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Abstract—We present results of novel experiments, conducted on
18 data sets with many missing attribute values, interpreted as
lost values, attribute-concept values and “do not care” conditions.
The main objective was to compare two versions of the Modified
Learning from Examples, version 2 (MLEM2) rule induction
algorithm, emulated and true, using concept probabilistic ap-
proximations. Our secondary objective was to check which inter-
pretation of missing attribute values provides the smallest error
rate, computed as a result of ten-fold cross validation. Results
of our experiments show that both versions of the MLEM2 rule
induction algorithms do not differ much. On the other hand,
there is some evidence that the lost value interpretation of missing
attribute values is the best: in seven cases this interpretation was
significantly better (with 5% of significance level, two-tailed test)
than attribute-concept values, and in eight cases it was better than
“do not care” conditions. Additionally, attribute-concept values
and “do not care” conditions were never significantly better than
lost values.

Keywords–Probabilistic approximations; generalization of prob-
abilistic approximations; concept probabilistic approximations; true
MLEM2 algorithm; emulated MLEM2 algorithm.

I. INTRODUCTION

Lower and upper approximations are basic ideas of rough
set theory. Probabilistic approximations, associated with a
probability α, are a generalization of that idea. If α = 1,
the probabilistic approximation is identical with the lower
approximation, if α is a very small positive number, the
probabilistic approximation is identical with the upper approx-
imation. Probabilistic approximations, for completely specified
data sets, were studied, e.g., in [1]–[9]. Probabilistic approxi-
mations were additionally generalized to describe incomplete
data sets in [10]. Experimental research associated with such
probabilistic approximations was initiated in [11][12].

In this paper, missing attribute values are interpreted as lost
values, attribute-concept values, and “do not care” conditions.
A lost value is denoted by “?”, an attribute-concept value is
denoted by “−”, and a “do not care” condition is denoted by
“*”. With lost values we assume that the original attribute value
was erased, and that we should induce rules from existing,
specified attribute values. With attribute-concept value we

assume that such missing attribute values may be replaced by
any actual attribute value restricted to the concept to which the
case belongs. For example, if our concept is a specific disease,
an attribute is a diastolic pressure, and all patients affected by
the disease have high or very high diastolic pressure, a missing
attribute value of the diastolic pressure for a sick patient will
be high or very-high. With the third interpretation of missing
attribute values, the “do not care” condition, we assume that
it does not matter what is the attribute value. Such value may
be replaced by any value from the set of all possible attribute
values.

For any concept X and probability α, its probabilistic
approximations may be computed directly from corresponding
definitions and implemented as a new program. The output of
this program may be used as an input to an implementation of
the MLEM2 algorithm. The respective MLEM2 rule induction
algorithm will be called a true MLEM2 algorithm.

Another possibility is to use the existing data mining sys-
tem Learning from Examples using Rough Set theory (LERS).
LERS computes standard lower and upper approximations for
any concept. In LERS there exists a component that imple-
ments the MLEM2 rule induction algorithm. This component
may be used to compute possible rules from the probabilistic
approximation of X . Some modification of the strength of
induced rules is required. This approach will be called an
emulated MLEM2 algorithm. It is easier to implement since
all what we need to do is to compute the probabilistic ap-
proximation of X and to modify strengths. The main part,
the MLEM2 rule induction algorithm, does not need to be
separately implemented. The idea of the emulated MLEM2
algorithm was introduced in [13] and further developed in
[14][15].

Experiments conducted on eight incomplete data sets with
35% of missing attribute values to compare true version of
the MLEM2 rule induction algorithm with the emulated one
were reported in [16]. All three interpretations of missing
attribute values were used in experiments, so experiments were
conducted on 24 data sets. In these experiments true and
emulated versions of the MLEM2 algorithm were compared
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using the resulting classification error rate of the induced rules
against the ten-fold cross validated data set as the quality
criterion. Results were inconclusive. For six data sets, for all
values of the parameter α, results were identical; for other
14 data sets results did not differ significantly (we used the
Wilcoxon matched-pairs signed rank test, 5% significance
level, two-tailed test). For three other data sets, the true
MLEM2 algorithm was better than emulated, for remaining
one data set the emulated MLEM2 algorithm was better than
the true one.

Usually, experiments conducted on data sets with many
missing attribute values provide for more conclusive results.
As a result our first objective in this paper was to conduct
new experiments with data sets that contain more than 35%
missing attribute values. We used three interpretations of
missing attribute values, resulting in 18 combinations. Results
of the same comparison of error rate of the induced rules are
measurably more conclusive: in five combinations (out of 18)
the emulated approach to MLEM2 algorithm was better, in
one case the true approach was better (5% significance level,
two-tailed test).

Our second objective was to check which interpretation of
missing attribute values should be used to accomplish a lower
error rate. There is some evidence that the lost value interpre-
tation of missing attribute values is the best: in seven cases this
interpretation was significantly better (with 5% of significance
level, two-tailed test) than attribute-concept values, and in eight
cases it was better than “do not care” conditions. Additionally,
attribute-concept values and “do not care” conditions were
never significantly better than lost values.

In Sections II and III background information on incom-
plete data sets and probabilistic approximations is covered.
Section IV describes the two algorithms used in our rule
induction experiments and Section V explains the experimental
setup with our results. Finally we provide concluding remarks
in Section VI.

II. INCOMPLETE DATA SETS

An example of incomplete data set is presented in Table I.
In Table I, the set A of all attributes consists of three variables
Wind, Humidity and Temperature. A concept is a set of all
cases with the same decision value. There are two concepts
in Table I, the first one contains cases 1, 2, 3 and 4 and is
characterized by the decision value yes of decision Trip. The
other concept contains cases 5, 6, 7 and 8 and is characterized
by the decision value no.

The fact that an attribute a has the value v for the case
x will be denoted by a(x) = v. The set of all cases will be
denoted by U . In Table I, U = {1, 2, 3, 4, 5, 6, 7, 8}.

For complete data sets, an attribute-value pair (a, v) = t,
a block of t, denoted by [t], is a set of all cases from U such
that attribute a has a value v. An indiscernibility relation R
on U is defined for all x, y ∈ U by

xRy if and only if a(x) = a(y) for all a ∈ A.

For incomplete decision tables the definition of a block of
an attribute-value pair must be modified in the following way
[17][18]:

• If for an attribute a there exists a case x such that
a(x) =?, i.e., the corresponding value is lost, then the

TABLE I. AN INCOMPLETE DATA SET

Attributes Decision

Case Wind Humidity Temperature Trip

1 low * low yes
2 * low − yes
3 high low low yes
4 low * * yes
5 high high high no
6 ? − high no
7 low low * no
8 high ? low no

case x should not be included in any blocks [(a, v)]
for all values v of attribute a,

• If for an attribute a there exists a case x such that
the corresponding value is an attribute-concept value,
i.e., a(x) = −, then the corresponding case x should
be included in blocks [(a, v)] for all specified values
v ∈ V (x, a) of attribute a, where

V (x, a) = {a(y) | a(y) is specified , y ∈ U,
d(y) = d(x)}, (1)

and d is the decision.
• If for an attribute a there exists a case x such that

the corresponding value is a “do not care” condition,
i.e., a(x) = ∗, then the case x should be included in
blocks [(a, v)] for all specified values v of attribute a.

For a case x ∈ U the characteristic set KB(x) is defined
as the intersection of the sets K(x, a), for all a ∈ B, where
B is a subset of the set A of all attributes and the set K(x, a)
is defined in the following way:

• If a(x) is specified, then K(x, a) is the block
[(a, a(x))] of attribute a and its value a(x),

• If a(x) =? or a(x) = ∗ then the set K(x, a) = U ,
• If a(x) = −, then the corresponding set K(x, a) is

equal to the union of all blocks of attribute-value pairs
(a, v), where v ∈ V (x, a) if V (x, a) is nonempty. If
V (x, a) is empty, K(x, a) = U .

The characteristic set KB(x) may be interpreted as the set
of cases that are indistinguishable from x using all attributes
from B and using a given interpretation of missing attribute
values.

For the data set from Table I, the set of blocks of attribute-
value pairs is

[(Wind, low)] = {1, 2, 4, 7},
[(Wind, high)] = {2, 3, 5, 8},
[(Humidity, low)] = {1, 2, 3, 4, 6, 7},
[(Humidity, high)] = {1, 4, 5, 6},
[(Temperature, low)] = {1, 2, 3, 4, 7, 8},
[(Temperature, high)] = {4, 5, 6, 7}.

For Table I, V (2, T emperature) = {low} and
V (6, Humidity) = {low, high}.

The corresponding characteristic sets are
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TABLE II. CONDITIONAL PROBABILITIES

Case x Characteristic set KA(x) Pr({1, 2, 3, 4} | KA(x))

1 {1, 2, 4, 7} 0.75
2 {1, 2, 3, 4, 7} 0.8
3 {2, 3} 1
4 {1, 2, 4, 7 } 0.75
5 {5} 0
6 {4, 5, 6, 7} 0.25
7 {1, 2, 4, 7} 0.75
8 {2, 3, 8} 0.667

KA(1) = [(Wind, low)] ∩ [(Humidity, ∗)] ∩ [(Temp, low)]

= {1, 2, 4, 7} ∩ U ∩ {1, 2, 3, 4, 7, 8}
= {1, 2, 4, 7},

KA(2) = {1, 2, 3, 4, 7},
KA(3) = {2, 3},
KA(4) = {1, 2, 4, 7},
KA(5) = {5},
KA(6) = {4, 5, 6, 7},
KA(7) = {1, 2, 4, 7},
KA(8) = {2, 3, 8}.

III. PROBABILISTIC APPROXIMATIONS

For incomplete data sets there exist a number of different
definitions of approximations, in this paper we will use only
concept approximations, we will skip the word concept.

The B-lower approximation of X , denoted by appr(X), is
defined as follows

∪ {KB(x) | x ∈ X,KB(x) ⊆ X}. (2)

Such lower approximations were introduced in [17][19].
The B-upper approximation of X , denoted by appr(X), is

defined as follows

∪ {KB(x) | x ∈ X,KB(x) ∩X 6= ∅}
= ∪ {KB(x) | x ∈ X}.

(3)

These approximations were studied in [17][19][20].
For incomplete data sets there exist a few definitions

of probabilistic approximations, we will use only concept
probabilistic approximations, again, we will skip the word
concept.

A B-probabilistic approximation of the set X with the
threshold α, 0 < α ≤ 1, denoted by B-apprα(X), is defined
as follows

∪{KB(x) | x ∈ X, Pr(X|KB(x)) ≥ α}, (4)

where Pr(X|KB(x)) =
|X∩KB(x)|
|KB(x)| is the conditional proba-

bility of X given KB(x). A-probabilistic approximations of
X with the threshold α will be denoted by apprα(X).

For Table I and the concept X = [(Trip, yes)] = {1, 2, 3,
4}, for any characteristic set KA(x), x ∈ U , all conditional
probabilities P (X|KA(x)) are presented in Table II.

There are five distinct conditional probabilities
Pr({1, 2, 3, 4} | KA(x)), x ∈ U : 0.25, 0.667, 0.75, 0.8
and 1. Therefore, there exist at most five distinct probabilistic
approximations of {1, 2, 3, 4} (in our example, there are
only two distinct probabilistic approximations of {1, 2,
3, 4}). A probabilistic approximation apprβ({1, 2, 3, 4}),
with β > 0 and not listed below, is equal to the closest
probabilistic approximation apprα({1, 2, 3, 4}) with α larger
than or equal to β. For example, appr0.7({1, 2, 3, 4}) =
appr0.8({1, 2, 3, 4}). For Table I, all distinct probabilistic
approximations are

appr0.8({1, 2, 3, 4}) = KB(2) ∪KB(3)

= {1, 2, 3, 4, 7} ∪ {2, 3}
= {1, 2, 3, 4, 7},

appr1({1, 2, 3, 4}) = KB(3) = {2, 3},
appr0.25({5, 6, 7, 8}) = {1, 2, 3, 4, 5, 6, 7, 8},
appr0.333({5, 6, 7, 8}) = {2, 3, 4, 5, 6, 7, 8},
appr0.75({5, 6, 7, 8}) = {4, 5, 6, 7},
appr1({5, 6, 7, 8}) = {5}.

IV. RULE INDUCTION

In this section we will discuss two different ways to induce
rule sets using probabilistic approximations: true MLEM2 and
emulated MLEM2.

A. True MLEM2
In the true MLEM2 approach, for a given concept X and

parameter α, first we compute the probabilistic approximation
apprα(X). The set apprα(X) is a union of characteristic sets,
so it is globally definable [21]. Thus, we may use the MLEM2
strategy to induce rule sets [22][23] by inducing rules directly
from the set apprα(X). For example, for Table I, for the
concept [(Trip, no)] = {5, 6, 7, 8} and for the probabilistic
approximation appr0.75({5, 6, 7, 8}) = {4, 5, 6, 7}, using the
true MLEM2 approach, the following single rule is induced

1, 3, 4
(Temperature, high) -> (Trip, no).

Rules are presented in the LERS format, every rule is
associated with three numbers: the total number of attribute-
value pairs on the left-hand side of the rule, the total number
of cases correctly classified by the rule during training, and
the total number of training cases matching the left-hand side
of the rule, i.e., the rule domain size.

B. Emulated MLEM2
We will discuss how the existing rough set based data

mining systems, such as LERS, may be used to induce rules
using probabilistic approximations. All what we need to do,
for every concept, is to modify the input data set, run LERS,
and then edit the induced rule set [14]. We will illustrate this
procedure by inducing a rule set for Table I and the concept
[(Trip, no)] = {5, 6, 7, 8} using the probabilistic approximation
appr0.75({5, 6, 7, 8}) = {4, 5, 6, 7}. First, a new data set
should be created in which for all cases that are members of the
set appr0.75({5, 6, 7, 8}) the decision values are copied from
the original data set (Table I). For all remaining cases, those
not being in the set appr0.75({5, 6, 7, 8}), a new decision value
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TABLE III. A PRELIMINARY MODIFIED DATA SET

Attributes Decision

Case Wind Humidity Temperature Trip

1 low * low SPECIAL
2 * low − SPECIAL
3 high low low SPECIAL
4 low * * yes
5 high high high no
6 ? − high no
7 low low * no
8 high ? low SPECIAL

is introduced. In our experiments the new decision value was
named SPECIAL. Thus a new data set is created, see Table III.

This data set is input into the LERS data mining system.
The concept [(Trip, no)], computed from Table III, is {5, 6,
7}. The LERS system computes the concept upper concept
approximation of the set {5, 6, 7} to be {1, 2, 4, 5, 6, 7},
and using this approximation, computes the corresponding
final modified data set. The MLEM2 algorithm induces the
following preliminary rule set from the final modified data
sets

1, 4, 6
(Temperature, low) -> (Trip, SPECIAL)
1, 1, 4
(Wind, low) -> (Trip, yes)
1, 1, 4
(Wind, low) -> (Trip, no)
1, 2, 4
(Humidity, high) -> (Trip, no)

where the three numbers that precede every rule are computed
from Table III. Because we are inducing rules for the approx-
imation from (Trip, no) ({5, 6, 7}), only the last two rules

1, 1, 4
(Wind, low) -> (Trip, no)
1, 2, 4
(Humidity, high) -> (Trip, no)

should be saved and the remaining two rules should be deleted
in computing the final rule set.

In the preliminary rule set, the three numbers that precede
every rule are adjusted taking into account the preliminary
modified data set. Thus during classification of unseen cases
by the LERS classification system rules describe the original
concept probabilistic approximation of the concept X .

V. EXPERIMENTS

In our experiments, we used six real-life data sets taken
from the University of California at Irvine Machine Learning
Repository, see Table IV. For every data set a set of templates
was created. Templates were formed by replacing incremen-
tally (with 5% increment) existing specified attribute values by
lost values. Thus, we started each series of experiments with
no lost values, then we added 5% of lost values, then we added
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Figure 1. Breast cancer data set
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Figure 2. Echocardiogram data set
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Figure 3. Hepatitis data set

additional 5% of lost values, etc., until at least one entire row
of the data sets was full of lost values. Then, three attempts
were made to change the configuration of new lost values
and either a new data set with extra 5% of lost values was
created or the process was terminated. Additionally, the same
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Figure 5. Lymphography data set
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Figure 6. Wine recognition data set

templates were edited for further experiments by replacing
question marks, representing lost values by “−”s, representing
attribute-concept values, and then by “*”s, representing “do
not care” conditions.

For any data set, there was some maximum for the percent-
age of missing attribute values. For example, for the Breast
cancer data set, it was 44.81%. In our experiments we used
only such incomplete data sets, with as many missing attribute
values as possible. Note that for some data sets the maximum
of the number of missing attribute values was less than 40%,
we have not used such data for our experiments. Thus, for
any data set from Table IV, three data sets were used for
experiments, so the total number of data sets was 18.

Our first objective was to compare both approaches to rule
induction, true MLEM2 and emulated MLEM2, in terms of
the classification error rate of the induced rules. Results of
our experiments are presented in Figures 1–6, with lost values
denoted by “?”, attribute-concept values denoted by “−”, and
“do not care” conditions denoted by “*”.

For five combinations of data set and interpretation of
missing attribute values the error rate was significantly smaller
for the emulated version of MLEM2. The five combinations
included Breast cancer and Image segmentation with “?” and
“−”, and Echocardiogram with “?”. For Wine recognition with
“−”, the error rate was significantly smaller for the true version
of MLEM2. In the remaining 12 combinations the difference
in error rate was not significant (5% significance level, two-
tailed test) and for the Breast cancer with “−” combination,
the error rate for both versions of the MLEM2 algorithm was
identical for all 11 values of α.

Our second objective was to check which interpretation
of missing attribute value provides the smallest error rate,
computed as a result of ten-fold cross validation. In eight
combinations the error rate was significantly smaller for “?”
than for “*”. The eight combinations included both true and
emulated MLEM2 with the Image segmentation, Lymphogra-
phy and Wine recognition data sets, and emulated MLEM2
with the Echocardiogram and Hepatitis data sets.

For the following seven combinations the error rate was
significantly smaller for “?” than for “−”. The seven com-
binations included both true and emulated MLEM2 with the
Breast cancer and Wine recognition data sets, true MLEM2
with Image segmentation and Lymphography, and emulated
MLEM2 with the Echocardiogram data set.

In four combinations the error rate was measurably smaller
for “−” than “?”. The four combinations included both true
and emulated MLEM2 with the Hepatitis data set and emulated
MLEM2 with the Image segmentation and Wine recognition
data sets.

For one combination the error rate was smaller for “*” than
for “−”, true MLEM2 and the Breast cancer data set. However,
for the remaining combinations the difference in error rate was
not significant. In addition, “−” and “*” values were never
significantly better than “?”.

VI. CONCLUSIONS

In our experiments we compared true and emulated ver-
sions of the MLEM2 algorithm using the error rate of the
induced rule set, a result of ten-fold cross validation, as the
quality criterion. Results of the same comparison of error rate
of the induced rules are measurably more conclusive than
previous experiments: in five combinations (out of 18) the
emulated approach to MLEM2 algorithm was better, in one
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TABLE IV. DATA SETS USED FOR EXPERIMENTS

Data set Number of % of

cases attributes concepts missing values

Breast cancer 277 9 2 44.81
Echocardiogram 74 7 2 40.15
Hepatitis 155 19 2 60.27
Image segmentation 210 19 7 69.85
Lymphography 148 18 4 69.89
Wine recognition 178 13 3 64.65

case the true approach was better (5% significance level, two-
tailed test). In addition, there is some evidence that the lost
value interpretation of missing attribute values is the best:
in seven cases this interpretation was significantly better than
attribute-concept values, and in eight cases it was better than
“do not care” conditions. Additionally, attribute-concept values
and “do not care” conditions were never significantly better
than lost values.
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