
A Column-Oriented Text Database API Implemented on Top of Wavelet Tries

Stefan Böttcher, Rita Hartel, Jonas Manuel
University of Paderborn, Department of Computer Science

Paderborn, Germany
email: {stb@, rst@, jmanuel@live.}uni-paderborn.de

Abstract—Whenever column-oriented main-memory databases
require both, a space efficient storage of strings and an
efficient evaluation of operations on these strings, a
compressed indexed sequence of strings might be a good choice
to fulfill these requirements. A data structure that compresses
the string sequence and at the same time supports efficient
evaluation of basic read and write operations is the Wavelet
Trie. In this paper, we extend the Wavelet Trie by different
set-oriented read operations relevant for column-oriented
databases like union, intersection and range-queries, and
describe how they can be implemented on top of the Wavelet
Trie. Furthermore, in our evaluations, we show that
performing typical operations on string sequences like
searching for exact matches or prefixes, range queries, insert,
or delete operations, and operations on two string sequences
like merge or intersection, can be performed faster directly on
the Wavelet Trie than simulating these operations on bzip2- or
gzip-compressed data.

Keywords- Column-oriented database management systems;
compression; compressed indexed sequences of strings.

I. INTRODUCTION
Column-oriented DataBase Management Systems

(DBMS) organize their data tables within column stores,
each containing an ordered sequence of entries. This data
organization technique is preferable especially when used
for read-intensive applications like data warehouses, where
in order to analyze the data, queries and aggregates have to
be evaluated on sequences of similar data contained in a
single column [1]. A second advantage of column-oriented
data stores is that they can be compressed stronger than row
oriented data stores, as each column and therefore each
contiguous sequence of data contains data from the same
domain and thus contains less entropy.

As long as main-memory availability is a run-time
bottleneck, data compression is beneficial to virtually
“enhance” the capacity of the main-memory, i.e., column-
oriented data stores can benefit from storing their string
columns in form of compressed indexed sequences of
strings. A major challenge when using a compressed data
structure for a string column is to support typical database
operations in efficient time without full decompression of
the compressed data structure.

Column stores like, for instance, C-STORE [1], Vertica
[2] or SAP HANA [3] typically rely on combinations of
compression techniques like Run-Length Encoding, Delta

Encoding, or dictionary-based approaches. These
compression techniques do not contain a self-index, but
have to occupy additional space to store an index that allows
for efficient operations like, for instance the evaluation of
range queries. When main-memory availability is the major
run-time bottleneck, we consider this to be a disadvantage.

In contrast, the Wavelet Tree is a self-index data
structure and can be regarded as an enhancement of variable
length encodings (e.g. Huffman [4], Hu-Tucker [5]) that
rearranges the encoded string S in form of a tree and thereby
allows for random access to S. Variations of the Wavelet
Tree use the tree topology to enhance Fibonacci encoded
data [6] or Elias and Rice variable length encoded data [7].
In [8] an n-ary Wavelet Tree is used instead of a binary
Wavelet Tree (e.g., a 128-ary Wavelet Tree by using bytes
instead of bits in each node of the Wavelet Tree). A pruned
form of the Wavelet Tree is the Skeleton Huffman tree [9]
leading to a more compressed representation. Although
avoiding the need for an additional index, Wavelet Trees
have the disadvantage that common prefixes in multiple
strings are stored multiple times.

This disadvantage is avoided by the Wavelet Trie
[10][11], which is a self-index, i.e., avoids the storage of
extra index structures, and can be regarded as a
generalization of the Wavelet Tree [12] for string sequences
S and the Patricia Trie [13]. That is why in this paper, we
use a Wavelet Trie to store compressed indexed sequences
of strings.

Wavelet Tries support the following basic operations
that are used within column-oriented DBMS: the operations
access(n) that returns the n-th string of this column and that
is used for example when finding values of the same
database tuples contained in other columns, or
search(s)/searchPrefix(s) that searches for all positions
within the current column that contains the value s (or that
have the prefix s). Beside these elementary search
operations, Wavelet Tries support elementary data
manipulation operations on the compressed data format as,
e.g., to insert a string at a given position, to append a string,
or to delete a string from the sequence.

[10] and [11] introduce the concept of the Wavelet Trie
and discuss the complexity of the following operations:
• Access(pos) returns the pos-th string of the sequence

54Copyright (c) IARIA, 2017. ISBN: 978-1-61208-558-6

DBKDA 2017 : The Ninth International Conference on Advances in Databases, Knowledge, and Data Applications

• Rank(s, pos)/RankPrefix(s, pos) return the number of
occurrences of string s (or strings starting with prefix
s) up to position pos

• Select(s, i)/SelectPrefix(s, i) returns the position of the
i-th string s (or string starting with prefix s) of the
sequence

• Insert(s, pos) inserts the string s before position pos
• Append(s) appends s to the end of the sequence
• Delete(pos) deletes the string at position pos

which is sufficient to support the most elementary
database operations in column stores.

However, in order to support more enhanced data
analysis, efficient query processing should go beyond these
elementary operations. Here, the main remaining challenge
is to support efficient complex read operations like range
queries, union, and intersection on column stores without
decompression of large parts of the compressed data.

Our goal is that these operations on compressed data are
executed not only with a smaller main-memory footprint,
but also faster on compressed data compared to a
decompress-read approach that first decompresses the data
before a read operation (or write operation) is done.

Our first contribution is to extend the Wavelet Trie
[10][11] published in 2012 by Grossi and Gupta by concepts
and efficient implementations of enhanced database
operations (intersection, union, and range queries).

Our second contribution is an evaluation, comparing the
performance of the Wavelet Trie with bzip2 and gzip. We
show that performing typical operations on string sequences
like searching for exact matches or prefixes, range queries,
or update operations like insertion or deletion, or operations
on two string sequences like merge or intersection, directly
on the Wavelet Trie is faster than simulating these
operations on bzip2- and gzip-compressed data.

In Section 2, we introduce the basic concepts used in the
following sections. In Section 3, we explain different
operations on the Wavelet Trie and discuss how to
implement them. In Section 4, we show an extensive
performance evaluation in which we compare the
performance of these operations on the Wavelet Trie with
the performance of the gzip and bzip2 compression.

II. BASIC CONCEPTS
Similarly to [10][11], we define the Wavelet Trie as

follows:

Definition (Wavelet Trie): Let S be a non-empty, prefix

free sequence of binary strings, S=(s0,..., sn), si ∈ {0,1}*,
whose underlying string set Sset={s0,…,sn} is prefix-free.
The Wavelet Trie of S, denoted WT(S), is built recursively
as follows:

(i) If the sequence consists of a single element only, i.e.,
s0 = … = sn, the Wavelet Trie is a node labeled with α = s0 =
… = sn.

(ii) Otherwise, let α be the longest common prefix of S.
For any 0 ≤ i < n, we can write si = αbiγi, where bi is a single
bit. For b ∈ {0,1}, we can then define two sequences Sα0 =
(γi | bi=0) and Sα1 = (γi | bi=1), depending on whether the
string si begins with α0 or α1, and the bitvector β = (bi). The
bitvector β discriminates whether the suffix γi is in Sα0 or
Sα1.Then, the Wavelet Trie of S is the tree whose root is
labeled with α and β, and whose children (respectively
labeled with 0 and 1) are the Wavelet Tries of the sequences
Sα0 and Sα1.

Remarks:

 The requirement that S has to be a prefix free
sequence, i.e., no string si is allowed to be a prefix of a
string sj, is not a critical restriction, as a prefix free set of
strings can be easily constructed for any set S, by adding a
terminal symbol not occurring in S to each string s ∈ S.

 If the sequence consists of a single element only, we
know by the number of corresponding bits within the β of
the parent node the size n of the sequence. If the node does
not have a parent node, we cannot derive the size of the
sequence. In that case, we could either store the size
externally or add a binary string snew, snew≠si, i ∈ {0,…,n} to
the end of the sequence S.

In order to apply the Wavelet Trie to a sequence of
words W=(w0,…,wn), we compute the sequence of binary
strings SW=(ht(w0),…,ht(wn)), where ht(w) applies the Hu-
Tucker algorithm [5] to the word w, yielding a
lexicographic Huffman code for w, i.e., ht(wi) <lexi ht(wj) ⇔
wi <lexi wj, where <lexi denotes “less than in lexicographical
order”.

Whenever we describe operations that work on two
Wavelet Tries, we assume that both Wavelet Tries are based
on the same Hu-Tucker-Encoding.

III. DATABASE OPERATIONS ON TOP OF THE WAVELET TRIE
In the following sections, we denote the left child of a

Wavelet Trie node as its 0-child, and the right child of a
Wavelet Trie node as its 1-child.

A. Search/Query Operations

This operation searches for the positions of all binary
strings equal to or starting with the given binary string s.

As an auxiliary method, we use the generalization of the
select operation to a list of positions: B.select(b,
(p1,…,pn))=(B.select(b,p1),…,B.select(b,pn)), where
B.select(b, pn) denotes the position of the pn

th bit b in a
binary string B.

Figure 1. Search operation, if α is a prefix of search string s.

↵ : �

� : 1 . . . 101 . . . 1

↵ : � ↵ : �

� : �n

n0 n1

↵ : ↵n

� : (0)

↵ : ↵0

� : �0

n0 n1

. . .)
↵ : ↵n0↵0

� : �0

n0 n1

↵ : ↵n

� : �n

↵ : ↵0

� : �0
search(�)

search(↵0�)

1

55Copyright (c) IARIA, 2017. ISBN: 978-1-61208-558-6

DBKDA 2017 : The Ninth International Conference on Advances in Databases, Knowledge, and Data Applications

In order to search for all positions of the string s in the
Wavelet Trie’s root node, we go down the tree representing
the Wavelet Trie recursively, until we have found all bits of
the binary string s. If we require an exact match, we have
found all bits, and we have reached the end of the α of a leaf
node, we “translate” the positions of the leaf node into the
corresponding positions of the root node with the help of the
select operation. That is, if r=(p1,…,pn) is the result
computed for the n’s b-child, then n.β.select(b, (p1,…,pn)) is
the result for node n. Similarly, if we search for all positions
of binary strings starting with the given prefix s, and have
found all bits of s on the current path in the Wavelet Trie,
we do not care, whether or not we have reached a leaf node,
and translate the current positions into positions of the
Wavelet Trie’s root node.

In more detail, the search works as follows: Let the
current node n with label α (and β, if n is no leaf node) have
a parent node pa, such that n is the b-child of pa and β of pa
contains k b-bits and assume that we search for binary
strings starting with a prefix s.

If s=α, or s is a prefix of α, we return the list of positions
(1,…, k).

Furthermore, if s≠α, α is a prefix of s and n is no leaf
node, s is of the form s=αbγ (with a potentially empty γ; c.f.
Figure 1). In this case, we perform the search operation for
binary string γ on n’s b-child, resulting in a list of positions
(p1,…, pn). In this case, we return the list of positions
n.β.select(b, (p1,…,pn)).

If none of the above cases matches, the Wavelet Trie
does not contain a binary string matching the search criteria,
and we return an empty list of positions.

B. Between/Range Queries (less than, greater than)

The operation between(s1,s2) returns a set of positions of
strings r, such that s1≤r≤s2. Similarly, the operation
lessThan(s) returns a set of positions of strings r, such that
r≤s, and the operation greaterThan(s) returns a set of
positions of strings r, such that r≥s. In this section, we
explain how to implement the operation greaterThan(s). To
adapt this operation in order to implement between(s1,s2) or
lessThan(s) is quite straightforward.

Again, we use as auxiliary operations the generalization,
B.select(b, (p1,…,pn)) := (B.select(b, p1),…,B.select(b, pn)),
of the select operation to a list of positions. Furthermore, we
use the operation B.selectAll(b) :=
B.select(b,(1,…,rank(b,|B|)) which returns the positions of
all bits b within the sequence B.

Let the current node n be a node with labels α and β.

If α=s or s is a prefix of α, i.e., α=sbδ (with a potentially
empty δ), we know that all strings represented by the
Wavelet Trie rooted in n are greater than or equal to s, i.e.,
we return the set of positions {1, …, |β|}.

In the other case, if α is a prefix of s, i.e., s= αbλ, we
have to consider the value of b. If b=1, all strings
represented by the Wavelet Trie rooted in n’s 0-child are
less than s. Therefore, we have to apply the operation
r’=greaterThan(λ) to n’s 1-child n1, and return r=β.select(1,
r’). If b=0, the result set r consists of two sub-sets r1 and r2
with r=r1∪r2 which are computed as follows. As all strings
represented by the Wavelet Trie rooted in n’s 1-child are
greater than s, r1= β.selectAll(1). Afterwards, we have to
apply the operation r’=greaterThan(λ) to n’s 0-child, to get
r2= β.select(0, r’) (c.f. Figure). Finally, we return r=r1∪r2.

Note that we can similarly create a Wavelet Trie that
consists of strings greater than or equal to s, if we do not
only return the list of results, but delete all strings not
belonging to a result positions.

C. Intersection

This operation computes the set-intersection of two
Wavelet Tries t1 and t2, i.e., it computes a Wavelet Trie that
represents a lexicographically ordered list of all strings s
that occur in both, t1 and in t2.

Let n1 be the current node of t1 and n2 be the current
node of t2, where n1 has the labels α1 and β1 and n2 has the
labels α2 and β2.

If α1=α2 and n1 and n2 are leaf nodes, return n1 as
resulting Wavelet Trie.

If α1=α2 and n1 and n2 are inner nodes, compute the
result node r0 of the intersection of the 0-child of n1 and of
the 0-child of n2 and the result node r1 of the intersection of
the 1-child of n1 and of the 1-child of n2. Then return a new
node n, with α=α1, β consists of |r0| 0 bits followed by |r1| 1
bits, and n has r0 as 0-child and has r1 as 1-child.

Let now either α1 be a prefix of α2 or vice versa. Let us
assume w.l.o.g. that α2 is a prefix of α1, i.e., α1=α2bγ (c.f.
Figure). In this case, we change α1 into α1=γ and intersect
this new node with the b-child of n2. If after the intersection,
the β of the result node contains only 1 bits or only 0 bits,
we collapse it with its single child node b-child nb and
thereby delete its (1-b)-child.

Let n0 be the 0-child of nb and n1 be the 1-child of nb. Let
furthermore αb and βb be the labels of node nb. Then the new
labels of node n are α=αnbαb and β=βb. Furthermore, n0
becomes the new 0-child of n and n1 becomes the new 1-

↵ : ↵n

� : �n

↵ : ↵0

� : �0
r1 = select(greaterThan(�), 0)

↵ : ↵1

� : �1
�.selectAll(1)

greaterThan(↵0�)

↵ : ↵20�

� : �1

.

\

↵ : ↵2

� : �2

n0 . . .

)
↵ : �

� : �1

.

\
n0

.

2

Figure 3. Intersection if α1 is a prefix of α2.

Figure 2. greaterThan if α is a prefix of search string s.

↵ : ↵n

� : �n

↵ : ↵0

� : �0
r1 = �.select(0, greaterThan(�))

↵ : ↵1

� : �1
�.selectAll(1)

greaterThan(↵0�)

↵ : ↵20�

� : �1

.

\

↵ : ↵2

� : �2

n0 . . .

)
↵ : �

� : �1

.

\
n0

.

↵ : �1�

� : �1

n10 n11

�
↵ : �0�

� : �2

n20 n21

)

↵ : �

� : 1 . . . 10 . . . 0

↵ : �

� : �2

n20 n21

↵ : �

� : �1

n10 n11

2

56Copyright (c) IARIA, 2017. ISBN: 978-1-61208-558-6

DBKDA 2017 : The Ninth International Conference on Advances in Databases, Knowledge, and Data Applications

child of n. Figure shows the state before and after
collapsing the node for b=0.

In all other cases, the intersection is empty. This
includes the case that neither α1 is a prefix of α2 nor α2 is a
prefix of α1 nor α1=α2 and the case that α1=α2 and exactly
one node of n1, n2 is a leaf node and the other is an inner
node.

D. Merge/Append + Union

This operation unites/merges two Wavelet Tries t1 and t2,
i.e., it inserts the string sequence s2 represented by Wavelet
Trie t2 at a given position pos into the string sequence s1
represented by Wavelet Trie t1. Note that this operation is
only defined if the set s1∪s2 is prefix free.

Let n1 be the current node of t1 and n2 be the current
node of t2, where n1 has the labels α1 and β1 and n2 has the
labels α2 and β2.

If α1=α2 and n1 and n2 are leaf nodes, nothing has to be
done, and the operation is finished. If α1=α2 and both nodes
are inner nodes, we insert β2 at position pos into β1, merge
the 0-child of n2 at position β1.rank(0,pos) into the 0-child of
n1 and merge the 1-child of n2 at position β1.rank(1,pos) into
the 1-child of n1. Note that the cases that n1 is a leaf node,
but n2 is not a leaf node, and vice versa, cannot occur, as
s1∪s2 is prefix free.

If α1 is a prefix of α2, i.e., α2=α1bδ, we insert b |β2| times
at position pos into β1. We change α2 into δ and merge n2
into the b-child of n1 at position β1.rank(b,pos).

If α2 is a prefix of α1, i.e., α1=α2bλ, we create a new
node n with labels α=α2 and β consisting of |β1| bits b in
which we insert β2 at position pos. The b-child of the node n
is then the result of merging the b-child of n2 at position
β1.rank(b,pos) into a node with labels α=γ and β=β1, having
the children of n1 as children. The (1-b)-child of the node n
is the (1-b)-child of n2.

Otherwise, α1 and α2 share a common prefix. Let γ be
the common prefix of α1 and α2, and let us assume w.l.o.g.
that α1=γ1δ and α2=γ0λ (c.f. Figure). Then, we create a
new node n with labels α=γ and β consisting of |β1| bits 1 in
which we insert |β2| bits 0 at position pos. The 0-child of
node n is then a node with α=λ and β=β2 having the
children of n2 as child nodes, and the 1-child of node n is a
node with α=δ and β=β1 having the children of n1 as child
nodes.

E. Insert/Append

This operation inserts a binary string s into the Wavelet
Trie at position pos (or appends it to the end, if pos refers to
a position after the number i of entries in the Wavelet Trie.

We consider the current node n of the Wavelet Trie
(initially the root node) having the labels αn and βn and the
binary string s to be inserted at position pos. As we require
the Wavelet Trie before and after the insertion to be prefix
free, we know that s must not be a prefix of αn.

If αn is a prefix of s, i.e., s=αnbδ, where b is a bit, we
insert bit b at position pos into βn, and insert the binary
string δ into the b-child of n at position rank(b,pos).

If n is a leaf node of the Wavelet Trie, and αn=s, we are
completed and do not need to do anything else.

Let γ be the common prefix of αn and s and let us
assume w.l.o.g. that αn=γ1δ and s=γ0λ. Note that γ might
even be an empty binary string. Let n0 be the 0-child of n,
and let n1 be the 1-child of the current node. In this case, we
change n into a node with α=γ, and β consists of |βn| 1-bits
and one 0-bit at position pos. The new 0-child of n is a node
n’ with α=λ. The new 1-child of n is a node n’’ with α=δ
and β=βn. n’’ gets n0 as 0-child and n1 as 1-child. Figure
shows this case after having inserted s into αn.

F. Delete
This operation deletes the binary string spos at position

pos from the Wavelet Trie.
In order to delete the binary string spos at position pos

from the current node n (initially the root node), we delete
the bit b at position pos from β. If β afterwards still contains
0-bits and 1-bits and n’s b-child is not a leaf node, we
continue to delete the bit at position rank(b,pos) from n’s b-
child.

If β contains either only 0-bits or only 1-bits (i.e., β=0*
or β=1*, in general β=b*), we have to collapse the current
node with its b-child nb and thereby delete its (1-b)-child as
described in Section 2.

Figure 5. Appending Tries t1 and t2 if α1 and α2 share a common prefix.

↵ : ↵n

� : �n

↵ : ↵0

� : �0
r1 = select(greaterThan(�), 0)

↵ : ↵1

� : �1
�.selectAll(1)

greaterThan(↵0�)

↵ : ↵20�

� : �1

.

\

↵ : ↵2

� : �2

n0 . . .

)
↵ : �

� : �1

.

\
n0

.

↵ : �1�

� : �1

n10 n11

�
↵ : �0�

� : �2

n20 n21

)

↵ : �

� : 1 . . . 10 . . . 0

↵ : �

� : �2

n20 n21

↵ : �

� : �1

n10 n11

2

Figure 4. Before and after collapsing the node.

↵ : �

� : 1 . . . 101 . . . 1

↵ : � ↵ : �

� : �n

n0 n1

↵ : ↵n

� : 0⇤

↵ : ↵0

� : �0

n0 n1

. . .)
↵ : ↵n0↵0

� : �0

n0 n1

↵ : ↵n

� : �n

↵ : ↵0

� : �0
search(�)

search(↵0�)

1

Figure 6. Result of insert operation if s and αn have a common prefix.

Prof. Dr. Stefan B

¨

ottcher

u. v. a.

Paderborn, 28. Mai 2015

Pr

¨

asenz

¨

ubung zur Vorlesung

Grundlagen von Datenbanken

SS 2015

Blatt 4

Aufgabe 1:

↵ : �

� : 1 . . . 101 . . . 1

↵ : � ↵ : �

� : �n

n0 n1

1

57Copyright (c) IARIA, 2017. ISBN: 978-1-61208-558-6

DBKDA 2017 : The Ninth International Conference on Advances in Databases, Knowledge, and Data Applications

IV. EVALUATION
We compared our implementation of the Wavelet Trie

with the common compressors gzip and bzip2. We did not
compare our implementation with delta-encoding as delta-
encoding has the following disadvantage. Delta-encoding
cannot support any of the range queries, i.e., our prefix
search (II.A), Between, LessThan, and GreaterThan (II.B),
because equal strings are encoded different, depending on
the previous string. Even intersection (II.C) is not
supported. Therefore, delta-encoding does not meet our
requirements.

The dictionary-based approach, assigning a segregated
Huffman code to each entry results in a bit sequence that
supports alphabetical comparisons. Run-length encoding
compressing longer bit sequences also supports alphabetical
comparisons. Both approaches are orthogonal and
compatible to our approach, i.e. can be combined with it. As
therefore, a performance comparison with dictionary-based
approaches or with RLE is not useful, we have compared
our approach with the powerful and widely use compressors
gzip und bzip2.

We ran our tests on Mac OS X 10.5.5, 2.9 GHz Intel
Core i7 with 8 GB 1600 MHz DDR3 running Java 1.8.0_45.

To evaluate rather text-centric operations, we used 114
texts of the project Gutenberg [14] with file sizes from 78
kB up to 7.3 MB to build a heterogeneous corpus. In order
to simulate database operations of a column-oriented
database, we used author information extracted from DBLP
[15]. Out of these informations, we generated lists
consisting of 2500 up to 100000 authors.

In all time measurements, we performed 10 redundant
runs and computed the average CPU time for all these runs.

A. Compression and Decompression

Figure 7. Compression ratio.

When evaluating the pure compression and
decompression of Wavelet Trie, gzip and bzip2, we get the
result that bzip compresses strongest while Wavelet Trie
compresses worst (c.f. Figure), and that gzip compresses
and decompresses fastest while Wavelet Trie compresses
and decompresses slowest (c.f. Figure 8).

The main difference between the Wavelet Trie and the
generic compressors is that the Wavelet Trie supports many
operations on the compressed data, while gzip and bzip2
require to at least decompress the compressed data first, and
for some operations to recompress the modified data

afterwards. This means, there are a lot of applications that
do not require the Wavelet Trie to decompress, as the
concerning operations can be evaluated on the compressed
data directly. We show the benefit of using the Wavelet Trie
in the following subsections, in which we evaluate the
performance of the different operations.

B. Insert and Delete
As a first operation, we compared the insert and the

delete operation directly on the Wavelet Trie with the pure
decompression time of bzip2 and of gzip. We performed
these operations on the documents of our Gutenberg corpus.
Figure 9 shows the results. The insertion of the word
‘database’, which does not occur in any of the documents,
as 50th word is faster than the pure decompression of bzip2
and as fast as the pure decompression of gzip. The same
holds for the deletion of the 50th word. Please consider that
the compression or decompression times for bzip2 and gzip
neither contain the time needed to insert (or to delete
respectively) a string nor the time needed to recompress the
modified results.

Figure 9. (a) Insertion and (b) Deletion in the Wavelet Trie compared to
bzip2 and gzip decompression time.

C. Search and searchPrefix
Figure 10 shows the search times for (a) a single word

and (b) all words starting with a given prefix directly in the
Wavelet Trie compared to the time needed for the pure
decompression of bzip2 and gzip. We searched within our
Gutenberg corpus for all positions of the word ‘file’, which
is contained in each file, and for all positions of words
starting with the prefix ‘e’. Although the times for bzip2 and
gzip comprise the pure decompression, i.e., no search
operation is performed on the decompressed bzip2 or the
decompressed gzip file, the search directly on the Wavelet

●●
●●

●●
●●●●

●●
●

●●●

●●

●
●

●●●

●●
●●

●●

●●●
●●

●●●●

●●

●●●●

●●
●●●●●

●●●●

●●

●●●●

●

●●

●

●
●●

●●●

●●●●●●

●●
●●●
●●

●
●●

●●
●●

●●
●

●●●●●
●●

●● ●● ●● ●
●●

●

●● ●

0 1 2 3 4 5 6 7

0
20

40
60

80
10

0 Compression ratio

fileSize in MiB

si
ze

(c
om

pr
es

se
d

fil
e)

/s
ize

(o
rig

in
al

 fi
le

) i
n

%

● bzip2
gzip
WaveletTrie

●●

●●

●●

●

●

●●

●●

●

●●

●●●●
●

●●
●

●● ●

●

●●●●●

●

●

●●●●

●

●

●●●●

●
●

●●●●●
●●●●

●●

●●●●

●

●●
●

●●●

●

●●
●●●●●●

●●●●●●●
●●●

●●

●●

●●●
●●●●●●●●●

●●

●●

●

●●
●

●

●

●

0 2 4 6 8

0
10

0
20

0
30

0
40

0
50

0
60

0 (a) Insert(50,'database')

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

●●

●●

●●

●

●

●●

●●

●

●●

●●●●
●

●●
●

●
● ●●

●●●●●

●
●

●●●●

●●

●●●●

●
●

●●●●●
●●●●

●●

●●●●

●

●●
●

●●●

●

●●
●●●●●●

●●●●●●●
●●●

●●

●●

●●●
●●●●●●●●●

●●

●●

●

●●●

●

●

●

0 2 4 6 8

0
10

0
20

0
30

0
40

0
50

0
60

0 (b) Delete(50)

fileSize in MiB

tim
e

in
 m

s
● bzip2

gzip
WaveletTrie

Figure 8. Compression and decompression time.

●●

●●

●●

●●

●●
●●

●

●●

●●●●● ●●●

●●
●●

●●●●●

●●

●●●●

●●

●●●●

●●

●●●●●●●●●
●●

●●●●
●

●● ●●●●
●

●●●●●●●● ●●●●●●●●●● ●●
●●

●●●●●●●●●●●●
●●

●●
●

●●●
●

●
●

0 1 2 3 4 5 6 7

0
50

0
10

00
15

00
20

00
25

00
30

00 (a) Compression

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

●●

●●

●●

●●

●●
●●

●

●●

●●●●● ●●●

●
●

●
●

●●●●●

●●

●●●●

●
●

●●●●

●●

●●●●●●●●●

●●
●●●●

●
●● ●●●●

●
●●●●●●●● ●●●●●●●●●● ●●

●●
●●●●●●●●●●●●

●●

●●

●

●●●
●

●

●

0 1 2 3 4 5 6 7

0
20

0
40

0
60

0
80

0
10

00
12

00

(b) Decompression

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

58Copyright (c) IARIA, 2017. ISBN: 978-1-61208-558-6

DBKDA 2017 : The Ninth International Conference on Advances in Databases, Knowledge, and Data Applications

Trie is faster than the pure decompression time of bzip2 and
gzip.

Figure 10. Search times for words in the Wavelet Trie compared to pure
decompression time of bzip2 and of gzip.

D. Range queries

Figure 11 Range queries on the Wavelet Trie compared to pure

decompression time of bzip2 and gzip.

Figure 11 shows the results of comparing the search
times (a) for words greater than ‘e’ but less than ‘f’ and (b)
for words greater than ‘identification’ and less than
‘identifier’ directly on the Wavelet Trie with the pure
decompression time of bzip 2 and gzip. These operations
were again evaluated on the Gutenberg corpus. Although the
times for bzip2 and gzip comprise the pure decompression,
i.e., no search operation is performed, the search directly on
the Wavelet Trie is faster than the pure decompression time
of bzip2 and gzip. The more specific the search query is,
and thus the smaller the search result, the better is the
performance benefit of the Wavelet Trie compared to bzip2
and gzip.

E. Intersection
The following tests were performed on our dblp author

corpus. Figure 12 shows the results of comparing the
intersection operation on two author lists with the sequence
of decompression, concatenating the two lists (as we did not
want to measure a maybe inefficient string intersection
method), and recompressing the result list of the intersection
using bzip2 and gzip. We computed the result list of the
intersection prior to the test runs, i.e., the time needed to
compute the intersection was not measured. We used two
different sets of lists: the first is duplicate-free, whereas, in
the second set, 50% of the list entries of the second list
occur also in the first list. If the lists are completely disjoint,
the intersection computed directly on the Wavelet Trie is
faster than the simulated operation for bzip2 and as fast as

this operation for gzip. If there is a large overlapping of the
lists, gzip is faster than the Wavelet Trie, which still is faster
than bzip2.

Figure 12. Computing the intersection directly on the Wavelet Trie
compared to decompression, list concatenation and recompression

time of bzip2 and gzip.

F. Merge/Union

Figure 13. Comparison of the time to append two lists for Wavelet Trie,
bzip2 and gzip.

Finally, we evaluated the time to append one list to
another list (c.f. Figure 13) and the time to insert a list at
position 50 into a second one (c.f. Figure 14).

Figure 14. Comparison of the time to merge a list into another one for
Wavelet Trie, bzip2 and gzip.

We performed both tests for disjoint lists as well as for
lists that overlap in 50% of the entries. Again, we compared
the time with the sequence of decompression, concatenating
the two lists, and recompressing the concatenated list by
using either bzip2 or gzip. In both cases and for both
operations, this operation on the Wavelet Trie is faster than
the simulation of this operation for bzip2 and for gzip. The
benefit of the Wavelet Trie in comparison to bzip2 and gzip
is bigger for append operations than for the merge operation
that inserts one list at a given position into the second one.

●●

●
●

●●

●
●

●●

●●

●

●●

●●●●
●

●●
●

●
●

●

●

●●●●●

●●

●●●●

●
●

●●●●

●●

●●●●●
●●●●

●●

●●●●

●

●●
●

●●●

●

●●
●●●●●●

●●●●●●●
●●●

●●

●●

●●●
●●●●●●●●●

●●

●
●

●

●●
●

●

●

●

0 2 4 6 8

0
10

0
20

0
30

0
40

0
50

0
60

0 (a) Between('e','f')

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

●●

●●

●●

●

●

●●

●●

●

●●

●●●●
●

●●
●

●●
●

●

●●●●●

●●

●●●●

●●

●●●●

●●

●●●●●
●●●●

●●

●●●●

●

●●
●

●●●

●

●●
●●●●●●

●●●●●●●
●●●

●●

●●

●●●
●●●●●●●●●

●●

●●

●

●●●

●

●

●

0 2 4 6 8

0
10

0
20

0
30

0
40

0
50

0
60

0(b) Between('identification','identifier')

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

●●

●●

●●

●●

●●

●●

●

●●

●●●●
●

●●
●

●● ●●

●●●●●

●●

●●●●

●●

●●●●

●●

●●●●●
●●●●

●●

●●●●

●

●●
●

●●●

●

●●
●●●●●●

●●●●●●●
●●●

●●

●●

●●●
●●●●●●●●●

●●

●●

●

●●
●

●

●

●

0 2 4 6 8

0
10

0
20

0
30

0
40

0
50

0
60

0 (a) Search('file')

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

●●

●
●

●●

●●

●●

●●

●

●
●

●●●●
●

●●
●

●●

●

●

●●●●●

●
●

●●●●

●●

●●●●

●
●

●●●●●
●●●●

●●

●●●●

●

●●
●

●●●

●

●●
●●●●●●

●●●●●●●
●●●

●●

●●

●●●
●●●●●●●●●

●●

●
●

●

●●●

●

●

●

0 2 4 6 8

0
10

0
20

0
30

0
40

0
50

0
60

0 (b) searchPrefix('e')

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

●
● ●

●

●

●

0.0 0.5 1.0 1.5 2.0

0
10

0
20

0
30

0
40

0
50

0 (a) Union(disjoint)

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

●● ●
●

●

●

0.0 0.5 1.0 1.5 2.0 2.5

0
10

0
20

0
30

0
40

0
50

0
60

0 (b) Union(overlapping)

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

●

●

●
●

●

●

0.0 0.5 1.0 1.5 2.0

0
50

10
0

15
0

20
0 (a) Intersection (disjoint)

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie ●

●

●

●
●●

0.0 0.5 1.0 1.5 2.0 2.5

0
50

10
0

15
0

20
0

25
0

30
0 (b) Intersection (overlapping)

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

59Copyright (c) IARIA, 2017. ISBN: 978-1-61208-558-6

DBKDA 2017 : The Ninth International Conference on Advances in Databases, Knowledge, and Data Applications

V. CONCLUSION
In this paper, we presented and evaluated an extension

of the Wavelet Trie [10][11] that allows to represent
compressed indexed sequences of strings. As our
evaluations have shown, operations like insertion, deletion,
search queries, range queries, intersection and union can be
performed on the compressed data as fast as or even faster
than the simulation of these operations with the help of
generic compressors like bzip2 or gzip. We therefore
believe that the Wavelet Trie is a good approach to be used,
e.g., in column-oriented main-memory databases to enhance
the storage or memory capacity at the same time as the
search performance.

REFERENCES

[1] M. Stonebraker et al., “C-Store: A Column-oriented
DBMS,” in Proceedings of the 31st International
Conference on Very Large Data Bases, Trondheim,
Norway, August 30 - September 2, 2005, 2005, pp. 553–
564.

[2] A. Lamb et al., “The Vertica Analytic Database: C-Store 7
Years Later,” Proc. VLDB Endowment, vol. 5, no. 12, pp.
1790–1801, 2012.

[3] F. Färber et al., “SAP HANA Database - Data
Management for Modern Business Applications,” ACM
Sigmod Rec., vol. 40, no. 4, pp. 45–51, 2012.

[4] D. A. Huffman, “A Method for the Construction of
Minimum-Redundancy Codes,” in Proceedings of the
IRE, 1952, vol. 40, no. 9, pp. 1098–1101.

[5] T. C. Hu and A. C. Tucker, “Optimal Computer Search
Trees and Variable-Length Alphabetical Codes,” SIAM J.
Appl. Math., vol. 21, no. 4, pp. 514–532, 1971.

[6] S. T. Klein and D. Shapira, “Random Access to Fibonacci
Codes,” Stringology, 2014, pp. 96–109, 2014.

[7] M. Külekci, “Enhanced variable-length codes: Improved
compression with efficient random access,” in Proc. Data
Compression Conference DCC–2014, 2014, pp. 362–371.

[8] N. R. Brisaboa, A. Fariña, S. Ladra, and G. Navarro,
“Reorganizing Compressed Text,” in Proceedings of the
31st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
2008, pp. 139–146.

[9] J. Herzberg, S. T. Klein, and D. Shapira, “Enhanced
Direct Access to Huffman Encoded Files,” in Data
Compression Conference, 2015., 2015, p. 447.

[10] R. Grossi and G. Ottaviano, “The Wavelet Trie:
Maintaining an Indexed Sequence of Strings in
Compressed Space,” CoRR, 2012. [Online]. Available:
http://arxiv.org/abs/1204.3581. [Accessed: Mar, 2017].

[11] R. Grossi and G. Ottaviano, “The Wavelet Trie:
Maintaining an Indexed Sequence of Strings in
Compressed Space,” in Proceedings of the 31st ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2012, Scottsdale, AZ, USA,
May 20-24, 2012, 2012, pp. 203–214.

[12] R. Grossi, A. Gupta, and J. S. Vitter, “High-order entropy-
compressed text indexes,” in SODA ’03 Proceedings of
the fourteenth annual ACM-SIAM symposium on
Discrete algorithms, 2003, vol. 39, no. 1, pp. 841–850.

[13] D. R. Morrison, “PATRICIA---Practical Algorithm To
Retrieve Information Coded in Alphanumeric,” J. ACM,
vol. 15, no. 4, pp. 514–534, 1968.

[14] “Project Gutenberg,” 2015. [Online]. Available:
http://www.gutenberg.org/. [Accessed: Mar, 2017].

[15] “DBLP: computer science Bibliography.” [Online].
Available: http://dblp.uni-trier.de. [Accessed: Mar, 2017].

60Copyright (c) IARIA, 2017. ISBN: 978-1-61208-558-6

DBKDA 2017 : The Ninth International Conference on Advances in Databases, Knowledge, and Data Applications

