
Object-Relational Mapping in 3D Simulation

Ann-Marie Stapelbroek,
Martin Hoppen

and Juergen Rossmann

Institute for Man-Machine Interaction
RWTH Aachen University
D-52074 Aachen, Germany

Email: ann-marie.stapelbroek@rwth-aachen.de {hoppen,rossmann}@mmi.rwth-aachen.de

Abstract—Usually, 3D simulation models are based on complex
object-oriented structures. To master this complexity, databases
should be used. However, existing approaches for 3D model
data management are not sufficiently comprehensive and flexible.
Thus, we develop an approach based on the relational data
model as the most widespread database paradigm. To successfully
combine an object-oriented 3D simulation system and a relational
database management system, a mapping has to be defined
bridging the differences in between. These are summarized as the
object-relational impedance mismatch. Theoretical foundations
of object-relational mapping are researched and existing, semi-
automatic object-relational mappers are evaluated. As it turns
out, existing mappers are not applicable in the presented case.
Therefore, a new object-relational mapper is developed based on
the utilized simulation system’s meta information system. Key
aspects of the developed approach are a necessary adaptation
of the theoretical object-relational mapping strategies, database
independence in conjunction with data type mapping, schema
mapping by schema synchronization, and strategies for saving
and loading model data as well as for change tracking. The
developed prototype is evaluated using two exemplary simulation
models from the fields of industrial automation and space
robotics.

Keywords–Object-Oriented 3D Simulation System; Relational
Data Model; Relational Database Management System; Object-
Relational Mapper; Object-Relational Mapping; Object-Relational
Impedance Mismatch.

I. INTRODUCTION

3D simulation systems are used in different areas like
space robotics and industrial automation to derive properties –
especially, spatial properties – of a planned or existing system’s
behavior. Usually, 3D simulations are based on complex and
extensive models. Therefore, databases are appropriate for data
management to master the complex object-oriented structures
of 3D simulation models and to make simulation states persis-
tent [1]. As a result, different simulation runs can be recorded
and analyzed [2]. In comparison with flat file storage, the usage
of databases has key advantages, in particular, if data indepen-
dence, multi-user synchronization, data integrity, data security,
reliability, efficient data access and scalability are required [3].
However, existing approaches for 3D model data management
using databases are not sufficiently comprehensive and flexible,
motivating the development of a new approach.

The most widespread database paradigm is the relational
data model. If relational databases should be used as a
persistence layer for object-oriented 3D simulation systems,

a mapping has to be defined bridging the differences be-
tween both paradigms. These differences are summarized as
the object-relational impedance mismatch. The term object-
relational mapping (OR mapping) describes the process of
mapping the objects of an application (here, a 3D simulation
system) to table entries of a relational database and vice versa.
A manual mapping between the object-oriented concept and
the relational database model is complex and error-prone so
that object-relational mappers (OR mappers) are used. An
OR mapper is a tool that builds a translation layer between
application logic and relational database to perform a semi-
automatic object-relational mapping.

Figure 1. OR mapping for a 3D simulation system with an object-oriented
runtime database (data: [4]).

In this paper, we present an OR mapper for 3D simulation
systems with an object-oriented runtime database and a meta
information system, see Figure 1. The work was conducted as
a student project and is based on our previous work [1] [2].
A prototypical implementation is based on the 3D simulation
system VEROSIM [5] and PostgreSQL [6] as a relational
database management system (RDBMS). However, the under-
lying approach itself provides database independence allowing
the usage of other RDBMSs. A key aspect of the presented
OR mapping is the schema mapping that is build during a
schema synchronization (based on [2]). The introduced concept
considers both forward and reverse mapping. Furthermore, the
OR mapper supports change tracking and resynchronization of
changes. The OR mapper provides an eager and a lazy loading
strategy. The prototype is evaluated using simulation models
for industrial automation and space robotics (Figure 11).

The rest of this paper is organized as follows: In the next
section, similar applications with a 3D context that integrate
database technology are analyzed. Section III contains a short
summary regarding the theoretical principals of OR mapping

1Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

and Section IV introduces the utilized 3D simulation system
VEROSIM and evaluates existing OR mappers. Subsequently,
the newly developed concept for OR mapping is introduced in
Section V and evaluated in Section VI. Finally, the paper is
concluded in Section VII.

II. RELATED WORK

In general, many applications with a 3D context have
data management requirements similar to 3D simulation. Yet,
the use of database technology is not widespread and files
are still predominant. When databases are utilized at all, in
many scenarios, they are used to store additional information
(meta information, documents, films, positions, hierarchical
structure . . .) on scene objects or parts [7] [8] [9] [10] [11]
[12] [13]. Yet, we need to manage the 3D model itself to
obtain all the benefits from using database technology. Another
important aspect for 3D simulation is arbitrary application
schema support to be able to work with native data and
avoid friction loss due to conversions. Many systems use
a generic (scene-graph-like) geometric model, in most cases
with attributes [7] [14] [15] [16] [17]. In such scenarios,
schema flexibility can be achieved to a certain extent by
providing import (and export) to different file formats [15]
[18] [19] [20]. Some approaches support different or flexible
schemata. For example in [14], schema alteration is realized
by adding attributes to generic base objects. Other systems
support a selection of different static [15] or dynamic [16]
[21] schemata. However, most approaches focus on a specific
field of application, thus, requiring and supporting only a
corresponding fixed schema [22] [23] [24]. While Product Data
Management (PDM) systems [8] [9] or similar file vaulting
approaches for 3D data [25] [26] [27] in principle support
arbitrary schemata they are not explicitly reflected within the
database schema due to their ”black box integration” approach.
Most scenarios provide a distributed architecture in terms of
multiuser support, a client-server model, or access control
and rights management. However, only some build it on a
Distributed Database (DDB)-like approach [21] [28] [17] with
client-side databases. The latter is favorable for 3D simulation,
e.g., to provide schema flexibility or a query interface on client-
side, as well.

Altogether, while there are many existing approaches to use
database technology in applications with a 3D context, none
of them provides a comprehensive and flexible solution that
fulfills all the requirements for 3D simulation.

III. OBJECT-RELATIONAL MAPPING

Some RDBMSs provide additional object-relational fea-
tures. For example, PostgreSQL supports some object-oriented
extensions like user defined types or inheritance. However,
these features are not provided uniformly by all RDBMSs
contradicting the desired database independence. Therefore,
the OR mapping is realized with standard relational concepts
only.

There are several references in literature dealing with the
differences between object-oriented concepts and the relational
data model. To solve the object-relational impedance mismatch
and successfully generate an OR mapper, it is important to
consider the properties of both paradigms and the consequent
problems. For example, one main idea of object-orientation
is inheritance [29]. However, the relational data model does

not feature any comparable concept. Thus, rules have to be
defined how inheritance can be mapped onto table structures.
Further differences between both paradigms that contribute to
the object-relational impedance mismatch are polymorphism,
data types, identity, data encapsulation, and relationships.

The following subsections summarize the state-of-the-art
of theoretical mapping strategies for inheritance, relationships
and polymorphism.

A. Inheritance
The approaches to map objects onto tables differ in to

how many tables one object is mapped. Most authors name
three standard mapping strategies for inheritance. They are
illustrated in Figure 3 regarding the exemplary inheritance
hierarchy from Figure 2.

Figure 2. Exemplary inheritance hierarchy (adapted from [30, p. 62f]).

The first strategy is named Single Table Inheritance [30]
and maps all classes of one inheritance hierarchy to one table,
see Figure 3(a). A discriminator field is used to denote the type
of each tuple [31]. An advantage is that all data is stored in one
table preventing joins and allowing simple updates [30, p. 63].
Unfortunately, this strategy leads to a total denormalization,
which is contrary to the concept of relational databases [31].

(a) Single Table
Inheritance.

(b) Concrete Ta-
ble Inheritance.

(c) Class Table
Inheritance.

Figure 3. Standard mapping strategies for inheritance (adapted from [30, p.
62f]).

The Concrete Table Inheritance [30] strategy maps each
concrete class to one table, see Figure 3(b). This mapping
requires only few joins to retrieve all data for one object.
A disadvantage is that schema changes in base classes are
laborious and error-prone. [30, p. 62f]

The third standard mapping strategy for inheritance is
named Class Table Inheritance [30] and uses one table for

2Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

each class of the hierarchy, see Figure 3(c). It is the easiest
approach to map objects onto tables [30, p. 62] and uses a
normalized schema [31]. However, due to the use of foreign
keys, this approach realizes an is-a relationship as a has-a
relationship [31]. Thus, multiple joins are necessary if all data
of one object is required. This aspect can have an effect on
performance. [30, p. 62f] [32, p. 7]

Another possibility to map objects onto tables not men-
tioned in every reference on OR mapping is the generic
approach [33]. It differs from the strategies mentioned above as
it has no predefined structure. Figure 4 shows an exemplary
set-up, which can be extended as required. The approach is
particularly suitable for small amounts of data because it maps
one object to multiple tables. It is advantageous if a highly
flexible structure is required. Due to the generic table structure,
elements can easily be added or rearranged. [33]

Figure 4. Map classes to generic table structure (adapted from [33, chapter
2.4]).

In conclusion, there is no single perfect approach to map
objects onto tables yielding an optimal result in all situations.
Instead, a decision has to be made from case to case depending
on the most important properties. For this purpose, the three
standard mapping strategies for inheritance can also be com-
bined, however, to the disadvantage of more complexity. [30,
p. 63]

B. Relationships
In contrast to relationships between two objects, which can

be unidirectional, relationships between tables in a relational
database are always bidirectional. In unidirectional relation-
ships, associated objects do not know if and when they are ref-
erenced by another object [32]. Due to the mandatory mapping
of unidirectional onto bidirectional relationships, information
hiding cannot be preserved regardless of the relationship’s
cardinality, i.e., 1:1 (one-to-one), 1:n (one-to-many) or n:m
(many-to-many) relationships.

1:1 relationships can simply be mapped onto tables using
a foreign key. To map 1:n relationships, structures have to
be reversed. [33] [30, p. 58f] In case of n:m relationships,
additional tables are mandatory: A so-called association table
is used to link the participating tables. [33] [30, p. 60] It is
also possible to map an n:m relationship using multiple foreign
keys in both tables if constant values for n and m are known.
[33]

Several references describe the aforementioned mapping
strategies for relationships. Besides, [34] describes an approach
using an additional table regardless of the cardinality. Thus,

objects can be mapped onto tables regardless of their relation-
ships. Following [34], one disadvantage of the aforementioned
approaches is the violation of the object-oriented principle of
information hiding and abstraction. Furthermore, tables are
cluttered by foreign key columns which reduce maintainability
and performance. The authors prove (by a performance test)
that their own approach shows no performance degradation.
[34, p. 1446f]

C. Polymorphism
Polymorphism is an essential concept in object-orientation.

However, relational databases do not have any feature to
reference entries of different tables by one foreign key column.
The target table and column have to be explicitly defined
for each foreign key constraint. It is not possible to define
a foreign key that references more than one table [35, p. 89].
Thus, a mapping is required to map polymorphic associations
onto a relational database. Following [35], [36], there are three
mapping approaches for polymorphic associations.

The first approach is named Exclusive Arcs and uses
a separate foreign key column for each table that can be
referenced by the polymorphic association, see Figure 5. This
approach requires NULL values for foreign key columns. For
each tuple, at most one of the foreign key columns may be
unequal to NULL. Due to foreign key constraints, referential
integrity can be ensured. However, the administrative effort for
the aforementioned NULL rule is high. An advantage of this
approach is that queries can easily be formulated.

Figure 5. Mapping of polymorphic associations using Exclusive Arcs.

Another approach is named Reverse the Relationship and
is shown in Figure 6. It uses an intermediate table with two
foreign key columns like the aforementioned approach for n:m
relationships. Such an intermediate table has to be defined
for each possible type (table) that can be referenced by the
polymorphic association. [35], [36] The application has to
ensure that only one entry of all subordinate tables is assigned
to the entry of the superordinate table. [35, p. 96ff]

Figure 6. Mapping of polymorphic associations using Reverse the
Relationship.

The third approach uses a super table (or “base table”)
and is named Base Parent Table. It is based on the basic idea
of polymorphism where subtypes can be referenced using a
common, often abstract supertype. In most cases, these super-
types themselves are not mapped to the relational database.

3Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

The strategy uses a table to represent a supertype for all its
subtypes’ tables as shown in Figure 7.

Figure 7. Mapping of polymorphic associations using Base Parent Table.

Such a base table only consists of one column containing
a primary key value. The assigned subordinate entry has the
same primary key value as the entry of the base table. Thus,
an unambiguous assignment is possible. This approach has the
big advantage that base tables do not have to be considered
in queries. They are only used to ensure referential integrity.
[35, p. 100ff]

IV. EXISTING SOLUTIONS

For a long time, differences between both the object-
oriented and relational paradigm were bridged by simple
protocols like Java Database Connectivity (JDBC) and Open
Database Connectivity (ODBC), which provide a general in-
terface to different relational databases. These interfaces have
the disadvantage that the programmer itself is responsible for
data exchange between objects and tables. Due to the mixing
of SQL statements and object-oriented commands, this usually
leads to complex program code that is not easily maintained.
[31]

OR mappers are used to realize a simpler and smarter
mapping between objects and table entries on the one side
and a clear separation between the object-oriented and rela-
tional layer on the other side. Thus, the application can be
developed independently of the mapping and the database. As
a consequence, different development teams can be deployed.
[31]

There are several tools for OR mapping with different
features and documentation. Examples are Hibernate (Java),
NHibernate (.NET), ADO.NET Entity Framework (.NET),
LINQ to SQL (.NET), Doctrine (PHP), ODB (C++), LiteSQL
(C++), and QxOrm (C++). Not every existing mapper features
all three standard mapping strategies for inheritance. Another
main difference is how the mapping approach can be specified.
In particular, OR mappers like Hibernate [37] and NHibernate
[38] recommend an XML-based mapping while mappers like
ODB [39] and QxORM [40] recommend the opposite.

The applicability of an OR mapper depends on the utilized
application. In the presented scenario, this is the 3D simulation
system VEROSIM, which is subsequently introduced before
presenting the evaluation of existing OR mappers.

VEROSIM uses an in-memory runtime database called
Versatile Simulation Database (VSD) for its internal data
management. It is an object-oriented graph database providing
the means to describe structure as well as behavior of a
simulation model. Besides interfaces for data manipulation, it
provides a change notification mechanism for updates, inserts
and deletes. In VSD, objects are called instances and their
classes are described by so-called meta instances representing

the meta information system of VSD. Instances can have
properties for simple values (e.g., integers or strings) or for
referencing other instances – either a single target (1:1) or a
list of targets (1:n). During runtime, instances can be identified
by a unique id. VEROSIM and VSD are implemented in C++.
[5]

Thus, an OR mapping is required that maps data of a
runtime database like VSD onto a relational database. None
of the existing OR mappers support a direct mapping of a
runtime database’s meta information system. They only map
object-oriented classes and objects of a specific programming
language. Similarly, the approach used in our previous work [2]
maps a relational database to a generic object interface that is
subsequently mapped to VSD. Thus, if one of these mappers is
used, a second mapping is required to map between the meta
information system and the object-oriented layer of the OR
mapper.

Based on meta instances, any VSD instance can be clas-
sified during runtime. This is a key advantage for the OR
mapping with regard to the generation and maintenance of
all mappings. Thus, the decision was made to develop a new
OR mapper. This allows the OR mapping to be tailored to the
requirements of runtime simulation databases like VSD.

V. OBJECT-RELATIONAL MAPPER FOR 3D SIMULATION
SYSTEMS

A basic decision criterion for OR mapping is the def-
inition of the database schema. Given an existing object-
oriented schema, forward mapping is used to derive a relational
database schema. In contrast, if the initial situation is a given
relational database schema, reverse mapping is used to derive
an object-oriented schema. As already mentioned, database
independence is a key aspect of OR mapping. In reverse
mapping, this aspect is omitted as a specific database schema
of a particular RDBMS is used as the basis for the mapping.
[31] The focus of the presented OR mapper is forward mapping
to map existing model data of the 3D simulation system onto
an arbitrary relational database. Nevertheless, reverse mapping
is supported in the concept as well to use the 3D simulation
system for other existing databases (see the upper path in
Figure 8).

The designed forward mapping of the presented OR map-
per is briefly described in the following paragraph and the
overall structure of the OR mapper is shown in Figure 8.

First of all, the database schema has to be generated to be
able to store object-oriented simulation data in the relational
database. Subsequently, a schema synchronization defines a
schema mapping between the object-oriented and the relational
schema. More details on this are given in [2]. The schema
mapping defines which meta instance is mapped to which
table. Based on this mapping, initial simulation model data
can be stored. Generate Schema Based on Meta Information
and Export Model Data in Database are performed only once
and can be seen as the initialization of the OR mapping.
Subsequently, model data can be loaded from the relational
database and updated within the simulation database. A change
tracking mechanism keeps track of changes within the simu-
lation database and allows for their resynchronization to the
relational database.

4Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 8. Sequence diagram of the presented OR mapping approach.

In most cases, structural aspects are associated with OR
mapping. Behavioral and architectural aspects are often con-
sidered secondarily although they are not less important [30,
p. 58]. All three aspects should be regarded when developing
an OR mapper.

Architectural aspects define the communication between
business logic and database. The basic principle is not to mix
up the business logic with SQL statements, but rather to use
separate classes for database access. These can be classified in
four strategies: Row Data Gateway, Table Data Gateway, Ac-
tive Record and Data Mapper. To completely isolate business
logic, [30] recommends a Data Mapper. Although this is the
most complex strategy, it is used for the developed OR mapper
to realize an independent layer between the 3D simulation
system and the selected relational database. As a result, both
systems can independently be extended. Furthermore, Data
Mapper is especially well suited for complex structures. [30,
p. 49f]

Behavioral aspects define how data can be loaded from or
saved to the relational database. With only a few instances to
manage, it is easy to keep track of loaded, modified or removed
instances and to synchronize these changes with the database.
The more instances must be managed, the more complex this
process gets. In addition, if various users or processes can
access the database, it is even more complex. Here, it has to
be ensured that a loaded instance contains valid and consistent
data. Following [30], the pattern Unit of Work is indispensable
to solve this behavioral and concurrency problem, see Figure 9.
A Unit of Work can be seen as a control for OR mapping.
It registers all loaded, removed or newly created instances
as well as changes. A central concept of the Unit of Work
is that it aggregates all changes and synchronizes them in
their entirety rather than letting the application call separate
stored procedures. Alternatives to a central Unit of Work are
to immediately synchronize changes or to set dirty flags for
each changed object. [30, p. 54f]

Given its many advantages, a Unit of Work is used in
the presented OR mapper. To avoid repetitive loading of the
same instances, the Unit of Work is combined with the pattern
Identity Mapping as shown in Figure 9. An Identity Mapping
records each instance loaded into the simulation database and
maps it to the related tuple in the relational database. Before
loading an instance from its tuple, the Unit of Work checks if
there already is an Identity Mapping for this instance, which
is especially important for lazy loading. [30, p. 55f] Compared

Figure 9. Combination of the patterns Unit of Work and Identity Mapping
(adapted from [30]).

to literature [30] we extended the dirty mechanism. Instead of
only registering whole instances as dirty, modified properties
are registered as well. This allows to synchronize changes more
efficiently.

The fundamentals of structural aspects are described in
Section III. To minimize the overall number of joins, the
Concrete Table Inheritance strategy was chosen for mapping
inheritance. Furthermore, two strategies are selected to map
relationships. 1:1 relationships are mapped to simple foreign
key columns whereas 1:n relationships are mapped to asso-
ciation tables. However, this is only possible for monomor-
phic associations. For the polymorphic case, the strategies
described in Subsection III-C have to be evaluated. Due to the
high administrative effort, Exclusive Arcs is inapplicable. The
other two strategies are compared regarding the formulation
of queries. Base Parent Table allows for simpler queries.
However, the theoretical mapping of this strategy (Figure 7)
does not fit in combination with the aforementioned selected
mappings for inheritance and monomorphic associations. In
practice, a subordinated instance can be referenced by both a
monomorphic and a polymorphic association of superordinated
instances. As a consequence, the foreign key constraint could
be violated. So the theoretical mapping of Base Parent Table is
adapted to fit in combination with the aforementioned selected
mappings for inheritance and monomorphic associations as
shown in Figure 10. As an advantage, both the base table and
the additional foreign key column do not need to be considered
in queries. They are only used to ensure referential integrity.

Figure 10. Adapted Base Parent Table mapping of polymorphic associations.

Another important part of an OR mapper is data type
mapping. Data types of the object-oriented data model can
differ from those of the relational data model. Thus, a data
type mapping has to be defined. The developed OR mapper
comprises an interface to use a dynamic data type mapping,
which can be adapted for each database and its related data
types. This is one main aspect of the supported database
independence. Furthermore, the utilized Qt framework [41]
(QSqlDatabase) allows for a vendor-independent database
communication. Altogether, the developed OR mapper can
easily support different RDBMSs.

After schema synchronization, model data can be loaded

5Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

from the relational database populating the simulation database
with corresponding instances. A so-called eager loading strat-
egy is used to immediately load and generate all model
instances. The Unit of Work generates an identity mapping for
each loaded instance. This provides an unambiguous mapping
between each loaded instance and the corresponding tuple in
the relational database. Furthermore, a so-called lazy loading
strategy is specified for selectively loading model data from
the database. It is based on the ghost strategy presented in [30,
p. 227ff]. Here, typically necessary information, like primary
key and table name, is determined for all tuples from all
tables regardless whether the instance is loaded or not. Ghost
instances are generated containing only this partially loaded
data. [30, p. 227ff] The presented OR mapper uses a Ghost
Identity Mapping (Figure 9). The advantage of this modified
approach is that only “complete” instances are present in the
3D simulation system’s runtime database.

VI. APPLICATION

As mentioned before, schema generation and synchroniza-
tion work independently of the selected simulation model.
All required structures are defined during schema generation.
In the evaluated configuration of the 3D simulation system
VEROSIM, 910 tables, 1, 222 foreign key columns, and 2, 456
association tables are generated to map all meta instances and
1:1 as well as 1:n relationships. The schema generation takes
about 200 seconds on a local PostgreSQL 9.4 installation.
The required schema mapping is built up during schema
synchronization and takes about 2.7 seconds.

Due to its flexibility, the OR mapper can be used for
any simulation model. The prototype is evaluated using two
exemplary models from two different fields of application:
industrial automation and space robotics. Given the current
functional range of the presented prototype, further tests do
not appear to provide any additional insights.

Figure 11(a) shows the first model from the field of indus-
trial robotics. The robot model contains only a few objects so
that only 173 primary keys have to be generated to map all
objects to table entries. It takes about 0.43 seconds to store the
whole robot into the relational database and about 4.7 seconds
to load it.

(a) Industrial robot simulation
model.

(b) Modular satellite simulation
model (data: [4]).

Figure 11. Evaluated simulation models.

The second model (Figure 11(b)) is a modular satellite.
In comparison, it contains much more objects so that 19, 463
primary keys are generated to map all objects to table entries.
In this case, it takes about 22 seconds to store all objects of

the satellite and about 7.1 seconds to load all of them from
the relational database.

As mentioned in Section IV, a comparable interface to
existing ORM solutions would be less efficient as well as
more complex and time-consuming to realize due to the
necessary second mapping. Thus, we refrain from performing
such comparisons.

VII. SUMMARY, CONCLUSION AND FUTURE WORK

In contrast to flat files, database technology provides many
advantages for managing 3D simulation models. However,
existing approaches for database integration into applications
with a 3D context do not provide a sufficiently comprehensive
and flexible solution. Given the prevalence of relational DBMS
and the preferred object-oriented modeling of 3D simulation
models, an OR mapping approach is recommended. Using
existing ORM solutions (including our previous work [2]), an
intermediate layer cannot be avoided. Thus, in this work, we
develop a direct OR mapping approach.

The presented OR mapper allows a flexible and generic
mapping between an object-oriented runtime simulation
database and a relational database. It is based on the meta
information system so that an OR mapping can be performed
for arbitrary simulation models. The mapper detects schema
changes, i.e., new or modified meta instances, and automati-
cally adapts the used mapping without the need for a manual
definition of persistent elements. Hence, compared to existing
OR mappers, a complex and error-prone manual maintenance
of the defined mapping can be omitted. The presented OR
mapper separates the 3D simulation system and the used
relational database so that business logic is not mixed with
SQL statements. As a result, the 3D simulation system can
be developed independently from data storage. Future projects
can profit by time saving as they do not have to realize
persistent data storage separately. Following [42, p. 525], the
programming effort for storing objects in relational databases
accounts for 20-30% of the total project effort. Finally, the
presented OR mapping is successfully evaluated using two
simulation models from two different fields of application
(industrial automation and space robotics).

In future, data type mapping can be extended by more
specialized data types and further RDBMSs can be combined
with the prototype. Furthermore, the currently generated struc-
tures within the relational database do not contain explicit
information on the inheritance relationships as they are not
needed by the simulation system itself (they can be retrieved
from its meta information system). However, to allow third
party applications to interpret the data, inheritance structures
would be of interest. Another aspect to investigate is the
mapping of queries and operations. For the former, an object-
based query language meeting VSD’s demands, e.g., XQuery
or (a variation of) Java Persistence Query Language (JPQL)
or Hibernate Query Language (HQL), needs to be mapped to
proper SQL queries. Further performance optimizations and,
with an extended functional range of the mapper, evaluations
beyond the results from the student project could be performed,
as well. Finally, we could examine further applications, e.g.,
from other fields like forestry.

6Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

REFERENCES
[1] M. Hoppen and J. Rossmann, “A Database Synchronization Approach

for 3D Simulation Systems,” in DBKDA 2014,The 6th International
Conference on Advances in Databases, Knowledge, and Data Applica-
tions, A. Schmidt, K. Nitta, and J. S. Iztok Savnik, Eds., Chamonix,
France, 2014, pp. 84–91.

[2] M. Hoppen, M. Schluse, J. Rossmann, and B. Weitzig, “Database-
Driven Distributed 3D Simulation,” in Proceedings of the 2012 Winter
Simulation Conference, 2012, pp. 1–12.

[3] A. Kemper and A. Eickler, Database Systems – An Introduction (orig.:
Datenbanksysteme–Eine Einführung), 9th ed. München: Oldenbourg
Verlag, 2013.

[4] J. Weise et al., “An Intelligent Building Blocks Concept for On-
Orbit-Satellite Servcing,” in Proceedings of International Symposium on
Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS),
2012, pp. 1–8.

[5] J. Roßmann, M. Schluse, C. Schlette, and R. Waspe, “A New Ap-
proach to 3D Simulation Technology as Enabling Technology for
eROBOTICS,” in 1st International Simulation Tools Conference &
EXPO 2013, SIMEX’2013, 2013, pp. 39–46.

[6] The PostgreSQL Global Development Group, “PostgreSQL: About,”
2015, URL: http://www.postgresql.org/about/ [retrieved: May, 2016].

[7] B. Damer et al., “Data-Driven Virtual Environment Assembly and
Operation,” in Virtual Ironbird Workshop, 2004, p. 1.

[8] U. Sendler, The PLM Compendium: Reference book of Product Life-
cycle Management (orig.: Das PLM-Kompendium: Referenzbuch des
Produkt-Lebenszyklus-Managements). Berlin: Springer, 2009.

[9] Verein Deutscher Ingenieure (VDI), “VDI 2219 - Information technol-
ogy in product development Introduction and economics of EDM/PDM
Systems (Issue German/English),” Düsseldorf, 2002.

[10] Y. Zhao et al., “The research and development of 3D urban geographic
information system with Unity3D,” in Geoinformatics (GEOINFOR-
MATICS), 2013 21st International Conference on, 2013, pp. 1–4.

[11] D. Pacheco and S. Wierenga, “Spatializing experience: a framework
for the geolocalization, visualization and exploration of historical data
using VR/AR technologies,” in Proceedings of the 2014 Virtual Reality
International Conference, 2014.

[12] A. Martina and A. Bottino, “Using Virtual Environments as a Visual In-
terface for Accessing Cultural Database Contents,” in International Con-
ference of Information Science and Computer Applications (ICISCA
2012), Bali, Indonesia, 2012, pp. 1–6.

[13] T. Guan, B. Ren, and D. Zhong, “The Method of Unity3D-Based 3D
Dynamic Interactive Query of High Arch Dam Construction Informa-
tion,” Applied Mechanics and Materials, vol. 256-259, 2012, pp. 2918–
2922.

[14] G. Van Maren, R. Germs, and F. Jansen, “Integrating 3D-GIS and
Virtual Reality Design and implementation of the Karma VI system,”
in Proceedings of the Spatial Information Research Centre’s 10th
Colloquium. University of Otago, New Zealand, 1998, pp. 16–19.

[15] J. Haist and V. Coors, “The W3DS-Interface of Cityserver3D,” in
European Spatial Data Research (EuroSDR) u.a.: Next Generation
3D City Models. Workshop Papers : Participant’s Edition, Kolbe and
Gröger, Eds., Bonn, 2005, pp. 63–67.

[16] M. Kamiura, H. Oisol, K. Tajima, and K. Tanaka, “Spatial views and
LOD-based access control in VRML-object databases,” in Worldwide
Computing and Its Applications, ser. Lecture Notes in Computer Sci-
ence, T. Masuda, Y. Masunaga, and M. Tsukamoto, Eds. Springer
Berlin / Heidelberg, 1997, vol. 1274, pp. 210–225.

[17] E. V. Schweber, “SQL3D - Escape from VRML Island,” 1998, URL:
http://www.infomaniacs.com/SQL3D/SQL3D-Escape-From-VRML-
Island.htm [retrieved: May, 2016].

[18] T. Scully, J. Doboš, T. Sturm, and Y. Jung, “3drepo. io: building the
next generation Web3D repository with AngularJS and X3DOM,” in
Proceedings of the 20th International Conference on 3D Web Technol-
ogy, 2015.

[19] Z. Wang, H. Cai, and F. Bu, “Nonlinear Revision Control for Web-
Based 3D Scene Editor,” in Virtual Reality and Visualization (ICVRV),
2014 International Conference on, 2014, pp. 73–80.

[20] J. Doboš and A. Steed, “Revision Control Framework for 3D Assets,”
in Eurographics 2012 - Posters, Cagliari, Sardinia, Italy, 2012, p. 3.

[21] D. Schmalstieg et al., “Managing complex augmented reality models,”
IEEE Computer Graphics and Applications, vol. 27, no. 4, 2007, pp.
48–57.

[22] M. Nour, “Using Bounding Volumes for BIM based electronic code
checking for Buildings in Egypt,” American Journal of Engineering
Research (AJER), vol. 5, no. 4, 2016, pp. 91–98.

[23] B. Domı́nguez-Martı́n, “Methods to process low-level CAD plans
and creative Building Information Models (BIM),” Doctoral Thesis,
University of Jaén, 2014.

[24] S. Hoerster and K. Menzel, “BIM based classification of building
performance data for advanced analysis,” in Proceedings of International
Conference CISBAT 2015 Future Buildings and Districts Sustainability
from Nano to Urban Scale, 2015, pp. 993–998.

[25] H. Eisenmann, J. Fuchs, D. De Wilde, and V. Basso, “ESA Virtual
Spacecraft Design,” in 5th International Workshop on Systems and
Concurrent Engineering for Space Applications, 2012.

[26] M. Fang, X. Yan, Y. Wenhui, and C. Sen, “The Storage and Management
of Distributed Massive 3D Models based on G/S Mode,” in Lecture
Notes in Information Technology, vol. 10, 2012.

[27] D. Iliescu, I. Ciocan, and I. Mateias, “Assisted management of product
data: A PDM application proposal,” in Proceedings of the 18th Interna-
tional Conference on System Theory, Control and Computing, Sinaia,
Romania, 2014.

[28] H. Takemura, Y. Kitamura, J. Ohya, and F. Kishino, “Distributed
Processing Architecture for Virtual Space Teleconferencing,” in Proc.
of ICAT, vol. 93, 1993, pp. 27–32.

[29] D. J. Armstrong, “The Quarks of Object-Oriented Development,” Com-
munications of the ACM, vol. 49, no. 2, 2006, pp. 123–128.

[30] M. Fowler, Patterns of Enterprise Application Architecture, 1st ed.
Addison Wesley, 2002.

[31] A. Schatten, “O/R Mapper und Alternativen,” 2008, URL:
http://www.heise.de/developer/artikel/O-R-Mapper-und-Alternativen-
227060.html [retrieved: May, 2016].

[32] T. Neward, “The Vietnam of Computer Science,” 2006, URL:
http://www.odbms.org/2006/01/the-vietnam-of-computer-science/
[retrieved: May, 2016].

[33] S. W. Ambler, “Mapping Objects to Relational
Databases: O/R Mapping In Detail,” 2013, URL:
http://www.agiledata.org/essays/mappingObjects.html [retrieved:
May, 2016].

[34] F. Lodhi and M. A. Ghazali, “Design of a Simple and Effective Object-
to-Relational Mapping Technique,” in Proceedings of the 2007 ACM
symposium on Applied computing. ACM, 2007, pp. 1445–1449.

[35] B. Karwin, SQL Antipatterns: Avoiding the Pitfalls of Database Pro-
gramming, 1st ed. Railegh, N.C.: Pragmatic Bookshelf, 2010.

[36] ——, “Practical Object Oriented Models in Sql,” 2009, URL:
http://de.slideshare.net/billkarwin/practical-object-oriented-models-in-
sql [retrieved: May, 2016].

[37] Hibernate, HIBERNATE–Relational Persistence for Idiomatic
Java, 2015, URL: http://docs.jboss.org/hibernate/orm/5.0/manual/en-
US/html/index.html [retrieved: May, 2016].

[38] NHibernate Community, NHibernate–Relational Persistence for Id-
iomatic .NET, 2015, URL: http://nhibernate.info/doc/nhibernate-
reference/index.html [retrieved: May, 2016].

[39] Code Synthesis Tools CC, ODB: C++ Object-Relational Mapping
(ORM), 2015, URL: http://www.codesynthesis.com/products/odb/ [re-
trieved: May, 2016].

[40] L. Marty, QxOrm (the engine) + QxEntityEditor (the graphic editor)
= the best solution to manage your data in C++/Qt !, 2015, URL:
http://www.qxorm.com/qxorm en/home.html [retrieved: May, 2016].

[41] The Qt Company, “Qt Documentation,” 2016, URL: http://doc.qt.io/qt-
5/index.html [retrieved: May, 2016].

[42] A. M. Keller, R. Jensen, and S. Agarwal, “Persistence Software:
Bridging Object-Oriented Programming and Relational Databases,” in
ACM SIGMOD Record, vol. 22, no. 2. ACM, 1993, pp. 523–528.

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

