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Abstract— The growth in size of geographical data collected by 

different types of sensors and used in diverse applications have 

led to the adoption of spatial data warehouses (SDW) and 

spatial OLAP (SOLAP). Spatial data are represented as either 

discrete (objects) or continuous (raster), also called field-based 

data. The latter representation deals with data about natural 

phenomena that exist continuously in space and time. 

Continuity was not taken into account during the early days of 

SDW and SOLAP, however, during the last decade there were 

attempts to include this concept within SOLAP. In this paper, 

we present some of the concepts, issues and discuss the models 

proposed to represent spatiotemporal continuity in a decisional 

context and attempt to foresee where the research in this area 

is heading.  

Keywords-Data Warehousing; Field Based Data; Models; 

Multidimensional; SOLAP; Spatial Data. 

I.  INTRODUCTION 

Data warehouses rely on multidimensional structures, 
which are based on the concept of facts or measures and 
dimensions. Facts are the subject of analysis and they are 
usually numeric values. Facts are defined by the combination 
of values (members) of dimensions if a corresponding value 
exists. Dimensions represent the context in which measures 
or facts are analyzed. Usually, dimensions are organized in 
hierarchies composed of several levels; each level represents 
a level of detail as required by the expected analysis. A 
hierarchy is a set of variables which represent different levels 
of aggregation of the same dimension and which are 
interlinked by a mapping [18]. Traditional data warehouses 
deal with alphanumeric data; however, most businesses take 
geographical location seriously when they seek good 
decisions and hence a large segment of data stored in 
corporate databases is spatial. It has been estimated that 
about 80% of data have a spatial component to it, like an 
address or a postal code [8]. In order to obtain maximum 
benefits of the spatial component of data, there had been 
important efforts that led, eventually, to the introduction and 
implementation of spatial data warehousing (SDW) and 
spatial OLAP (SOLAP).  

Spatial data warehousing has been recognized as a key 
technology in enabling the interactive analysis of spatial data 
sets for decision-making support [11][19]. According to [22] 
a spatial data warehouse is a subject oriented, integrated, 

time-variant and non-volatile collection of both spatial data 
and non-spatial data in support of management’s decision-
making process. In plain terms, it is a conventional data 
warehouse that contains both spatial and non-spatial data 
where these two types of data complement each other in the 
support of the decision making process. 

OLAP is a tool for analysis and exploration of 
conventional (alphanumeric) data warehouses. It can also be 
used for spatiotemporal analysis and exploration. However, 
the lack of cartographic representations leads to serious 
limitations (lack of spatial visualization, lack of map-based 
navigation, and so on) [19]. To overcome these limitations, 
visualization tools and map-based navigation tools have to 
be integrated within the conventional OLAP. The result 
would be a OLAP that can be seen as a client application on 
top of a spatial data warehouse [2]. The presence of these 
components would give specialists from multiple disciplines 
(forestry, public health, transport,…etc.) a new exploration 
and analysis potential known as Geographic Knowledge 
Discovery (GKD) [3]. 

This paper sheds a light on the research carried on spatial 
OLAP for continuous field data and the different models that 
have been proposed. In order to achieve our objective, a brief 
overview of spatial data warehousing is presented in Section 
2. The rest of the paper is organized as follows: In Section 3, 
we discuss the major concepts of several multidimensional 
models for continuous field data that have been proposed. A 
comparison between models is presented in Section 4 and we 
conclude the paper in Section 5. 

II. SPATIAL DATA WAREHOUSINGA AND SPATIAL OLAP 

A spatial data warehouse contains three types of spatial 
dimensions; non-spatial, mixed and spatial dimensions.  

The first type is a hierarchy containing members that are 
only located with place names (an address or a postal code) 
and not represented geometrically. The absence of 
geometrical representation handicaps the spatiotemporal 
exploration and analysis but it is still possible for the users to 
carry out the spatial cognition [13]. The second type is a 
hierarchy whose detailed level members have a geometric 
representation but general levels do not have one (at a certain 
level of aggregation). An example of this type of dimensions 
is using maps with polygons for cities and regions but neither 
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for states nor country. In the last type of spatial dimensions, 
all members have a geometric representation.  

In addition to spatial dimensions, two types of spatial 
measures are also distinguished, the first being a geometric 
shape or a set of shapes obtained by a combination of several 
geometric spatial dimensions. The second type is a result of 
spatial metric or topological operators [20]. 

A literature review of SOLAP shows an extensive 
amount of work, unfortunately most of the published 
research focused on the implementation side and on showing 
the advantages and potential uses of SOLAP. To the best of 
our knowledge, there is not enough solid attempts to go in-
depth in the theory behind the concepts or to propose a sound 
mathematical model. Hence, SOLAP remained just an 
application that can be seen - by many - merely as a coupling 
between OLAP and GIS. Moreover, SOLAP solely deals 
with the discrete representation of GIS and hence it cannot 
grasp the essence of continuity in natural phenomena. Even 
when continuous field data are dealt with in a decisional 
context [14] they are treated as discrete and hence they lack 
their main characteristic that is, spatiotemporal continuity. 
For instance, [24] proposed a logical model to integrate 
spatial dimensions representing incomplete field data at 
different resolutions in a classical SOLAP architecture. 
Nonetheless, during the last ten or more years, serious 
attempts were made at integrating continuity in 
multidimensional structures. 

III. MODELS 

There is no consensus on one specific model to represent 
multidimensional structures for field-based data. In fact, 
even conventional multidimensional structures, which are 
more established, use different models. Over the last few 
years, several models were proposed for spatiotemporal 
multidimensional structures such as [21], where a logical 
multidimensional model to support spatial data on SDW is 
proposed. But, most of them concentrate on spatial 
continuity rather than spatiotemporal continuity. 

In this section we present an overview of the main 
concepts of (four) major models. 

A. Ahmed and Miquel, 2005 

The model presented in [1] is one of the earliest models 
for multidimensional structures that attempts to include 
continuous field data as measures and dimensions. The 
researchers present the concepts, research issues and 
potentials of continuous multidimensional structures and 
propose a model for continuous field data. The model is 
based on the concept of basic cubes, which are used as the 
lowest level of detail of dimensions. To imitate the behavior 
of natural phenomena a continuous data warehouse will be 
treated as a second layer on top of the discrete data 
warehouse.  

 

1) Basic Definitions 
There are n dimensions with r being the rank of 

dimension levels starting from (level 1) all the way up to 
(level r) and k being the cardinality (number of members) of 
a given dimension level DLi. The domain of values dom(DLi) 

for a given dimension level DLi may contain two types of 
members: predefined members and any possible value 
between any two given members to give a continuous 
representation of the dimension level. A value x belonging to 
a specific dimension level DLi can have ancestors and 
descendants which are specific instances related to x at 
higher and lower dimension levels respectively. 

2) Basic Cubes 
A basic cube is a cube at the lowest level of detail. The 

discrete basic cube discCb is a 3-tuple <Db, Lb, Rb> where Db 
is a list of dimensions including a dimension measure M. Lb 
is the list of the lowest levels of each dimension and Rb is a 
set of cell data represented as a set of tuples containing level 
members and measures in the form of x = [x1, x2,...xn, m] 
where m is the dimension that represents the measure. 

To obtain a continuous representation of the basic cube, 
estimated measures related to the infinite members of a given 
spatial and temporal levels are calculated using actual cell 
values from discCb. This involves applying interpolation 
functions to a sample of discCb values to calculate the 
measures corresponding to the new dimension members, 
which will result in continuous basic cube contCb. 

A continuous basic cube contCb is 4-tuple <Db, (D’b, F), 
Lb, R’b>. Discrete and continuous dimensions are 
represented by Db, D’b respectively. In addition, F is a set of 
interpolation functions associated with the continuous 
dimensions and has the same cardinality as D’b. The lowest 
levels of dimensions are represented by Lb. The continuous 
representation is defined over a spatial and/or temporal 
interval. Hence, R’b is a set of tuples of the form x = [x1, 

x2,… xn, m] where xi ∈ [minDom(Lbi) - , maxDom(Lbi)+ 

] with  being a small predefined value used to allow for 
continuous representation around the values of the domain of 
the dimension levels, and to predict values outside the 
specified interval. The measure m ⊆ M can be either 
interpolated (approximated) or exact. When measures are 
interpolated m is defined as: 
 m= f(m1, m2,…,mk) where ƒ is a spatial or temporal 

interpolation function, 

 m= f(m1, m2,…,mk) using values lying within a 

predefined spatial or temporal distance d, or 

 m = f1 o f2 (m1, m2,…,mk) or m = f2 o f1 (m1, m2,…, mk).  

The order of applying interpolation functions. 

It can be concluded that discCb  contCb 

3) Cubes 
Cubes at higher levels are built by applying a set of 

operations on data at the basic cube level. A cube C is 
defined as 4-tuple <D, L, contCb, R> where, D is a list of 
dimensions including M as defined before, L is the respective 
dimension level, R is cell data and contCb is the basic cube 
from which C is built. Because of the nature of the 
continuous field data, different aggregation functions are 
used to build the cube at higher dimension hierarchies. For 
example, the sum of measures for a specific region or a 
specific period will be represented as an integral. Other 
aggregation functions like min, max or average will be 
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performed on contCb and their results will be assigned to the 
higher levels of the hierarchy. 

4) Aggregations 
On a continuous field, two classes of operations are 

defined. The first deals with discrete operations and the 
second groups the continuous operations:  

 
Discrete operations. Only the sample points are used. 

DiscMax = vi such that vi ≥ f(sk) ∀ sk ∈ S 

DiscMin = vi such that vi ≤ f(sk) ∀ sk ∈ S 

DiscSum =   

  
DiscCount =  Card(S) 

DiscAvg =   

 
Continuous operations. All values of the field are used. 

ContMax =  vi such that vi ≥ f(Sk) ∀ Sk ∈ D × T 

Cont Min = vi such that vi ≤ f(Sk) ∀ Sk ∈ D × T 

ContSpatSum = 
 

ContTempSum= 
 

ContSpatAvg= 
 

ContTempAvg =    
where [t1:t2] is a time interval 

 

B. Vaisman and Zimányi, 2009 

Vaisman et al. [23] base their multidimensional model 
for continuous fields in spatial data warehouses on MultiDim 
model presented in [12]. A multidimensional schema 
consists of a finite set of dimensions and fact relationships. A 
dimension consists of at least one hierarchy, containing at 
least one level. A basic hierarchy is hierarchy with only one 
level. Several levels are related to each other through a 

binary relationship that defines a partial order  between 

levels. For any two consecutive related levels li, lj, if li  lj 
then li is called child and lj is called parent. A level 
representing the less detailed data for a hierarchy is called a 
leaf level. 

For spatial levels, the relationship can also be topological 
requiring a spatial predicate, e.g., intersection. A fact 
relationship may contain measures that can be spatial or 
thematic. The thematic measures are numeric that are 
analyzed quantifiably whereas the spatial measure can be 
represented by a geometry or field, or calculated using 
spatial operators, such as distance or area. 

The dimension levels have two types of attributes 
(category and property). For parent level, the category 
attribute defines how child members are grouped. In the leaf 
level, the category attribute indicates the aggregation level of 

a measure in the fact relationship. The property attribute can 
be spatial (represented by geometry or field) or thematic 
(descriptive, alphanumeric data types). Hence, property 
attribute provides additional features of the level. A level is 
spatial if it has at least one spatial property attribute. 
Likewise, a hierarchy is spatial if it has at least one spatial 
level. 

A field type is defined as a function from the spatial 
domain to a base type. Field types are obtained by applying 
the field(.). Therefore, the result of field(real) (e.g. 
representing a natural phenomenon) is a continuous function 
f : point → real. There are two types of fields (temporal and 
nontemporal). Field types are partial functions, i.e., they may 
be undefined for certain regions of space. Along with field 
types a set of operations over fields are defined and classified 
as in Table 1. 

TABLE I.  FIELDS AND OPERATION SETS 

Class Operations 

Projection to 

Domain/Range 
defspace, rangevalues, point, val 

Interaction with 

Domain/Range 

atpoint, atpoint, atline, atregion, at, atmin, 

atmax, defined, takes, concave, convex, flex 

Rate of change partialder_x, partialder_y 

Aggregation 
operators 

integral, area, surface, favg, fvariance, fstdev 

Lifting 
Operations on discrete types are generalized for 

field types 

 

1) Relational Calculus 
To express SOLAP queries [23], use a query language 

based on the tuple relational calculus (as in [7]) extended 
with aggregate functions and variable definitions. They show 
that this language expresses standard SOLAP queries and 
that, by extending the calculus with field types 
multidimensional, queries over fields can be expressed. The 
query language is introduced by example. 

Figure 1 and Figure 2 show a query over discrete data and 
SOLAP operations respectively. 

 
Figure 1.  Query over discrete data 

 
Figure 2.  SOALP operations 
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2) Extending OLAP Operations with Continuous Fields 
In addition to operations defined on fields specified in 

3.2.1, they also define another set of operations that allows 
the interaction with domain and range. These operations are 
listed in Figure 3. 

atpoint, 
atpoints, 
atline, atregion  

restrict the function to a given 
subset of the space defined by a 
spatial value. 

at : restricts the function to a point 
or to a point set (a range) in the 
range of the function. 

concave, 
convex: 

restrict the function to the 
points where it is concave or 
convex, respectively 

flex : restricts the function to the 
points where convexity changes 

Figure 3.  Domain and range operators 

There are also operators to compute how the field 
changes in space. Moreover, there are three aggregate 
operators defined as follows: 

Field average favg : integral/area 

Field variance fvariance :   dxdy 

Field Standard deviation fstdev :   
 
A class of multidimensional queries over fields denoted 

SOLAP-CF queries is also defined. Fields are classified as 

temporal identified by f( , ) pictogram and Non-temporal 

identified by f( ) pictogram. In the Non-temporal field, each 
point in the space has a value (e.g., soil type) whereas for 
temporal field there is a value that changes with time instant 
at each point in the space (e.g. temperature). The model also 
supports field measures that can be pre-computed in the pre-
processing stage as a function of many factors. 

C. Bimonte and Kang, 2010 
Prior to introducing their model, Bimonte et al. [4] define 

four requirements for definition of a formal model for field 
data as dimension and measures: 

1. Measures as continuous field data  
2. Hierarchy on continuous field data  
3. Aggregation functions as Map Algebra functions 
4. Independence of implementation 
They argue that no existing model satisfies all 4 

requirements. 

1) Definitions 
As in the previous models, Bimonte et al. [4] start by 

providing a uniform representation for field and vector data, 
which are used to define measures and dimensions members 
of the multidimensional model. 

Real world entities are represented by 3 types of objects 
described by alphanumeric attributes. An object can 
represent levels and members of dimensions. 

a) An object 

An Object Structure Se is a tuple 〈a1 …an〉 where  i 

[1,…n] ai is an attribute defined on a domain dom(ai) 

An Instance of an Object Structure Se is a tuple 

〈val(a1),…val(an)〉 where  i [1,…n], val(ai)  dom(ai) 

'I(Se)' denotes the set of instances of Se 

b) Geographic Object 
A geographic object is a geometry (geom) and an optional 

set of alphanumeric attributes ([a1, … an]) whose values are 

associated to the whole geometry according to the vector 

model. 
Let g  R2. An Object Structure Se = 〈geom, [a1,… an]〉 is a 

Geographic Object Structure if the domain of the attribute 

geom is a set of geometries: dom(geom) 2g 

geom is called 'geometric support' 

c) Field Object 
A Field Object extends a Geographic Object with a function that 

associates each point of the geometry to an alphanumeric value. 

Let Se = 〈geom, field, [a1,… an]〉 a Geographic Object 

Structure. Se is a Field Object Structure if the domain of 

the attribute field is a set of functions defined on m sub-

sets of points of geom having values in an alphanumeric 

domain domfield : dom(field)= {f1 … fm} 

An Instance of a Field Object Structure Se is a tuple 〈g, 

fj, val(a1),…val(an)〉 where: 

-  i  [1,…n] val(ai)  dom(ai), g  dom(geom) 

- fj : g → domfield and fj  {f1 , …, fm} 

'field support' is the input domain of fj 

2) Spatio-multidimensional Model for Field Data 
A spatio-multidimensional model uses data as 

dimensions composed of hierarchies, and facts described by 
measures. A hypercube is an instance of the spatio-
multidimensional model. 

a) Hierarchies and facts 

Vector objects are organized in a hierarchical way. A 
Spatial Hierarchy organizes the Geographic Objects into a 
hierarchy structure using a partial order ≤h where Si ≤h Sj 
means that Si is a less detailed level than Sj. Measures are 
aggregated according to the groups of spatial members 
defined by the tree <h. 

Field Hierarchy is defined as a hierarchy of field objects. 

A Field Hierarchy Structure, Hh, is a tuple 〈Lh, h, h, ≤h〉 
where: 

- h, h, are of Field Object Structures, and Lh is a set of 

Field Object Structures 
- ≤h is a partial order defined on Lh, h, h. 

An Instance of a Field Hierarchy Structure Hh is two 

partial orders: <h and <f such that: 
- <h is defined on the instances of h, h, h. Noted as 

<h 'geographic objects order' 
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- <f is defined on the field supports of the instances of 

Lh, h, h such that: 
- if coodi <f coodj then Si ≤h Sj , where coodi belongs 

to a field support of an instance of Si, and coodj belongs to a 
field support of an instance of Sj, (coodi and coodj are 
geometric coordinates) 

- coodi which does not belong to the field supports of 

the instances of  h,  one coodj belonging to the field 

support of an instance of Sj such that coodi <f coodj 

-  coodi which does not belong to the field supports of 

the instances of h,  coodj belonging to the field support of 
an instance of Sj such that coodj <f coodi.  

<f  is 'field objects order' 
 

The set of leafs of the tree represented by <h with root ti 

are denoted as leafs(Hh, ti).  

The set of leafs of the tree represented by <f with root 
coodi are denoted as leafsFieldSupport( h, coodi). 

Based on the definitions above, the model uses a concept 
of Field Cube Structure that represents the spatio-
multidimensional model schema. The model supposes the 
existence of only one spatial dimension and one field 
measure. 

b) Field Cube 

A Field Cube Structure, FCc , is a tuple 〈H1,… Hn, 

FieldObject 〉 where: 

- H1 is a Field Hierarchy Structure (Spatial dimension) 

-  i  [2,…n] Hi is a Hierarchy Structure. 

- FieldObject is Field Object Structure. 

An Instance of a Field Cube Structure FCc, I(FCc), is a set 

of tuples {〈tb1,…tbn, tbf〉} where: 

-  i  [1,…n] tbi is an instance of the bottom level of 

Fi ( i). 

- tbf is an instance of FieldObject. 
The instance of the spatio-multidimensional model is a 

hypercube. A hypercube can be represented as a hierarchical 

lattice of cuboids.  

Field measures are aggregated from fact table data (basic 

cuboid) to represent non-basic cuboids. 

Aggregations from cuboids to higher levels are classified 
as in Figure 4. 

 
Figure 4.  Types of aggregations 

3) Aggregation of Field Measures 
I. spatial aggregation  

Let G be the geometric attribute. Its aggregation is 

defined by means of a function O G that has as input n 

geometries of the attribute G, and that returns one 

geometry: 

OG : dom(G)×…× dom(G) → 2G where G is a subset of 

the Euclidian Space R2 

II. alphanumeric aggregations 

Let A be an alphanumeric attribute. Its aggregation is 

defined by means of a function OA that has in input n 

values of the attribute A, and that returns one value of 

the attribute A: 

OA : dom(A)×…× dom(A) → dom(A) 

 

4) Gómez and Gómez, 2011, 2012 
The model proposed in [23] is extended in [9][10]. The 
extension includes proposition of a closed generic map 
algebra over continuous fields. The algebra serves as basis 
for a language that allows analyzing continuous field data 
and OLAP cubes using traditional OLAP operations. For the 
sake of briefness, we will present cube operations for 
continuous data starting by basic definitions. 

a) Spatial Dimension Schemas 

A spatial schema is a tuple <nameDS, L, →> where:  

(a) nameDS is a literal; 

(b) L is a non-empty finite set of names called levels (e.g. 

province, country) which contains a distinguished level 

name All; 

(c) Each level l  L has a non-empty finite set of names, 

called level descriptions LD(l); 

(d) Each level description is associated with a base type, 

called its domain;  

(e) → is a partial order (rollup) relation on the levels in L.  

(f) The closure of rollup has a unique bottom level and a 

unique upper level called all such that LD(all)={all} 

Based on this, a spatial dimension schema is a dimension 

schema <nameDS, L, →> where at least one level l  L 

has exactly one level description with domain of type 
geometry. 

b) Cube Schema and Operations over Fields 

A cube schema is a tuple <nameCS, D, M> where nameCS 

is a literal, D is a finite set of dimension schemas and M are 

also a finite set measures. 

According to the definition of discretized fields, the value of 

the field at that point is the measure and the coordinates of 

the point are the dimension. The fact is represented by the 

field and its schema <cubeName, D, M>. Therefore, a field 

can be seen as an OLAP Cube. It is shown that DFields and 
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traditional OLAP cubes can be easily integrated for data 

analysis.  

They also define a set of aggregate functions A = {Max, 

Min, Avg, Sum}.  

Dice operator. This operation selects values in 

dimensions or measures based on a Boolean condition  
which may introduce discontinuity. To avoid discontinuity, 

the operator is defined by setting the value of samples with  

values where the  operator is not satisfied.  

ROLL-UP operator. It aggregates facts according to 
dimension hierarchy. In this model the spatial dimension is a 
single-level dimension which implies that rollup hierarchies 
must be introduced externally. Three roll-up operations are 
defined (spatial over spatial field, spatial over spatiotemporal 
field and temporal over spatiotemporal fields). 

Drill-Down. This operations aggregates facts according 
to dimension hierarchy. In this model, the spatial dimension 
is a single-level dimension which implies that rollup 
hierarchies must be introduced externally. They define 3 roll-
up operations (spatial over spatial field, spatial over 
spatiotemporal field and temporal over spatiotemporal 
fields). 

Roll-Up. This operation reverses the effect of Roll-Up so 
it is just the inverse of the mentioned operator. 

IV. DISCUSSION 

The approaches used in the above listed proposals (and in 
others) are diverse to say the least. Moreover, it seems that 
there is no build up on previous work or any attempts to 
criticize or enhance what has already been done which leads 
to a plethora of models without a clear attempt to define a 
mainstream model.  

To compare the 4 models, one needs to define criteria 
and search which model meets the necessary requirements to 
become an applicable model. According to [6], true data 
models should have 3 components: A structure that defines 
how data are structured, integrity rules that define how data 
are kept correct and consistent and operators which define 
how data are manipulated. Therefore we will compare these 
models using the above mentioned conditions in addition to 
the requirements defined by [4] and additional requirements 
defined in [16][17]. The different models are evaluated 
against these six requirements (Table 2): 

1) Structure 

The common structure between all models is the hypercube. 

Each model proposes a different way of building its 

hypercube.  

2) Integrity rules 

Multidimensional structures are not concerned with integrity 

as much as they are concerned with fast response to 

analytical queries. 

3) Operators 

This complexity of SOLAP queries implies long query 

processing time. Therefore, most queries are run in advance 

and the results are stored as materialized views. Operators 

are either for navigation along the analysis dimensions or 

for returning previously computed results.  

4) Continuous data as measures 

Usually measures are numerical values that are analyzed 

according to axis of analysis (the dimensions). In the models 

we reviewed only one proposal imposes continuous data as 

measures constraint. 

5) Explicit hierarchies in dimensions 
The hierarchy should be explicit to allow the user to 

navigate with clear knowledge of the relationship between 

the different levels [15]. 

6) Symmetric treatment of dimensions and measures: 
Since measures can be a level of a dimension, it is 

essential that measures can be transformed into attributes and 
vice versa [5]. This will provide an important functionality to 
any OLAP system. 

TABLE II.  MULTIDIMENSIONAL MODEL COMPARISON CRITERIA 

 

To clarify some of the differences between the 4 models, 

we will present examples of how the aggregate average is 

handled by each model. 

In [1], to find the average pollution for a specific region, 

the aggregation is done by applying interpolation functions 

to the basic cubes to obtain a continuous representation of 

the field. The sum of all values is calculated as in integral of 

the function representing the field. The average is then 

obtained by dividing the sum by the area of the field. In 

[23], the average monthly temperature for a land plot is 

calculated as follows : 

{l.number, m.month, temp | LandPlot(l) ^ Month(m)^ 

first=min({t.date|Time(t) ^ t.month = m.id}^last= 

max({t.date|Time(t)^t.month=m.id}^ temp = avg 

({atperiods (atregion(t.geometry,l.geometry), range(first, 

last)) | Temperature(t)})} Where first and last represent 

first and last day of the month.  

Criteria 
Ahmed 

et al. [1]  

Vaisman 

et al. [23]   

Bimonte 

et al. [4] 

Gómez et 

al. [9][10] 

Structures     

Integrity rules x x x x 

Operators     

Continuous data 

as measures 
x x  x 

Explicit 

hierarchies 
 x  x 

Symmetric 

treatment of 

dimensions and 

measures 

 x x x 
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In [4], the aggregation is performed by applying the 

average on the Field Hierarchy Hregres. 

F4(x;y)=AVG(leavesFieldSupport(Hdeptres, (x2;y2))) = 

AVG(f3(x;y), f3(x1;y1)).  

For more details about the examples we refer the reader to 

[1][4][9][23]. 

From Table 2, none of the proposed models satisfies all 

criteria. Models proposed by Vaisman et al. [23] and Gómez 

et al. [9][10] satisfy only structure and operators constraints. 

The major weakness is the lack explicit hierarchies, which is 

essential for navigation in cubes. The model presented by 

Ahmed et al. [1] lacks treatment of continuous data as a 

measure which is supported in [4]. However, Bimonte et al. 

[4] does not treat dimensions and measures symmetrically.  

V. CONCLUSION 

Spatial data warehouses have been around for some time 
now. Most of the early work on this topic was oriented 
towards discrete spatial data. The combination of 
cartographic display and OLAP resulted in SOLAP. 
However it was also limited to discrete spatial 
representation. Attempts at integrating continuous or field 
based data in multidimensional structures began about 10 
years ago. During this period, a number of models to 
represent spatial and/or spatiotemporal continuity were 
proposed. In this paper, we studied some of these models and 
compared them with respect to different criteria and 
conditions for multidimensional models. None of the 
different proposals covered all comparison criteria and hence 
there is still a considerable amount of work to be done on the 
subject. The other remark is that most of the work 
concentrated on the theoretical side without a mention of 
solid model that can be used in real life application. To the 
best of our knowledge, even though there is still an 
undiscovered wealth mine for research and development, 
there is a lack of recent work on this domain. 
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