
Accelerating Data Mining on Incomplete Datasets by Bitmaps-based Missing Value Imputation

Sameh Shohdy, Yu Su, Gagan Agrawal
Computer Science Department, The Ohio State University

Columbus, Ohio, USA, 43210
Email: {ahmedsa,su1,agrawal}@cse.ohio-state.edu

Abstract—Among all ‘big data’ research issues, the veracity challenge,
which refers to the precision and accuracy of the data, has not received
as much attention. Traditionally, it has been well known that problems
related to data quality, such as incomplete, redundant, inconsistent, and
noisy data pose a major challenge to data mining and data analysis.
Particularly, we note that existing methods for handling missing values
cannot scale to larger datasets. In other words, this particular veracity
challenge has been addressed, but not in context of also handling
volume (and possibly the velocity) challenge of ‘big data’.This paper
focuses on speeding up the missing values imputation process using
the bitmap indexing technique. The research takes two directions: first,
the bitmap indexing is used to directly access the required records for
the imputation method (i.e., Direct Access Imputation (DAI)). Second,
the bitmap indexing technique is used for missing value estimation
using the pre-generated bitmap indexing vectors without accessing the
dataset itself (i.e., Bitmap-Based Imputation (BBI)). Both approaches
have been evaluated using different real and synthetic datasets, and four
common imputation algorithms. We show how our bitmap-basedmethods
can accelerate data mining classification of incomplete data while also
maintaining precision.

Keywords—Missing Values; Bitmap Indexing; Indexing as a Service.

I. I NTRODUCTION

In recent years, ‘big data’ has become one of the most important
challenges in computing research. One of the most popular definitions
of ‘big data’ involves four challenging aspects of dealing with data
- volume, velocity, variety, and veracity. There has been a lot of
work in recent years on addressing these challenges, with the volume
challenge, and to a less extent, the velocity challenge, receiving most
interest. Work on MapReduce [1] and related framework for handling
massive data, as well the work on handling streaming data andin-situ
data analysis have been topics of much investigation.

Theveracitychallenge, which refers to theprecisionandaccuracy
of the data, has not received as much attention. Traditionally, it
has been well known that problems related to data quality, such
as incomplete, redundant, inconsistent, and noisy data [2]pose a
major challenge to data mining and data analysis. In fact, one of
the most important steps in data mining is considered to be the data
preparationstep, which is the process of ensuring the quality of data
by changing the original data into a suitable format for the analysis
process. About 60% of data mining time is consumed in the data
preparation process compared to only 20% in the actual data mining
process [3].

Unfortunately, recent work on MapReduce and other ‘big data’
frameworks has not emphasized the challenges of data preprocessing,
and particularly, the difficulty of applying known techniques on large-
scale data. Consider the problem associated with handling Missing
Values (MVs). Incomplete dataset or missing values can impact data
analysis tasks. To avoid their negative impact, a popular approach is
to fill the missing values with estimated values that can be calculated
from the complete records of the same dataset [4]. Several studies
have illustrated different methods for dealing with missing values,
i.e., using the complete set of records toimpute the missing values
in the real datasets. Clark and Niblett explained a simple algorithm
(i.e., the CN2 algorithm) for imputing missing values usingthe most
common value of the same attribute [5]. A modified version of this

method is the most common value of the missing value attribute
restricted to a label (or concept) [6]. Another study performed by
Grzymala-Busse suggested replacing the missing value withall the
possible values that appears at the same attribute in all thedataset
records [7]. Another approach called Global Closest Fit hasalso been
proposed [8], where missing value in a specific record is taken from
the corresponding values from the record that is most similar to this
record in the entire dataset. Moreover, different studies have surveyed
and compared several approaches for missing values imputation [8]–
[12].

A common theme in all of the works in this area is that algorithms
for imputing missing value cannot scale to larger datasets.In other
words, this particularveracity challenge has been addressed, but
not in context of also handling volume (and possibly the velocity)
challenge of ‘big data’. This paper addresses this shortcoming of
existing work, and focuses on improving the scalability of methods.
We achieve this by using indexing to accelerate missing value
imputation - particularly, we use bitmap indexing, which can serve
as a summary of datasets. A key advantage of this technique that
low-cost bit-wise operations can be exploited for processing. In this
work, we show how various missing value imputation methods can
be accelerated using indexing, at two levels. First, like any indexing
technique, bitmap indexing can be used to look-up relevant records,
and thus, complete scans over the entire dataset are avoided. Second,
one can use bitmaps as a summary of the entire dataset, and notaccess
the dataset at all. These two methods are referred to as Direct Access
Imputation (DAI), and Bitmap-Based Imputation (BBI), respectively.
We evaluate both approaches extensively using different real and
synthetic datasets, and four different imputation algorithms.

The rest of paper is structured as follows: In Section 2, a brief
background on existing imputation methods and bitmap indexing
is introduced. In Section 3, we present our proposed bitmap-based
algorithms in detail. In Section 4, we present the performance eval-
uation of the proposed algorithms. Finally, we draw our conclusions
in Section 5.

II. BACKGROUND

This section provides key background on two important topics.
The first is the existing algorithms for dealing with missingvalues,
i.e., specifically the imputation methods. The second is bitmaps-based
indexing.

A. Imputation Methods

The goal of any imputation algorithm is to estimate the missing
value in a specific record using others complete records in the same
dataset. As we stated earlier, this has been an active area ofresearch
and much work has been done. We give an overview of four existing
algorithms.

1) Global Closest Fit Method (GCF):The main idea in this
method is to replace the missing value by the value of corresponding
attribute from a single record that is the most similar record to the
record with the missing value. The most similar record is theone
with the smallestdistancefrom the current record, with the distance
calculated as follows:

167Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Distance(X, Y) =
∑

D(xi, yi) (1)

D(xi, yi) =















0 if xi = yi
1 if xi is missing

or yi is missing
|xi−yi|

r
if xi 6= yi

(2)

Equation (1) is the general form for calculating the difference
between any two recordsX andY as a summation of the distance
between values in each attribute for both records. Equation(2) can be
used to calculate the distance between the two values for thesame
attribute in bothX and Y records, wherer is difference between
maximum and minimum values of this attribute for the entire dataset
– this corresponds to using what is referred to as the Manhattan
distance, a commonly used metric [10].

2) Most Common Value (MCV):This is a simple method where
the missing value can be replaced by the most common value in the
missing value attribute. By scanning the entire dataset, wecan find
the single value of the attribute that occurs most frequently [2] [13].

3) Concept-based Most Common Value (CMC):The Concept-
based Most Common Attribute Value method is a special case of
the most common value method. This method assumes that records
have labels associated with them. Using this information, the missing
value is replaced by the most common value for the specific attribute,
among the set of records with the same label [13].

4) Concept-based Mean Attribute Value (CMAV):The missing
attribute value is replaced with the mean of values of the same
attribute, among the records having the same concept. A further
generalization of this method is the mean attribute value method,
which is used to impute the missing value as the mean of all values
in the same attribute, i.e., ignoring any possible labels [8] [11].

B. Bitmap Indexing Method

The implementations of each of the above techniques in the
literature assume a small dataset that fits in memory, and involves
simple scan(s) on all records to find values to substitute missing
values. These implementations clearly have limitations while dealing
with large datasets. Thus, we examine the use of indexing as a
mechanism to accelerate imputation methods we have described
above. There are several reasons for considering this approach. First,
indexing is already implemented in most data stores that arehandling
large-scale data. Second, intuitively, it is easy to see that all or most
of the methods described above can be accelerated using indexing
support.

The particular indexing method we have chosen is bitmap in-
dexing [14]–[16]. This section gives a brief overview of bitmap
indexing and the reasons behind choosing it specifically to improve
the performance of existing missing values imputations techniques.

In the simplest form, a single bit-vector is generated for each
distinct valuev in each attribute. The length of the bit-vector is equal
to the number of data records in the dataset. If the value of the
particular attribute in a record matches the valuev this bit-vector
corresponds to, the bit is set to 1, and is 0 otherwise. However,
large number of distinct values for an attribute negativelyimpacts the
bitmap indexing performance, because large number of bit-vectors
need to be generated to cover all these distinct values. A typical
solution for this challenge is to use the binning process. Inthe binning
process, the attribute values are binned so that each bin represents
a range of values [15] [17]. Table I illustrates an example ofusing
bitmap indexing technique with/without binning process.

Bit-vectors can become extremely space consuming in the orig-
inal form. Thus, several compression methods have been proposed
to solve the space problem, which includes Byte-aligned Bitmap

Code [18], Word-Aligned Hybrid code [19], Partitioned Word-
Aligned Hybrid (PWAH) [20], and Position List Word-Alignedhy-
brid [21]. The main idea in these methods is to encode a possible
large series of contiguous 0s (or 1s, though they are less likely) before
storing them.

Using the bitmap indexing, a typically subsetting query canbe
processed by extracting a set of bit-vectors depending on the query
conditions, and then the result can be exported by performing bit-wise
AND and OR operations over these bit-vectors, which are normally
supported very efficiently in the hardware [22].

TABLE I. AN EXAMPLE OF BITMAP INDEXING

Temp. Bitmap Indices
Without Binning With binning

23 25 28 30 33 35 23-25 28-30 33-35
23 1 0 0 0 0 0 1 0 0
25 0 1 0 0 0 0 1 0 0
28 0 0 1 0 0 0 0 1 0
28 0 0 1 0 0 0 0 1 0
30 0 0 0 1 0 0 0 1 0
25 0 1 0 0 0 0 1 0 0
23 1 0 0 0 0 0 1 0 0
33 0 0 0 0 1 0 0 0 1
33 0 0 0 0 1 0 0 0 1
35 0 0 0 0 0 1 0 0 1

There are several reasons for choosing bitmap to improve the
imputation process. First, bitmap treats each attribute separately, and
thus, is likely to support efficiently index for incomplete datasets [23].
In comparison, other popular indexing methods such as B-tree, B+-
tree, and R-tree are designed to support queries on one or two
attributes. Second, bitmap indices can be built on top of an existing
data store, i.e, they do not require that data be reorganizedunder
the index. Such data reorganization is extremely time consuming and
may not be justified if the only or the major goal of indexing could
be to support imputation of missing values. Third, missing values
imputation operation is an approximate process. Thus, bitmap-based
missing values imputation algorithms can be accelerated using bitmap
approximation techniques, such as binning without loss of precision.
Finally, during data mining, we typically target datasets that are not
updated, and bitmaps are well suited for such datasets [24].

III. PROPOSEDIMPUTATION METHODS

Our goal is to accelerate different imputation algorithms using
bitmap indices. It turns out that there are two distinct waysin
which bitmaps can be used for the imputation process, with trade-
off between accuracy and processing speed. First, search for records
that are similar to the record with missing value, or recordswith a
particular label can be accelerated using bitmaps. Thus, a scan on
the entire dataset can be replaced by look-up on specific parts of the
dataset. Second, it is possible to use bit-vectors as an approximate
summary of the entire dataset, and provide approximate answers
using this information. We refer to the first strategy as theDirect
Access Imputationmethod or DAI, whereas the second method is
called Bitmap-Based Imputationmethod or BBI. Before discussing
the approaches, we note that bitmaps have been used to support query
processing in several systems [25]–[27]. Thus, if bitmaps are already
being built to support query processing, implementing imputation
method using them will not even involve additional overheadof index
generation.

A. Direct Access Imputation (DAI)

Several imputation algorithms can be accelerated if we can directly
access the required records to impute each missing value without full
database scan. This is the idea of the DAI approach. We show how

168Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Att1 Att2 Att3 Att4

? 1 3 5

2 1 3 8

3 2 4 6

3 1 5 5

5 2 5 6

1 1 4 6

3 1 4 5

Att1 Att2 Att3 Att4

? 1 3 5

1 1 4 6

3 1 4 5

Att1 Att2 Att3 Att4

3 1 4 5

(a) Sample Records

No matched

 records

1

3

5

2

4

6

5

8

I=1

I=0.5

I=0.33

1

3

5

2

4

6

5

8

I=1

I=0.5

I=0.66

1

3

5

2

4

6

5

8

No matched

 records

Closest Fit Method

(e) Matched Records

Imputed Value

Att2

Att3

Att4

(b) (c) (d)

(f)

Fig. 1. Global Closest Fit Method using Bitmap Indexing - Impact Value of Each Attribute is Used to Select Records

to apply the DAI method in the case of three imputation algorithms:
Global Closest Fit, Concept-based Most Common Attribute Value and
Concept-based Mean Attribute Value , each of which was introduced
in Section II.

1) Global Closest Fit Method:Recall that this method imputes
the missing value from the record(s) that are closest to the record
with the missing value, in the sense of the distance between the two
records. The brute-force approach to implement this methodinvolves
retrieving the missing record and computing the distance between
this record and all other records (i.e., Full Dataset Scanning method).
By using bitmaps, we can retrieve only the set of records thathave
attributes values close to the target record values.

In performing a full-scan of the dataset, it is relatively easy to select
the closest match with respect to other attributes. However, using an
indexing method to find the closest match requires certain challenges.
We need to keep identifying neighboring values of each attribute, so
as to find the closest match or a good approximation. To enablethe
selection process, we use the notion ofimpactof a neighboring value
of an attribute to the distance. Theimpact I of the next valuev for
each attributeA can be computed as:I(A, v) = v−c

r
, wherec is the

current used value for attributeA and r is the difference between
the maximum and minimum value for attributeA. The idea is that
neighboring values of each attribute can contribute differently to the
impact with respect to the distance. Records that have a neighboring
value with the smallestimpactshould be searched first, because they
will have a smaller distance.

An example of our approach is given by Figure 1 to solve this
challenge. Subfigure (a) represents a set of records from anygiven
dataset that has a missing value marked by“?” . Suppose that there
are no records that have the same value for all other attributes as the
record with the missing value. A second search process is conducted
by selecting the next closest value (as recorded in a metadata file)
for each attribute, and choosing the attribute and its valuewith the
least impact – for example,att4 has the smallestimpact as shown
in sub-figure (b). In subfigure (c), we now need to retrieve records
where the corresponding value is less than or equal to this particular
value for the chosen attributeatt4 = 6 and larger that the old value
att4 = 5, while having the same value for the remaining attributes
that were used for the previous search. If there are no matching
records identified, the process of picking a new attribute using the
impactvalue is repeated (see sub-figures (c) and (d)). Once the result
bit-vector does retrieve a set of records, e.g., as shown in (e), these
records should be examined, with the goal of obtaining the most
closest fit record(s) to the record with the missing value. This last
step is shown through the sub-figure (f).

The implementation of our approach has been in the context ofa
particular bitmap-based data management system [27]. Thissystem

supports database-like query subsetting over data in scientific data
formats like NetCDF. The query processing module converts the user
query request into a set of query conditions where each condition can
be represented by a single bit-vector (i.e., thecondition bit-vector).

Returning to the example shown in Figure 1, the challenge here is
how to build a query that retrieves the records that are most closest
to the record with the missing value in each step. For example, in
sub-figure (a), we need to retrieve all records that exactly match the
record with missing value. In this case, each distinct attribute query
condition will be built to cover all the records in a range with the
maximum and minimum values equalling the corresponding attribute
value in the missing value record. Further, in sub-figure (b), we need
to increase the internal range inatt4 to cover the records that can
be used in the imputation process. So, the query should be built to
have a maximum and minimum values related toatt4, i.e.,att4 > 5
AND att4 ≤ 6.

Algorithm 1 BuildQueryforGCF(record)

1: for att= 1 → sizeof(record) do
2: vals[att]=ReadValues(MetaDataF ile,att)
3: query vals[att]= record[att];
4: end for
5: resultbitvector:= null
6: while resultbitvector is null do
7: for att= 1 → sizeof(record) do
8: min diff := ∞
9: for i= 1 → sizeof(vals[att]) do

10: diff=abs(vals[att].get(i)-query vals[i])
11: if diff < min diff then
12: min diff=diff
13: r=Max(att) −Min(att)
14: impact[att]=min diff/r
15: candidate vals[att]=vals[i]
16: end if
17: end for
18: end for
19: selected att=PickMin(Impact)
20: query vals[selected att]=candidate vals[selected att]
21: vals[selected att].remove(selected value)
22: query= GenerateQuery(record,att,query vals)
23: resultbitvector=RetrieveIndex(record,query);
24: end while

Fig. 2. Algorithm 1: Query Building Operation

169Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

The query building operation algorithm is formally described by
Figure 2. The algorithm takes as input the record with missing value.
In the line 2, distinct values for each attribute are read from its
metadata file into vals vector. Line 3 initiates thequery vals array
with the values of missing value record. Through the algorithm, for
each attribute, all records that have a value between bothquery vals
value andrecord value should be retrieved. The idea is to adapt
the query vals array values until theresultbitvector retrieved any
number of records. In lines 9-17 , for each attribute’s distinct value,
the impact of changing the old value inquery vals with this value
is computed to determine the value of each attribute that makes the
smallest change in theimpact value. In the line 19,PickMin
method is used to determine the attribute that with the smallest
impact value. In the line 20, The value of this attribute replaces the
old value in thequery vals array. In line 21, this value is removed
from vals vector to guarantee a new value is selected the next time.
In line 23, the query was generated using the missing value’srecord
and thequery vals array. If thebitmapvector has no records, a
next iteration is required.

The same strategy can be applied if binning process is used. The
operation of changing a proper attribute value depending onthe
impact degree on the distance can be applied to the binned values by
selecting a proper binned range of values rather than a single value.
In this case, the impact degree can be computed by using the average
value of the current rangec and the average value of the candidate
rangev.

2) Concept-based Most Common Value Method:The method can
be implemented using bitmaps as follows. After retrieving all missing
values, a single query request is built for each recordR that contains a
missing value. The goal of the query will be to retrieve all the records
that contain the same label as the recordR. These retrieved records
can be then be checked to determine the most common value for the
attribute where the recordR has a missing value. These operations
are trivial to perform if binning is not used.

However, in the case of binning, for each missing value, the
retrieved records will be the records that contain a label inthe same
binned range, as the label associated with the recordR. For the last
step, we can determine the most common bin, and then proceed to
search for the most common value. Note that this may result ina
different value, as compared to the value obtained by a brute-force
algorithm. This is because the most popular bin may not contain the
most commonly occurring value.

Note that implementation of most common value is also very
similar - we simply focus on finding the most common value of
the attribute involved across all records.

3) Concept-based Mean Attribute Value Method:Similar to the
previous method, a single query request is built to retrieveall the
records that have the same label as the recordR that has a missing
value. These records can be accessed directly and all the values of
the attribute whereR has a missing value can be retrieved into the
memory. The estimated value is the mean of all retrieved values.

In the case of binning, certain calculations are required. The label
attribute’s metadata file should be checked to determine thebinned
range that contains the target record’s label (i.e., the record with the
missing value). Then, a simple query request is built to retrieve all the
records within this binned range. These records are examined again
to determine the records with the same label as the missing value
record. The imputed value will be considered as the mean of all the
values of the missing value attribute.

B. Bitmap-Based Imputation (BBI)

This approach involves imputing the missing values directly using
the bitmap vectors, i.e., without accessing the dataset itself. We will
explain the use of BBI approach in three imputation algorithms:
Most Common Value, Concept-based Most Common Value, and
the Concept-based Mean Attribute Value methods. An exampleof
using the BBI methods in different imputation algorithms isgiven

by Figure 3. The example uses a dataset with three attributesand a
label.

1) Most Common Value Method:In this method, the key is to
determine the number of records for each distinct value in the target
attribute (i.e., attribute with missing value). The value with the largest
number of records is the most common value. The bitmap bit-vectors
can be used to determine the most common value in the following
manner. First, distinct attribute values can be retrieved from the
missing value attribute’s metadata file. Second, for each distinct value,
the related bitmap vector is retrieved from the index file. Itis easy to
count the number of records for each distinct value by counting the
number of ones on each retrieved bit-vector. The bit-vectorwith the
largest count of ones represent the bit-vector of the most common
value in the target attribute.

Figure 3 (c) gives an example of retrieving each distinct value’s
bit-vector and the bit-vector with the largest number of ones reflect
the most common value. However, the BBI approach cannot be used
without approximation in the case of binning, because each bit-vector
represents a set of values rather than a single value.

2) Concept-based Most Common Value Method:First, a query
condition bit-vector is constructed to retrieve all the records with
the same label as the missing value record’s label. Second, for each
distinct value in the target attribute’s metadata file, a query request
is built and passed to the bitmap query system to retrieve a bit-
vector representing all the records equal to this value. A logic AND
operation will be performed between all distinct values’ bit-vectors
and the label bit-vector. The number of ones per each distinct value’s
bit-vector is counted which represents the number of records with the
same value and label. The value’s bit-vector with the largest number
of ones can be used as the imputed value for the missing value.

Similar to the most common value method, this strategy becomes
less accurate in the case of using binning when constructingthe
bitmap index. Figure 3 (d) gives an example of using BBI approach
with Concept-based Most Common Value algorithm.

3) Concept-based Mean Attribute Value Method:Similar to the
previous method, a single condition bit-vector will be constructed to
retrieve all the records that have a label matches with the label of
the missing value record. For the missing value attribute, the imputed
value is the mean of all the target records values of this attribute. In
the case of binning the technique is changed. First, the label attribute’s
metadata file needs to be checked to determine the binned set that
contains the missing value record’s label. Second, we construct a
query condition bit-vector to retrieve all the records within this set.
These records can be checked to determine the records that have the
same label of the missing value record. The imputed value will be
the mean value for all the records with the same missing valuerecord
label. Figure 3 (e) also gives an example of this method. In the case of
binning, the technique is changed. First, the label attribute’s metadata
file needs to be checked to determine the binned set that contains the
missing value record’s label. Second, we construct a query condition
bit-vector to retrieve all the records within this set. These records can
be checked to determine the records that have the same label of the
missing value record. The imputed value will be the mean value for
all the records with the same missing value record label.

IV. EXPERIMENTAL EVALUATION

This section presents results from a series of experiments done to
evaluate the proposed bitmap-based imputation approaches. Specif-
ically, our proposed DAI and BBI imputation approaches are com-
pared with the brute-force FSI imputation approach in two ways:
execution speedup and imputed values’ accuracy. In accuracy com-
parison, to focus on the impact of different approaches to missing
value imputation on the data mining process, we used a popular
classification algorithm (i.e., the CPAR algorithm [28]) toclassify
the dataset records after the missing values imputation process is
applied using different approaches (i.e., FSI, DAI, and BBI), then
the dataset noise ratio is evaluated in each case.

170Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Att1 Att2 Att3 Label

? 1 3 0

2 1 3 1

3 2 4 1

3 1 5 0

5 2 5 1

1 1 4 0

3 1 4 0

Label
Bitmap

0 1

0 1 0

1 0 1

1 0 1

0 1 0

1 0 1

0 1 0

0 1 0

Att1
Bitmap

? 2 3 5 1

? 1 0 0 0 0

2 0 1 0 0 0

3 0 0 1 0 0

3 0 0 1 0 0

5 0 0 0 1 0

1 0 0 0 0 1

3 0 0 1 0 0

(c) Most Common Value

2: 0100000 Count(1)=1

3: 0011001 Count(1)=3

5: 0000100 Count(1)=1

1: 0000010 Count(1)=1

Imputed Value: 3

Label 0:

1001011

Label 0 bit!vector AND each

 distinct value bit!vector

2 0000000 Count(1)=0

3: 0001001 Count(1)=2

5: 0000000 Count(1)=0

1: 0000010 Count(1)=1

Imputed Value: 3

(d) Concept Most

Common Value

(e) Concept!based Mean

Attribute Value

Bitmap

 Vectors

Label 0:

1001011

Label 0 bit!vector AND each

 distinct value bit!vector

3: 0001001 Count(1)=2

1: 0000010 Count(1)=1

Imputed Value: (3*2+1)/3= 2.33

(a) Sample Records (b) Bitmap vectors of: Att1 and Label

Fig. 3. Bitmap-based Imputation Method Example

All approaches were implemented in C++. The experiments were
performed on Linux Red Hat 4.4.7-3 machine equipped with 2 quad-
core Intel CPUs running at 2.53 GHz and with a 4 GB RAM.

A. Execution Speed Comparison

Execution speed experiments have been performed using two
different datasets. The first dataset is what we refer to as the Berkeley
dataset [29] (∼1GB), which is an earth surface temperature dataset.
This dataset comprises seven attributes and nearly3·107 records, and
can fit into memory, and thus helping us evaluate the performance
of the proposed approaches when datasets fit in memory. Second, we
used a synthetic dataset (∼10GB), which was generated with nine
numerical attributes and a label, and nearly20 · 107 records. This
dataset is used as an example of a large dataset, helping us evaluate
the performance of proposed imputation methods on disk-resident
datasets.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
0
M
V
s

5
0
M
V
s

1
0
0
M
V
s

5
0
0
M
V
s

1
0
0
0
M
V
s

1
0
M
V
s

5
0
M
V
s

1
0
0
M
V
s

5
0
0
M
V
s

1
0
0
0
M
V
s

Berkeley Dataset (~1 GB) Synthetic Dataset(~10 GB)

N
o
r
m
a
li
z
e
d
T
o
ta
l
E
x
e
c
u
t
io
n
T
Im

e

Index Generation Direct Access Imputation (DAI)

Full Scanning Imputation (FSI)

Fig. 4. Time Comparison between DAI and FSI Based Global Closest Fit
Methods Using Different Numbers of Missing Values (MVs)

1) Global Closest Fit (GCF):Only DAI and FSI methods have
been used to implement the Global Closest Fit imputation algorithm,
as BBI cannot be applied. This experiment targets both datasets
(i.e., Berkeley and the Synthetic dataset).A comparison between the
execution speed in handling datasets’ missing values on theGCF
method with different number of missing values is shown in Figure
4. The number of missing values in the dataset varies from 10 to
1000, and they are distributed across different attributes. Note that

our comparison is assuming that an index is generated specifically
for the imputation process. However, in practice, an index may be
generated in advance for a different reason, like need for supporting
subsetting (or other types of) queries, and index generation time may
be amortized. Returning to the Figure, the x-axis shows different
number of missing values in both datasets while the y-axis shows the
normalized execution time, which is computed as the fraction of the
longest execution time. We can draw from the figure the following
three observations. First, the total execution time of DAI method,
even including the required time to generate index files for the target
dataset, is less than the total execution time of the brute-force FSI
method on both datasets. Second, with increasing number of missing
values, the DAI’s advantage becomes even more significant, when
compared to the FSI method. Finally, the figure shows that theDAI
method’s relative performance is even better in the case of disk-
resident datasets. The reason is as follows: the imputationtime for
a single value is the sum of the times for finding the most closest
records to the missing value’s record and the required time to retrieve
these records, whether from the memory or the disk. In the case of
the Berkeley dataset, the entire dataset fits into the memory, which
means that the total execution time depends primarily on thetime
to find the most similar records. However, for a large dataset, disk
operations are required to retrieve records from disk to memory.

2) Most Common Value (MCV):For the Most Common Value
algorithm, Figure 5 shows the normalized total execution time of the
algorithm using both BBI and FSI methods. Because all the missing
values of the same attribute will be replaced by the most common
value for this attribute, the performance with this algorithm depends
on the number of attributes containing missing values, rather than
the number of missing values itself. As we can see, BBI speeds
up the imputation process compared to the brute-force FSI method.
The BBI method depends only on the pre-generated bitmap vectors,
so the increasing of dataset size does not affect the performance
of the BBI method, unlike the FSI or the DAI methods. In other
words, the performance gap between the total execution timein the
FSI method and the BBI method increases as we consider a bigger
dataset. However, BBI method becomes worse when the number
of distinct values in the target attribute increase. In thiscase, the
number of generated bitmap vectors increase which negatively affect
the performance of the BBI method.

3) Concept-based Most Common Value (CMC):The Concept-
based Most Common Attribute Value method can be implemented
using both DAI and BBI methods. The normalized total execution

171Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Berkeley Dataset (~1 GB) Synthetic Dataset(~10 GB)

N
o
r
m
a
li
z
e
d
T
o
ta
l
E
x
e
c
u
t
io
n
T
im

e

Index Generation Bitmap based Imputation (BBI) Full Scanning Imputation (FSI)

Fig. 5. Time Comparison between BBI and FSI Based Most CommonValue
Imputation

time for DAI, BBI, and FSI methods is shown in Figure 6 with
different number of missing values in both target datasets.The figure
shows that DAI and BBI methods speeds up the imputation process
compared to the FSI method. The overall time is dominated by
the index generation time. If the index can be pre-generated, the
method can provide very large speedups. The figure also showsan
important observation. In the Berkeley dataset, DAI satisfies a higher
performance compared to BBI method with larger number of missing
values. However, in the synthetic dataset, the BBI gives a higher
performance. The reason of this behavior that BBI depends onthe
number of distinct values in the target attributes (i.e., inthis case
the missing value’s attribute and the label attribute) while the DAI
depends on the number of matched records for each missing value.
In the Berkeley dataset, the number of distinct values in thetarget
attributes is large compared to the synthetic dataset whichnegatively
impact the BBI performance.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
0
M
V
s

5
0
M
V
s

1
0
0
M
V
s

5
0
0
M
V
s

1
0
0
0
M
V
s

1
0
M
V
s

5
0
M
V
s

1
0
0
M
V
s

5
0
0
M
V
s

1
0
0
0
M
V
s

Berkeley Dataset (~1 GB) Synthetic Dataset(~10 GB)

N
o
rm

a
li
ze
d
To
ta
l
E
x
e
cu
ti
o
n
T
im

e

Number of Missing Values

Index Generation Bitmap based Imputation (BBI)

Direct Access Imputation (DAI) Full Scanning Imputation (FSI)

Fig. 6. Time Comparison between DAI, BBI, and FSI Based Concept-based
Mean Attribute Value Methods Using Different Numbers of Missing Values

(MVs)

4) Concept-based Mean Attribute Value (CMAV):The efficiency
of implementing the Concept-based Mean Attribute Value algorithm
with both DAI and BBI methods is shown by Figure 7. On both
target datasets, the DAI and BBI methods are more faster thanthe
FSI method with different number of missing values. Just like the case
of the Concept-based Most Common Attribute Value method, inthe
Berkeley dataset the DAI is faster than BBI because of largerdistinct
values in the target attributes. However, in the synthetic dataset the
performance gains from the BBI method is more significant, because
the BBI method does not require any I/O processing compared to
DAI method.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
0
M
V
s

5
0
M
V
s

1
0
0
M
V
s

5
0
0
M
V
s

1
0
0
0
M
V
s

1
0
M
V
s

5
0
M
V
s

1
0
0
M
V
s

5
0
0
M
V
s

1
0
0
0
M
V
s

Berkeley Dataset (~1 GB) Synthetic Dataset(~10 GB)

N
o
rm

a
li
ze
d
To
ta
l
E
x
e
cu
ti
o
n
T
im

e

Number of Missing Values

Index Generation Bitmap based Imputation (BBI)

Direct Access Imputation (DAI) Full Scanning Imputation (FSI)

Fig. 7. Time Comparison between DAI, BBI, and FSI Based Concept-based
Most Common Value Methods Using Different Numbers of Missing Values

(MVs)

B. Impact of the Number of Distinct Values

A single bitmap vector is built for each distinct value in each
attribute, unless binning is used. Increasing the number ofdistinct
values in each attribute impacts both the index generation time and
the proposed imputation methods based on bitmap vectors. Tosee this
impact, we evaluate the performance of each imputation algorithm
using both DAI and BBI methods with different number of distinct
values in each attribute. Our experiment assumes that binning is not
used. In this experiment, we generate five synthetic datasets with
the same number of records (i.e.,20 · 107) and attributes (i.e., nine
attributes and one label), but with different number of distinct values
in each attribute (i.e., 100, 500, 1000, 5000, and 10000).

The performance of both CMC and CMAV methods with different
number of distinct values is shown by Figure 8. It is not surprising
that execution time increase with increasing number of distinct values.
A more significant observation is that the BBI method becomesworse
with very large number of distinct values. The BBI method depends
on scanning the bitmap vectors to estimate the missing value, and
increasing the number of distinct values increases the number of
bitmap vectors generated, which slowdown the imputation process.
Overall, it will be better to use binning when the number of distinct
values is large.

C. Scalability

The goal of this experiment is to evaluate the scalability ofour
proposed methods when imputing missing values in datasets with
increasing sizes. Five synthetic datasets are used in this experiment,
i.e., 5, 10, 15, 20, and 30 GB. These datasets were randomly gener-
ated in two different manners: by increasing the number of attributes
and by increasing the number of records. Each dataset was also
generated to include 100 missing values distributed acrossdifferent
attributes. Because our goal is to evaluate the runtime scalability of
proposed methods, we only recorded the total execution timeof each
imputation algorithm, without including the index generation time.

The results are shown in Figures 9 and 10. As shown in the figures,
the execution times only increase linearly as the dataset size increases
– either by increasing the number of records or by increasingthe
number of attributes in each record. This experiment also shows
another observation, as illustrated particularly by Figures 10(b)
and 10(c). Because the BBI method needs to analyse the indices
files to impute the missing values, increasing the number of records
negatively impacts the efficiency of BBI method compared to DAI
method in both Concept-based Most Common value and Concept-
based Mean Attribute imputation algorithms.

D. Imputation Method Impact on Data Mining

Since accuracy comparisons on synthetic datasets are not very
meaningful, and because the size of the dataset was not very impor-

172Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

10000

15000

20000

xe
cu
ti
o
n

 T
im

e
 (
Se
c) Direct Access Imputation (DAI)

Bitmap!based Imputation (BBI)

0

5000

100 500 1000 5000 10000

To
ta
l E
x

Number of Distinct Values in Each Column

(a) Concept-based Most Common Value (CMC)

10000

15000

20000

xe
cu
ti
o
n

 T
im

e
 (
Se
c)

Direct Access Imputation (DAI)

Bitmap!based Imputation (BBI)

0

5000

100 500 1000 5000 10000

To
ta
l E
x

Number of Distinct Values in Each Column

(b) Concept-based Mean Attribute Value (CMAV)

Fig. 8. Performance of Different Imputation Algorithms with Different Numbers of Distinct Values

10

15

20

25

30

35

e
c
u
ti
o
n

 T
im

e
 (
H
o
u
rs
)

Direct Access Imputation (DAI)

0

5

10

(~5GB)

20

(~10GB)

20

(~15GB)

40

(~20GB)

55

(~30GB)

T
o
ta
l
E
x
e

Total Number of Attributes

(a) Global Closest Fit

1000

1500

2000

2500

3000

3500

E
x
e
c
u
ti
o
n

 T
im

e
 (
S
e
c
) Direct Access Imputation (DAI)

Bitmap!based Imputation (BBI)

0

500

10

(~5GB)

20

(~10GB)

30

(~15GB)

40

(~20GB)

55

(~30GB)

T
o
ta
l
E

Total Number of Attributes

(b) Concept-based Most Common Value

1000

1500

2000

2500

3000

3500

4000

E
x
e
c
u
ti
o
n

 T
im

e
 (
S
e
c
)

Direct Access Imputation (DAI)

Bitmap!based Imputation (BBI)

0

500

1000

10

(~5GB)

20

(~10GB)

30

(~15GB)

40

(~20GB)

55

(~30GB)

T
o
ta
l
E

Total Number of Attributes

(c) Concept-based Mean Attribute Value

Fig. 9. Scalability: Influence of Increasing the Number of Attributes on DAI and BBI based Imputation Algorithms

4

6

8

10

12

e
c
u
ti
o
n

 T
im

e
 (
H
o
u
rs
)

Direct Access Imputation (DAI)

0

2

10E7

(~5GB)

20E7

(~10GB)

30E7

(~15GB)

40E7

(~20GB)

60E7

(~30GB)

T
o
ta
l
E
x
e

Total Number of Records

(a) Global Closest Fit

2000

3000

4000

5000

6000

E
x
e
c
u
ti
o
n

 T
im

e
 (
S
e
c
)

Direct Access Imputation (DAI)

Bitmap!based Imputation (BBI)

0

1000

10E7

(~5GB)

20E7

(~10GB)

30E7

(~15GB)

40E7

(~20GB)

60E7

(~30GB)

T
o
ta
l
E

Total Number of Records

(b) Concept-based Most Common Value

2000

3000

4000

5000

6000

7000

E
x
e
c
u
ti
o
n

 T
im

e
 (
S
e
c
)

Bitmap based!Imputation!(BBI)

Direct!Access!Imputation!(DAI)

0

1000

10E7!

(~5GB)

20E7!

(~10GB)

30E7!

(~15GB)

40E7!

(~20GB)

60E7!!

(~30GB)

T
o
ta
l
E

Total Number of Records

(c) Concept-based Mean Attribute Value

Fig. 10. Scalability: Influence of Increasing the Number of Records on DAI and BBI based Imputation Algorithms

tant, we used seven benchmarks datasets from the UCI repository [30]
for accuracy comparisons. The latter are summarized in Table II;
specifically, we show different characteristics of each dataset such as
the number of records, attributes, and classes. We considerall the
attributes as numerical attributes. In the case of symbolicattributes,
we convert then into numeric format during the preprocessing stage.

TABLE II. UCI DATASETS DESCRIPTION

Dataset No. records No. attributes No. classes
Glass 214 10 7

Identification
German Credit 1000 20 2

Data
Indian Liver 583 10 2
Patient (ILP)

Mammographics 961 6 2
Pima Indians 768 8 2

Diabetes
User Knowledge 403 5 4
Modeling (UKM)

Wisconsin 699 10 2

As we stated above, all imputation methods are heuristics. Thus,

the end goal of DAI and BBI methods is not to produce the same re-
sults as the full-scan methods, but to support the data mining process.
With this observation, we evaluate different imputation algorithms
with respect to the final results from a specific classification method.
Particularly, a rule-based classification algorithm (i.e., the CPAR
classifier) is used [11]. This algorithm depends on generating a set of
predicative association rules from labeled records in a given dataset
to classify unlabeled records in the same dataset. Comparing to
other association rules-based classifiers, CPAR algorithmhas several
advantages such as: avoiding redundant rule generation by using
dynamic programming, generating a small set of associationrules,
and achieving higher accuracy [28]. Because our main goal isthe
imputation process, we only use a single classification algorithm to
compare the accuracy between different proposed imputation process.

Imputation using different methods is applied on datasets prior to
classification, and subsequently, the classifier obtained is evaluated
using a popular metric, which is theWilson’s Noise Ratio[31]. This
metric identifies the noise rate in a given dataset, i.e., theratio of
records identified asnoisy to the total number of records. In turn, a
record is considered noisy if labelling it using the KNN algorithm
(assigning it the most common label among thek-nearest records)
leads to an incorrect label. An effective Imputation algorithm should

173Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

impute values that reduce theWilson’s Noise Ratio. In this exper-
iment, we compare theWilson’s Noise Ratiofor imputed datasets,
after applying the FSI, DAI, and BBI methods, respectively.We
used the standardK-Fold Cross-Validation technique with the CPAR
algorithm to classify the given dataset records, i.e., the complete
dataset after the missing value imputation operation is divided into
K parts. Each part is used to train the CPAR model to predict the
label for the otherK − 1 parts records. Each record is labeled with
the common label predicated using the other nine parts.

We set up different parameters that are required by the CPAR
algorithm based on the default values given in an earlier study [28]
(i.e., totalweight=0.05, decayfactor=2/3, and mingain=0.7). For the
Wilson’s Noise Ratio, we usedk = 5. Comparing using Wilson’s
Noise Ratio, we can estimate the impact of our proposed approaches
on the results of the CPAR classification algorithm.

A comparison between the brute-force approach and proposed
imputation approaches (i.e., DAI and BBI) are shown by TableIII
with and without the binning strategy. We used seven datasets from
the UCI repository for this purpose. For the seven datasets considered
in our study, the noise ratio values for FSI, DAI, and BBI are almost
the same for different imputation algorithms. This observation shows
that using bitmaps, the imputed values lead to the same quality
classifier as the brute-force FSI approach. We have also reported
the noise ratio when imputation is not applied. As the Table III
shows, for six of the seven datasets, very significant reduction in
noise ratio is achieved by applying imputation methods. Overall, we
can see that DAI and BBI methods not only improve the efficiency of
imputation, but help improve the quality of the data mining process
after imputation.

TABLE III. COMPARING IMPUTATION METHODS BASED ON
WILSON’S NOISE RATIO

Dataset
Before
Imput.

(%)

Imput.
Alg.

FSI
(%)

DAI (%) BBI (%)
W/O
Bin.

W
Bin.

W/O
Bin.

W
Bin.

Glass
Identification

67.28

GCF 11.76 11.76 - - -
MCV 11.76 - - 11.76 -
CMC 11.76 11.76 11.76 11.76 -

CMAV 11.76 11.76 11.76 11.76 11.76

German Credit
Data

70.0

GCF 10.88 10.88 - - -
MCV 11.17 - - 11.17 -
CMC 10.88 10.88 10.88 10.88 -

CMAV 10.88 10.88 10.88 10.88 10.88

Indian Liver
Patient

28.64

GCF 37.69 37.69 - - -
MCV 19.89 - - 19.89 -
CMC 19.89 19.89 19.89 19.89 -

CMAV 19.89 19.89 19.89 19.89 19.89

Mammographics 53.69

GCF 51.20 51.20 - - -
MCV 52.36 - - 52.36 -
CMC 52.26 52.26 49.63 52.78 -

CMAV 52.78 52.78 52.78 52.78 52.78

Pima Indians
Diabetes

34.89

GCF 9.23 9.23 - - -
MCV 9.23 - - 9.23 -
CMC 9.23 9.23 9.23 9.23 -

CMAV 9.23 9.23 9.23 9.23 9.23

User Knowledge
Modeling

67.7

GCF 10.48 10.48 - - -
MCV 7.26 - - 7.26 -
CMC 7.26 7.26 8.87 7.26 -

CMAV 7.26 7.26 7.26 7.26 7.26

Wisconsin 34.48

GCF 11.76 11.76 - - -
MCV 12.19 - - 12.19 -
CMC 11.76 11.76 11.76 11.76 -

CMAV 11.76 11.76 11.76 11.76 11.76

V. RELATED WORK

This section gives a brief overview of related work in missing
values imputation and using bitmap to index incomplete datasets.

Several approaches have been proposed to avoid the negativeim-
pact of missing values in a dataset while performing data mining. The
treatment involves estimating missing values, or buildinga different
data view that can be used instead of the incomplete dataset [32].

Our work falls in the categoy of missing value imputation. Many
existing approaches involve a direct imputation operationfrom the
complete rows of the same dataset to estimate the missing values.
Besides the methods our work builds on, i.e, the Most Common
Attribute Value [13] and Global Closest Fit [10], other approaches
are based on k-nearest neighbors [33] and k-means clustering [34].
Maximum likelihood approach is also a popular approach to estimate
the missing values. In this approach, a statistical model isbuilt
on a given incomplete dataset, using a machine learning approach,
and model parameters are estimated. For example, the Expectation-
Maximization (EM) algorithm has been used to estimate the missing
values [35]–[37]. Similarly, neural networks also can be used to build
a data model to fill the missing values given incomplete dataset [36].

A somewhat different problem, improving query execution on
incomplete datasets by modifying indexing methods, has also been
studied [23] [38] [39]. One of these efforts is based on bitmap
indexing [23]. The goal of our work is quite different, as we estimate
missing values, in preparation for further analysis and mining of the
dataset.

VI. CONCLUSION

Datasets arising in real applications tend to have many uncertainty
or incompleteness issues, one of which is the problem of missing
values. There are many existing methods for choosing a likely value
for a missing value, to be able to support other queries or analysis
on the dataset. However, a common theme in all of the work in
this area is that algorithms for imputing missing value cannot scale
to large datasets. This paper has addressed this shortcoming of the
existing work. Particularly, we have shown how bitmaps can be
used to accelerate missing value imputation. We have presented two
approaches, including one in which bitmap indices can help reduce
the number of records to be retrieved, and the second where only
bitmaps are used to select a value to replace the missing value.

Through extensive evaluation, we have shown large performance
improvements. Even after including index generation time,our
methods are faster. However, if an index has already been built to
support other functionality (such as supporting query processing), the
improvements from our methods are very large. On other hand,the
result of the data mining process stays approximately the same as
with the original methods.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, 2008, pp.
107–113.

[2] L. L. Liu Peng, “A review of missing data treatment methods,” Inter-
national journal of intelligent information systems and Tech, 2005, pp.
412–419.

[3] K. J. Cios and L. A. Kurgan, “Trends in data mining and knowledge
discovery,” in Advanced techniques in knowledge discoveryand data
mining. Springer, 2005, pp. 1–26.

[4] D. F. Heitjan and S. Basu, “Distinguishing missing at random and
missing completely at random,” The American Statistician,vol. 50, no. 3,
1996, pp. 207–213.

[5] P. Clark and T. Niblett, “The cn2 induction algorithm,” Machine learning,
vol. 3, no. 4, 1989, pp. 261–283.

[6] I. Kononenko, I. Bratko, and E. Roskar, “Experiments in automatic
learning of medical diagnostic rules,” in International School for the
Synthesis of Experts Knowledge Workshop, Bled, Slovenia, 1984.

[7] J. W. Grzymala-Busse, “On the unknown attribute values in learning
from examples,” in Methodologies for intelligent systems.Springer,
1991, pp. 368–377.

[8] J. W. Grzymala-Busse and M. Hu, “A comparison of several approaches
to missing attribute values in data mining,” in Rough sets and current
trends in computing. Springer, 2001, pp. 378–385.

[9] S. Aslan, C. Yozgatlıgil, C.̇Iyigün, İ. Batmaz, M. Türkeş, and H. Tatlı,
“Comparison of missing value imputation methods for turkish monthly
total precipitation data,” in 9th International Conference on Computer
Data Analysis and Modeling: Complex Stochastic Data and Systems,
Minsk, Belarus, 2010, pp. 7–11.

174Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

[10] S. Gaur and M. Dulawat, “A closest fit approach to missingattribute
values in data mining,” International Journal of advances in Science and
Technology, vol. 2, no. 4, 2011, pp. 18–24.

[11] J. Luengo, S. Garcı́a, and F. Herrera, “On the choice of the best
imputation methods for missing values considering three groups of
classification methods,” Knowledge and information systems, vol. 32,
no. 1, 2012, pp. 77–108.

[12] L. Wohlrab and J. Fürnkranz, “A review and comparison of strategies for
handling missing values in separate-and-conquer rule learning,” Journal
of Intelligent Information Systems, vol. 36, no. 1, 2011, pp. 73–98.

[13] J. W. Grzymala-Busse, L. K. Goodwin, W. J. Grzymala-Busse, and
X. Zheng, “Handling missing attribute values in preterm birth data sets,”
in Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing.
Springer, 2005, pp. 342–351.

[14] P. O’Neil and D. Quass, “Improved query performance with variant
indexes,” in ACM Sigmod Record, vol. 26. ACM, 1997, pp. 38–49.

[15] K. Wu, W. Koegler, J. Chen, and A. Shoshani, “Using bitmap index
for interactive exploration of large datasets,” in Scientific and Statistical
Database Management, 2003. 15th International Conferenceon. IEEE,
2003, pp. 65–74.

[16] Y. Wang, Y. Su, A. Gagan, and T. Liu, “SciSD: Novel Subgroup
Discovery Over Scientific Datasets Using Bitmap Indices,” Technical
Report OSU-CISRC-3/15-TR03, Ohio State University, Tech.Rep.,
2015.

[17] N. Koudas, “Space efficient bitmap indexing,” in Proceedings of the
ninth international conference on Information and knowledge manage-
ment. ACM, 2000, pp. 194–201.

[18] G. Antoshenkov, “Byte-aligned bitmap compression,” in Data Compres-
sion Conference, 1995. DCC’95. Proceedings. IEEE, 1995, p.476.

[19] K. S. Kumar, M. Laxmaiah, and C. S. Kumar, “A compacted bitmap
vector technique to evaluate iceberg queries efficiently,”International
Journal, vol. 3, no. 6, 2013, pp. 412–418.

[20] S. J. van Schaik and O. de Moor, “A memory efficient reachability data
structure through bit vector compression,” in Proceedingsof the 2011
international conference on Management of data. ACM, 2011,pp.
913–924.

[21] F. Deliège and T. B. Pedersen, “Position list word aligned hybrid: opti-
mizing space and performance for compressed bitmaps,” in Proceedings
of the 13th International Conference on Extending DatabaseTechnology.
ACM, 2010, pp. 228–239.

[22] Y. Su, Y. Wang, and G. Agrawal, “In-situ bitmaps generation and
efficient data analysis based on bitmaps,” in HPDC. ACM, 2015.

[23] G. Canahuate, M. Gibas, and H. Ferhatosmanoglu, “Indexing incomplete
databases,” in Advances in Database Technology-EDBT 2006.Springer,
2006, pp. 884–901.

[24] “Bitmap index vs. b-tree index: Which and when?” http://www.
oracle.com/technetwork/articles/sharma-indexes-093638.html, [Online;
accessed 1-January-2015].

[25] J. Chou, K. Wu, O. Rubel, M. Howison, J. Qiang, B. Austin,E. W.
Bethel, R. D. Ryne, A. Shoshani et al., “Parallel index and query for
large scale data analysis,” in High Performance Computing,Networking,
Storage and Analysis (SC), 2011 International Conference for. IEEE,
2011, pp. 1–11.

[26] B. He, H.-I. Hsiao, Z. Liu, Y. Huang, and Y. Chen, “Efficient iceberg
query evaluation using compressed bitmap index,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 24, no. 9, 2012, pp.1570–1583.

[27] Y. Su, G. Agrawal, and J. Woodring, “Indexing and parallel query pro-
cessing support for visualizing climate datasets,” in Parallel Processing
(ICPP), 2012 41st International Conference on. IEEE, 2012,pp. 249–
258.

[28] X. Yin and J. Han, “Cpar: Classification based on predictive association
rules.” in SDM, vol. 3. SIAM, 2003, pp. 331–335.

[29] “Berkeley earth,” http://www.berkeleyearth.org, [Online; accessed 12-
January-2015].

[30] C. Blake and C. J. Merz, “{UCI} repository of machine learning
databases,” http://www.ics.uci.edu/∼mlearn/MLRepository.html, 1998,
[Online; accessed 12-January-2015].

[31] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using
edited data,” Systems, Man and Cybernetics, IEEE Transactions on,
no. 3, 1972, pp. 408–421.

[32] S. Parthasarathy and C. C. Aggarwal, “On the use of conceptual
reconstruction for mining massively incomplete data sets,” Knowledge
and Data Engineering, IEEE Transactions on, vol. 15, no. 6, 2003, pp.
1512–1521.

[33] G. E. Batista and M. C. Monard, “An analysis of four missing data treat-
ment methods for supervised learning,” Applied Artificial Intelligence,
vol. 17, no. 5-6, 2003, pp. 519–533.

[34] D. Li, J. Deogun, W. Spaulding, and B. Shuart, “Towards missing data
imputation: A study of fuzzy k-means clustering method,” inRough Sets
and Current Trends in Computing. Springer, 2004, pp. 573–579.

[35] A. P. Dempster, N. M. Laird, D. B. Rubin et al., “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the Royal
Statistical Society, vol. 39, no. 1, 1977, pp. 1–38.

[36] Z. Ghahramani and M. I. Jordan, “Learning from incomplete data,”
Technical Report AI Lab Memo No. 1509, CBCL Paper No. 108, MIT
AI Lab, August 1995.

[37] W. R. Harvey, User’s guide for LSML76: Mixed model least-squares
and maximum likelihood computer program. Ohio State University,
1977.

[38] B. C. Ooi, C. H. Goh, and K.-L. Tan, “Fast high-dimensional data search
in incomplete databases.” in VLDB, vol. 98, 1998, pp. 357–367.

[39] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski, “Skyline query
processing for incomplete data,” in Data Engineering, 2008. ICDE 2008.
IEEE 24th International Conference on. IEEE, 2008, pp. 556–565.

175Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

