our prefix 
search (II.A), Between, LessThan, and GreaterThan (II.B), 
because equal strings are encoded different, depending on 
the previous string. Even intersection (II.C) is not 
supported. Therefore, delta-encoding does not meet our 
requirements.  

The dictionary-based approach, assigning a segregated 
Huffman code to each entry results in a bit sequence that 
supports alphabetical comparisons. Run-length encoding 
compressing longer bit sequences also supports alphabetical 
comparisons. Both approaches are orthogonal and 
compatible to our approach, i.e. can be combined with it. As 
therefore, a performance comparison with dictionary-based 
approaches or with RLE is not useful, we have compared 
our approach with the powerful and widely use compressors 
gzip und bzip2. 

We ran our tests on Mac OS X 10.5.5, 2.9 GHz Intel 
Core i7 with 8 GB 1600 MHz DDR3 running Java 1.8.0_45. 

To evaluate rather text-centric operations, we used 114 
texts of the project Gutenberg [14] with file sizes from 78 
kB up to 7.3 MB to build a heterogeneous corpus. In order 
to simulate database operations of a column-oriented 
database, we used author information extracted from DBLP 
[15]. Out of these informations, we generated lists 
consisting of 2500 up to 100000 authors. 

In all time measurements, we performed 10 redundant 
runs and computed the average CPU time for all these runs. 

A. Compression and Decompression 

Figure 7. Compression ratio. 

When evaluating the pure compression and 
decompression of Wavelet Trie, gzip and bzip2, we get the 
result that bzip compresses strongest while Wavelet Trie 
compresses worst (c.f. Figure ), and that gzip compresses 
and decompresses fastest while Wavelet Trie compresses 
and decompresses slowest (c.f. Figure 8).  

The main difference between the Wavelet Trie and the 
generic compressors is that the Wavelet Trie supports many 
operations on the compressed data, while gzip and bzip2 
require to at least decompress the compressed data first, and 
for some operations to recompress the modified data 

afterwards. This means, there are a lot of applications that 
do not require the Wavelet Trie to decompress, as the 
concerning operations can be evaluated on the compressed 
data directly. We show the benefit of using the Wavelet Trie 
in the following subsections, in which we evaluate the 
performance of  the different operations. 

B. Insert and Delete 
As a first operation, we compared the insert and the 

delete operation directly on the Wavelet Trie with the pure 
decompression time of bzip2 and of gzip. We performed 
these operations on the documents of our Gutenberg corpus. 
Figure 9 shows the results. The insertion of the word 
‘database’, which does not occur in any of the documents, 
as 50th word is faster than the pure decompression of bzip2 
and as fast as the pure decompression of gzip. The same 
holds for the deletion of the 50th word. Please consider that 
the compression or decompression times for bzip2 and gzip 
neither contain the time needed to insert (or to delete 
respectively) a string nor the time needed to recompress the 
modified results. 

Figure 9. (a) Insertion and (b) Deletion in the Wavelet Trie compared to 
bzip2 and gzip decompression time.  

C. Search and searchPrefix  
Figure 10 shows the search times for (a) a single word 

and (b) all words starting with a given prefix directly in the 
Wavelet Trie compared to the time needed for the pure 
decompression of bzip2 and gzip. We searched within our 
Gutenberg corpus for all positions of the word ‘file’, which 
is contained in each file, and for all positions of words 
starting with the prefix ‘e’. Although the times for bzip2 and 
gzip comprise the pure decompression, i.e., no search 
operation is performed on the decompressed bzip2 or the 
decompressed gzip file, the search directly on the Wavelet 
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Figure 8. Compression and decompression time. 
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Trie is faster than the pure decompression time of bzip2 and 
gzip. 

Figure 10. Search times for words in the Wavelet Trie compared to pure 
decompression time of bzip2 and of gzip. 

D. Range queries 

 
Figure 11 Range queries on the Wavelet Trie compared to pure 

decompression time of bzip2 and gzip. 

Figure 11 shows the results of comparing the search 
times (a) for words greater than ‘e’ but less than ‘f’ and (b) 
for words greater than ‘identification’ and less than 
‘identifier’ directly on the Wavelet Trie with the pure 
decompression time of bzip 2 and gzip. These operations 
were again evaluated on the Gutenberg corpus. Although the 
times for bzip2 and gzip comprise the pure decompression, 
i.e., no search operation is performed, the search directly on 
the Wavelet Trie is faster than the pure decompression time 
of bzip2 and gzip. The more specific the search query is, 
and thus the smaller the search result, the better is the 
performance benefit of the Wavelet Trie compared to bzip2 
and gzip. 

E. Intersection 
The following tests were performed on our dblp author 

corpus. Figure 12 shows the results of comparing the 
intersection operation on two author lists with the sequence 
of decompression, concatenating the two lists (as we did not 
want to measure a maybe inefficient string intersection 
method), and recompressing the result list of the intersection 
using bzip2 and gzip. We computed the result list of the 
intersection prior to the test runs, i.e., the time needed to 
compute the intersection was not measured. We used two 
different sets of lists: the first is duplicate-free, whereas, in 
the second set, 50% of the list entries of the second list 
occur also in the first list. If the lists are completely disjoint, 
the intersection computed directly on the Wavelet Trie is 
faster than the simulated operation for bzip2 and as fast as 

this operation for gzip. If there is a large overlapping of the 
lists, gzip is faster than the Wavelet Trie, which still is faster 
than bzip2. 

Figure 12. Computing the intersection directly on the Wavelet Trie  
compared to decompression, list concatenation and recompression  

time of bzip2 and gzip. 

F. Merge/Union 

 

Figure 13. Comparison of the time to append two lists for Wavelet Trie, 
bzip2 and gzip. 

Finally, we evaluated the time to append one list to 
another list (c.f. Figure 13) and the time to insert a list at 
position 50 into a second one (c.f. Figure 14).  

Figure 14. Comparison of the time to merge a list into another one for 
Wavelet Trie, bzip2 and gzip. 

We performed both tests for disjoint lists as well as for 
lists that overlap in 50% of the entries. Again, we compared 
the time with the sequence of decompression, concatenating 
the two lists, and recompressing the concatenated list by 
using either bzip2 or gzip. In both cases and for both 
operations, this operation on the Wavelet Trie is faster than 
the simulation of this operation for bzip2 and for gzip. The 
benefit of the Wavelet Trie in comparison to bzip2 and gzip 
is bigger for append operations than for the merge operation 
that inserts one list at a given position into the second one. 
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V. CONCLUSION  
In this paper, we presented and evaluated an extension 

of the Wavelet Trie [10][11] that allows to represent 
compressed indexed sequences of strings. As our 
evaluations have shown, operations like insertion, deletion, 
search queries, range queries, intersection and union can be 
performed on the compressed data as fast as or even faster 
than the simulation of these operations with the help of 
generic compressors like bzip2 or gzip. We therefore 
believe that the Wavelet Trie is a good approach to be used, 
e.g., in column-oriented main-memory databases to enhance 
the storage or memory capacity at the same time as the 
search performance. 
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