DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Accelerating Data Mining on Incomplete Datasets by Bitmapgbased Missing Value Imputation

Sameh Shohdy, Yu

Su, Gagan Agrawal

Computer Science Department, The Ohio State University
Columbus, Ohio, USA, 43210
Email: {ahnedsa, sul, agr awal }@se. ohi o- st at e. edu

Abstract—Among all ‘big data’ research issues, the veracity challege,
which refers to the precision and accuracy of the data, has riaeceived
as much attention. Traditionally, it has been well known tha problems
related to data quality, such as incomplete, redundant, inensistent, and
noisy data pose a major challenge to data mining and data angsis.
Particularly, we note that existing methods for handling mssing values
cannot scale to larger datasets. In other words, this partiglar veracity
challenge has been addressed, but not in context of also hdimd
volume (and possibly the velocity) challenge of ‘big data’This paper
focuses on speeding up the missing values imputation prosesising
the bitmap indexing technique. The research takes two dird@ns: first,
the bitmap indexing is used to directly access the required ecords for
the imputation method (i.e., Direct Access Imputation (DA)). Second,
the bitmap indexing technique is used for missing value estiation
using the pre-generated bitmap indexing vectors without agessing the
dataset itself (i.e., Bitmap-Based Imputation (BBI)). Boh approaches
have been evaluated using different real and synthetic datets, and four
common imputation algorithms. We show how our bitmap-basednethods
can accelerate data mining classification of incomplete datwhile also
maintaining precision.

Keywords—Missing Values; Bitmap Indexing; Indexing as a Service.

|. INTRODUCTION

method is the most common value of the missing value ateibut
restricted to a label (or concept) [6]. Another study perfed by
Grzymala-Busse suggested replacing the missing value allitthe
possible values that appears at the same attribute in alflateset
records [7]. Another approach called Global Closest Fitdias been
proposed [8], where missing value in a specific record isrtdkam
the corresponding values from the record that is most sirtoldhis
record in the entire dataset. Moreover, different studaslsurveyed
and compared several approaches for missing values ingpu{&j—
[12].

A common theme in all of the works in this area is that algonish
for imputing missing value cannot scale to larger datadat®ther
words, this particularveracity challenge has been addressed, but
not in context of also handling volume (and possibly the ei§)
challenge of ‘big data’. This paper addresses this shoritogprof
existing work, and focuses on improving the scalability afthods.
We achieve this by using indexing to accelerate missing evalu
imputation - particularly, we use bitmap indexing, whicmcserve
as a summary of datasets. A key advantage of this technicate th
low-cost bit-wise operations can be exploited for progegsin this
work, we show how various missing value imputation methoals c
be accelerated using indexing, at two levels. First, likg imdexing
technique, bitmap indexing can be used to look-up relevarrds,

In recent years, ‘big data’ has become one of the most importayq thys, complete scans over the entire dataset are av&dednd,

challenges in computing research. One of the most popufanititns
of ‘big data’ involves four challenging aspects of dealinghadata

- volume velocity, variety, and veracity There has been a lot of
work in recent years on addressing these challenges, vétidlume
challenge, and to a less extent, the velocity challengejvieg most
interest. Work on MapReduce [1] and related framework fordfiag
massive data, as well the work on handling streaming datarasitu
data analysis have been topics of much investigation.

The veracity challenge, which refers to thgrecisionandaccuracy
of the data, has not received as much attention. Traditignil
has been well known that problems related to data qualitgh su
as incomplete, redundant, inconsistent, and noisy datgp¢8f a
major challenge to data mining and data analysis. In facg oh
the most important steps in data mining is considered to beldta

one can use bitmaps as a summary of the entire dataset, aadcess
the dataset at all. These two methods are referred to astBiceess
Imputation (DAI), and Bitmap-Based Imputation (BBI), resfively.
We evaluate both approaches extensively using differealt aed
synthetic datasets, and four different imputation alg¢pont.

The rest of paper is structured as follows: In Section 2, afbri
background on existing imputation methods and bitmap imgdex
is introduced. In Section 3, we present our proposed bitbeged
algorithms in detail. In Section 4, we present the perforceaeval-
uation of the proposed algorithms. Finally, we draw our ¢asions
in Section 5.

Il. BACKGROUND

preparationstep, which is the process of ensuring the quality of data This section provides key background on two important pic

by changing the original data into a suitable format for thalgsis

The first is the existing algorithms for dealing with missivgjues,

process. About 60% of data mining time is consumed in the data., specifically the imputation methods. The second isajts-based

preparation process compared to only 20% in the actual ditiagn
process [3].

indexing.

Unfortunately, recent work on MapReduce and other ‘big 'dat@. Imputation Methods

frameworks has not emphasized the challenges of data pesziog,
and particularly, the difficulty of applying known techni&gion large-
scale data. Consider the problem associated with handlirsgiig
Values (MVs). Incomplete dataset or missing values can dingata
analysis tasks. To avoid their negative impact, a popularagzeh is
to fill the missing values with estimated values that can be caézlila
from the complete records of the same dataset [4]. Sevardiest
have illustrated different methods for dealing with migsivalues,
i.e., using the complete set of recordsiteputethe missing values
in the real datasets. Clark and Niblett explained a simpjerghm
(i.e., the CN2 algorithm) for imputing missing values usthg most
common value of the same attribute [5]. A modified versionho$ t

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

The goal of any imputation algorithm is to estimate the migsi
value in a specific record using others complete recordserséme
dataset. As we stated earlier, this has been an active areaexrch
and much work has been done. We give an overview of four egisti
algorithms.

1) Global Closest Fit Method (GCF)The main idea in this
method is to replace the missing value by the value of cooredipg
attribute from a single record that is the most similar rdctur the
record with the missing value. The most similar record is one
with the smallestistancefrom the current record, with the distance
calculated as follows:

167



DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Code [18], Word-Aligned Hybrid code [19], Partitioned Werd
Aligned Hybrid (PWAH) [20], and Position List Word-Alignety-

Distance(X,Y) = 32 D(xi, ys) (1) brid [21]. The main idea in these methods is to encode a pessib
large series of contiguous 0s (or 1s, though they are lesly)ikefore
) storing them.
0 !f Ti=VYi Using the bitmap indexing, a typically subsetting query ¢en
D(zi,y:) = 1 if z; IS missing @) processed by extracting a set of bit-vectors depending ergtiery
. or y; is missing conditions, and then the result can be exported by perfaitwise
lzi—yil if i Z vy AND and OR operations over these bit-vectors, which are atlym

T

supported very efficiently in the hardware [22].
Equation (1) is the general form for calculating the diffeze

between any two recordX andY as a summation of the distance

between values in each attribute for both records. Equ&#pnan be TABLE I. AN EXAMPLE OF BITMAP INDEXING

used to calculate the distance between the two values fosahe

attribute in bothX andY records, where- is difference between Temp. . Bitmap Indices
maximum and minimum values of this attribute for the entia¢adet Without Binning With binning
— this corresponds to using what is referred to as the Maanhatt 23]25]28| 30| 33| 35| 23-25| 28-30) 33-35
distance, a commonly used metric [10]. 23 |1)0]0)0]0)0] 1 0 0
2) Most Common Value (MCV)This is a simple method where ;g 8 (1) (1) 8 8 8 (1) (1) 8
the missing value can be replaced by the most common valugein t s Tol o1l ol ol o o 1 )
missing value attribute. By scanning the entire datasetcavefind
the single value of the attribute that occurs most freqyeiafl [13]. 30 10/0]0]1]0j0) O 1 0
25 0|j1{0({0|0]|O 1 0 0
3) Concept-based Most Common Value (CMG)he Concept- 53 T1l0l0lo0l0l0 1 0 0
based Most Common Attribute Value method is a special case of 33 1olololol1lol o 0 1
the most common value method. This method assumes thadeecor 33 Tolololol 1ol o 0 1
have labels associated with them. Using this informatibe,rissing 3= Tolololol o1l o ) 1
value is replaced by the most common value for the specifibate,

among the set of records with the same label [13]. . . .
There are several reasons for choosing bitmap to improve the

4) Concept-based Mean Attribute Value (CMAVIhe missing jmputation process. First, bitmap treats each attribuparsgely, and
attribute value is replaced with the mean of values of theesargys s Jikely to support efficiently index for incompletatésets [23].
attribute, among the records having the same concept. Aeurt |, comparison, other popular indexing methods such as &-Be-
ger_lera_llzatlon of_thls method_ls_the mean attribute valu¢hote tree, and R-tree are designed to support queries on one or two
which is used to impute the missing value as the mean of aliegal attriputes. Second, bitmap indices can be built on top ofsastiag

in the same attribute, i.e., ignoring any possible [abe]1&]. data store, i.e, they do not require that data be reorganipeer
_ ) the index. Such data reorganization is extremely time aoirsg and
B. Bitmap Indexing Method may not be justified if the only or the major goal of indexingultb

Rg to support imputation of missing values. Third, missiEdugs
Imputation operation is an approximate process. Thus,dgtbased
missing values imputation algorithms can be acceleratied) lstmap
approximation techniques, such as binning without lossre€igion.
gzigally, during data mining, we typically target datasdtattare not
deated, and bitmaps are well suited for such datasets [24].

The implementations of each of the above techniques in t
literature assume a small dataset that fits in memory, anolvies
simple scan(s) on all records to find values to substitutesimis
values. These implementations clearly have limitationgendiealing
with large datasets. Thus, we examine the use of indexing a
mechanism to accelerate imputation methods we have dedcri
above. There are several reasons for considering this agpréirst,
indexing is already implemented in most data stores thahamneling
large-scale data. Second, intuitively, it is easy to seeahar most Our goal is to accelerate different imputation algorithnmsng
of the methods described above can be accelerated usingirigde bitmap indices. It turns out that there are two distinct ways
support. which bitmaps can be used for the imputation process, watetr

The particular indexing method we have chosen is bitmap ieff between accuracy and processing speed. First, searckdords
dexing [14]-[16]. This section gives a brief overview of rbip that are similar to the record with missing value, or recondth a
indexing and the reasons behind choosing it specificallynprove particular label can be accelerated using bitmaps. Thusaa en
the performance of existing missing values imputationripies. — the entire dataset can be replaced by look-up on specifis pathe

In the simplest form, a single bit-vector is generated fochea dataset. Second, it is possible to use bit-vectors as aroippate
distinct valuev in each attribute. The length of the bit-vector is equafummary of the entire dataset, and provide approximate emssw
to the number of data records in the dataset. If the value ef tHSing this information. We refer to the first strategy as Bieect
particular attribute in a record matches the valuhis bit-vector Access Imputatiomethod or DAI, whereas the second method is
corresponds to, the bit is set to 1, and is O otherwise. Howevéalled Bitmap-Based Imputatiomethod or BBI. Before discussing
large number of distinct values for an attribute negativedpacts the he approaches, we note that bitmaps have been used to qppoy
bitmap indexing performance, because large number ofeitovs Processing in several systems [25]-{27]. Thus, if bitmapsaready
need to be generated to cover all these distinct values. Aayp P€ing built to support query processing, implementing itapan
solution for this challenge is to use the binning processhérbinning Method using them will not even involve additional overheihdex
process, the attribute values are binned so that each bieseps 9eneration.

a range of values [15] [17]. Table I illustrates an exampleusihg . .
bitmap indexing technique with/without binning process. A. Direct Access Imputation (DAI)

Bit-vectors can become extremely space consuming in thge ori Several imputation algorithms can be accelerated if we gactty
inal form. Thus, several compression methods have beerogedp access the required records to impute each missing valbhewtifull
to solve the space problem, which includes Byte-alignednBif database scan. This is the idea of the DAI approach. We shaw ho

Ill. PROPOSEDIMPUTATION METHODS

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4 168



DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

(a) Sample Records

Attl Att2 A
? 1

3

=
S

(e) Matched Records

Att2 Att3

—>| Closest Fit Method

Wk (v wlw|~
NI
INESVACIEN [
oo n|o|w|n

No matched
records

No matched

records

1=0.33

Att3 Attd

(f)

Fig. 1. Global Closest Fit Method using Bitmap Indexing - bBopValue of Each Attribute is Used to Select Records

to apply the DAI method in the case of three imputation athons:
Global Closest Fit, Concept-based Most Common Attribute&/and
Concept-based Mean Attribute Value , each of which was dguiced
in Section 1.

1) Global Closest Fit Method:Recall that this method imputes
the missing value from the record(s) that are closest to ¢cerd
with the missing value, in the sense of the distance betwleetvio
records. The brute-force approach to implement this metiaaves
retrieving the missing record and computing the distandevésen
this record and all other records (i.e., Full Dataset Seanniethod).
By using bitmaps, we can retrieve only the set of records liaat
attributes values close to the target record values.

In performing a full-scan of the dataset, it is relativelpgto select
the closest match with respect to other attributes. Howexging an
indexing method to find the closest match requires certaafiatges.
We need to keep identifying neighboring values of eachtatte, so
as to find the closest match or a good approximation. To erthble
selection process, we use the notioriropactof a neighboring value
of an attribute to the distance. TlmapactI of the next valuev for
each attributed can be computed ag{A,v) = *—=, wherec is the
current used value for attributd and r is the difference between
the maximum and minimum value for attribute The idea is that
neighboring values of each attribute can contribute difiély to the
impact with respect to the distance. Records that have dibeitng

value with the smallestmpactshould be searched first, because theyez

will have a smaller distance.

An example of our approach is given by Figure 1 to solve thi

challenge. Subfigure (a) represents a set of records frongaeyn
dataset that has a missing value markedBy. Suppose that there
are no records that have the same value for all other atsbas the
record with the missing value. A second search process idunbad
by selecting the next closest value (as recorded in a metdde}
for each attribute, and choosing the attribute and its valiie the
leastimpact — for example,att4 has the smallesmpactas shown
in sub-figure (b). In subfigure (c), we now need to retrieveords
where the corresponding value is less than or equal to thtecpkar
value for the chosen attributet4 = 6 and larger that the old value

att4 = 5, while having the same value for the remaining attribute
that were used for the previous search. If there are no nm);chizo

records identified, the process of picking a new attribuiagushe

impactvalue is repeated (see sub-figures (c) and (d)). Once th& reﬁ?f

bit-vector does retrieve a set of records, e.g., as showm)intlfese

supports database-like query subsetting over data in tifedata
formats like NetCDF. The query processing module convéeaiser
query request into a set of query conditions where each tiondian
be represented by a single bit-vector (i.e., domdition bit-vectoy.

Returning to the example shown in Figure 1, the challenge tser
how to build a query that retrieves the records that are mosest
to the record with the missing value in each step. For exaniple
sub-figure (a), we need to retrieve all records that exactycmthe
record with missing value. In this case, each distinctlaite query
condition will be built to cover all the records in a range lwihe
maximum and minimum values equalling the correspondinipate
value in the missing value record. Further, in sub-figure \{{® need
to increase the internal range drtt4 to cover the records that can
be used in the imputation process. So, the query should betbui
have a maximum and minimum values relateditod, i.e., att4 > 5
AND attd <6.

Algorithm 1 BuildQueryforGCF{ecord)

: for att= 1 — sizeof(record) do
vals|att]=ReadValues{/eta Data File,att)
query_vals|att]= record|att];

end for

resultbitvector:= null

while resultbitvector is null do

wne

4.
5:

7: for att= 1 — sizeof(record) do
s8: min_dif f:= oo
9: for i= 1 — sizeof(vals|att]) do
10: di f f=absgals|att].get)-query_vals[i])
: if diff < min_diff then
12: min_dif f=dif f
13: r=Mazx(att) — Min(att)
14: impact|att]=min_dif f /r
15: candidate_vals[att|=vals|i]
16: end if
17: end for
: end for

selected_att=PickMin(Impact)
query_vals[selected_att]=candidate_vals[selected_att]
vals|selected_att].removegelected_value)

query= GenerateQueryécord,att,query_vals)
resultbitvector=Retrievelndexfecord,query);

records should be examined, with the goal of obtaining thestmao24: end while

closest fit record(s) to the record with the missing valueis Tast
step is shown through the sub-figure (f).

The implementation of our approach has been in the conteat of

particular bitmap-based data management system [27]. Siisiem

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

Fig. 2. Algorithm 1: Query Building Operation

169



DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

The query building operation algorithm is formally desedbby
Figure 2. The algorithm takes as input the record with mgsmue.
In the line 2, distinct values for each attribute are readnfrits
metadata file into vals vector. Line 3 initiates theuery_vals array
with the values of missing value record. Through the algarit for
each attribute, all records that have a value betweendqothy_vals

by Figure 3. The example uses a dataset with three attrilautesa
label.

1) Most Common Value Methodn this method, the key is to
determine the number of records for each distinct value éntéinget
attribute (i.e., attribute with missing value). The valuighithe largest
number of records is the most common value. The bitmap liteve

the query_vals array values until theesultbitvector retrieved any
number of records. In lines 9-17 , for each attribute’s didtivalue,
the impact of changing the old value gmery_vals with this value
is computed to determine the value of each attribute thateméke
smallest change in thémpact value. In the line 19,PickMin

manner. First, distinct attribute values can be retrievernf the
missing value attribute’s metadata file. Second, for eastindit value,
the related bitmap vector is retrieved from the index filds leasy to
count the number of records for each distinct value by cognthe
number of ones on each retrieved bit-vector. The bit-veafith the

impact value. In the line 20, The value of this attribute replaces thajye in the target attribute.

old value in thequery_vals array. In line 21, this value is removed
from vals vector to guarantee a new value is selected the next timtﬁt

In line 23, the query was generated using the missing vatig'srd

and thequery_vals array. If the bitmapvector has no records, a

next iteration is required.

The same strategy can be applied if binning process is udesl.

operation of changing a proper attribute value dependingthen
impact degree on the distance can be applied to the binneds/aly
selecting a proper binned range of values rather than aesiale.

In this case, the impact degree can be computed by using énage/
value of the current range and the average value of the candidat

rangev.

1

Figure 3 (c) gives an example of retrieving each distincueal
-vector and the bit-vector with the largest number of oneflect
the most common value. However, the BBI approach cannot éé us
without approximation in the case of binning, because e#teveltor
represents a set of values rather than a single value.

2) Concept-based Most Common Value Methddrst, a query
condition bit-vector is constructed to retrieve all the arts with
the same label as the missing value record’s label. Seconaatch
distinct value in the target attribute’s metadata file, arguequest

is built and passed to the bitmap query system to retrievet-a bi

Sector representing all the records equal to this value. gAcl&AND

operation will be performed between all distinct valued-\@ctors

2) Concept-based Most Common Value Meth@tie method can and the label bit-vector. The number of ones per each distalne’s

be implemented using bitmaps as follows. After retrieviigrassing  bit-vector is counted which represents the number of recwith the
values, a single query request is built for each reddttat contains a same value and label. The value’s bit-vector with the largesber
missing value. The goal of the query will be to retrieve adl tecords of ones can be used as the imputed value for the missing value.
that contain the same label as the recérdThese retrieved records  gimjlar to the most common value method, this strategy besom
can be then be checked to determine the most common valubefor foss accurate in the case of using binning when construdtieg
attribute where the recor@ has a missing value. These operationgjimap index. Figure 3 (d) gives an example of using BBI appho
are trivial to perform if binning is not used. with Concept-based Most Common Value algorithm.

However, in the case of binning, for each missing value, the 3y oncent-based Mean Attribute Value Methcgimilar to the

retrieved records will be the records that contain a labéhensame
binned range, as the label associated with the reébrBor the last

step, we can determine the most common bin, and then procee
search for the most common value. Note that this may resudt i

different value, as compared to the value obtained by a Hioute
algorithm. This is because the most popular bin may not @orlke
most commonly occurring value.

previous method, a single condition bit-vector will be doasted to

({ trieve all the records that have a label matches with thel laf
h

missing value record. For the missing value attribiie jinputed
ue is the mean of all the target records values of thishatt. In
the case of hinning the technique is changed. First, the #trdbute’s
metadata file needs to be checked to determine the binnedhatet t
contains the missing value record’s label. Second, we omtsa

Note that implementation of most common value is also veryyery condition bit-vector to retrieve all the records withhis set.

similar - we simply focus on finding the most common value
the attribute involved across all records.

3) Concept-based Mean Attribute Value Methdsimilar to the
previous method, a single query request is built to retriaethe

hese records can be checked to determine the records treathe
same label of the missing value record. The imputed valué beil
the mean value for all the records with the same missing vaoerd
label. Figure 3 (e) also gives an example of this method.drctse of

records that have the same label as the redotthat has a missing binning, the technique is changed. First, the label attefeumetadata
value. These records can be accessed directly and all thesvaf file needs to be checked to determine the binned set thaticsritee
the attribute where&? has a missing value can be retrieved into thenissing value record’s label. Second, we construct a quengition

memory. The estimated value is the mean of all retrievedegalu
In the case of binning, certain calculations are requirde Rbel
attribute’s metadata file should be checked to determinebitmeed
range that contains the target record’s label (i.e., thertewith the
missing value). Then, a simple query request is built taeetrall the
records within this binned range. These records are exahragain

to determine the records with the same label as the missihg va

record. The imputed value will be considered as the meanl dhal
values of the missing value attribute.

B. Bitmap-Based Imputation (BBI)

This approach involves imputing the missing values diyeeting
the bitmap vectors, i.e., without accessing the datasef.itd/e will
explain the use of BBI approach in three imputation algongh

bit-vector to retrieve all the records within this set. Tédescords can
be checked to determine the records that have the same fatied o
missing value record. The imputed value will be the meanevétu
all the records with the same missing value record label.

IV. EXPERIMENTAL EVALUATION

This section presents results from a series of experimenrie tb
evaluate the proposed bitmap-based imputation approaSpesif-
ically, our proposed DAI and BBI imputation approaches aven<¢
pared with the brute-force FSI imputation approach in twoysva
execution speedup and imputed values’ accuracy. In accu@n-
parison, to focus on the impact of different approaches tesimg
value imputation on the data mining process, we used a popula
classification algorithm (i.e., the CPAR algorithm [28]) ¢tassify

Most Common Value, Concept-based Most Common Value, atltk dataset records after the missing values imputatiosegois
the Concept-based Mean Attribute Value methods. An exarople applied using different approaches (i.e., FSI, DAI, and BBhen

using the BBI methods in different imputation algorithmsgisen

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

the dataset noise ratio is evaluated in each case.

170



DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

(a) Sample Records (b) Bitmap vectors of: Attl and Label

Attl | Att2 | Att3 | Label Att1 [ Bitmap Label |Bitmap
? 1 3 0 e 01
2 3 1 ? 1 0 0 0 0 0 1 0
3 3 2 1 Bitmap | 2 |0 [1]0of0]o0 1 o[ 1
3 0 0 1 0 0
3 1 5 0 |Vectors 3 o ol 1100 1 0 1
5 2 5 1 0 110
1 1 2 0 5 0 0 0 1 0 1 0 1
3 1 2 0 1 0 0 0 0 1 0 1 0
3 0 0 1 0 0 0 1 0
(d) Concept Most (e) Concept-based Mean
(c) Most Common Value Common Value Attribute Value
2: 0100000 Count(1)=1 Label O: 1001011 Label 0: 1001011
3: 0011001  Count(1)=3
5: 0000100 Count(1)=1 Label 0O bit-vector AND each Label 0 bit-vector AND each
1: 0000010 Count(1)=1 distinct value bit-vector distinct value bit-vector
2 0000000  Count(1)=0 3: 0001001  Count(1)=2
Imputed Value: 3 3: 0001001 Count(1)=2 1: 0000010 Count(1)=1
5: 0000000  Count(1)=0
1: 0000010 Count(1)=1 Imputed Value: (3*2+1)/3=2.33
Imputed Value: 3

Fig. 3. Bitmap-based Imputation Method Example

All approaches were implemented in C++. The experiment&weour comparison is assuming that an index is generated spdlifi
performed on Linux Red Hat 4.4.7-3 machine equipped with&lgu for the imputation process. However, in practice, an indey rhe
core Intel CPUs running at 2.53 GHz and with a 4 GB RAM. generated in advance for a different reason, like need fopating

subsetting (or other types of) queries, and index generditioe may
A. Execution Speed Comparison be amortized. Returning to the Figure, the x-axis showseudfit

Execution speed experiments have been performed using tiigmber of missing values in both datasets while the y-axasvstthe
different datasets. The first dataset is what we refer to@m8ékeley Normalized execution timevhich is computed as the fraction of the
dataset [29] £-1GB), which is an earth surface temperature datasé@ngest execution time. We can draw from the figure the fatgw
This dataset comprises seven attributes and néatly” records, and three observations. First, the total execution time of D/Adthod,
can fit into memory, and thus helping us evaluate the perfocma €ven including the required time to generate index filesliertarget
Of the proposed approaches When datasets f|t in memory_ &e‘ven dataset, IS |eSS than the tOtal exechlor} time Of the bmf FSI
used a synthetic dataset{0GB), which was generated with nineMmethod on both datasets. Second, with increasing numbeissfig
numerical attributes and a label, and neatly- 107 records. This Values, the DAI's advantage becomes even more significamenw
dataset is used as an example of a large dataset, helpinglustey compared to the FSI method. Finally, the figure shows thaDhe

the performance of proposed imputation methods on diskess Method's relative performance is even better in the caseisi-d
datasets. resident datasets. The reason is as follows: the imputaitioe for

a single value is the sum of the times for finding the most clbse
records to the missing value’s record and the required tonrettieve
these records, whether from the memory or the disk. In the os
the Berkeley dataset, the entire dataset fits into the memdrich

OIndex Generation W Direct Access Imputation (DAI)
O Full Scanning Imputation (FSI)

-
-

209 09 means that the total execution time depends primarily ontithe
Eos 08 to find the most similar records. However, for a large datadiek
~2; zz operations are required to retrieve records from disk to orgm
805 1 | os 2) Most Common Value (MCV)For the Most Common Value
Sos 04 algorithm, Figure 5 shows the normalized total executiometof the
do3 03 algorithm using both BBI and FSI methods. Because all thesints
5 o values of the same attribute will be replaced by the most comm
o || o value for this attribute, the performance with this algomtdepends

on the number of attributes containing missing values,erathan
the number of missing values itself. As we can see, BBI speeds
Berkeley Dataset (1 GB) synthetic Dataset(~10 G8) up the imputation process compared to the brute-force F&hade
The BBI method depends only on the pre-generated bitmamngect
Fig. 4. Time Comparison between DAl and FSI Based Global &ibsit  so the increasing of dataset size does not affect the peafuren
Methods Using Different Numbers of Missing Values (MVs) of the BBI method, unlike the FSI or the DAI methods. In other
words, the performance gap between the total execution itintiee
1) Global Closest Fit (GCF):Only DAI and FSI methods have FSI method and the BBI method increases as we consider arbigge
been used to implement the Global Closest Fit imputatioorilyn, dataset. However, BBl method becomes worse when the number
as BBI cannot be applied. This experiment targets both dttasof distinct values in the target attribute increase. In ttese, the
(i.e., Berkeley and the Synthetic dataset).A comparisawden the number of generated bitmap vectors increase which negjatifiect
execution speed in handling datasets’ missing values onG@G€ the performance of the BBI method.
method with different number of missing values is shown igufe 3) Concept-based Most Common Value (CMQ)he Concept-
4. The number of missing values in the dataset varies fromol0 tbased Most Common Attribute Value method can be implemented
1000, and they are distributed across different attributéste that using both DAI and BBI methods. The normalized total examuti

10 MVs
50 MVs
100 MVs
500 MVs
10 MVs
50 MVs
100 MVs

ES
s
)
3
a

1000 MVs [
1000 MVs

Copyright (c) IARIA, 2015.  ISBN: 978-1-61208-408-4 171



DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

O Index Generation M Bitmap-based Imputation (BBI) O Full Scanning Imputation (FSI)|

1 1

0.9 0.9

0.8

o ©
i 0®

0.7

0.6

o
Y

0.5

o
@

0.4

o
IS

0.3

o
w

Normalized Total Execution Time

e @

0.2

o

0.1
0

Synthetic Dataset(~10 GB)

o

—

Berkeley Dataset (~1 GB)

o

Fig. 5. Time Comparison between BBI and FSI Based Most ComWabne
Imputation

O Index Generation W Bitmap-based Imputation (BBI

M Direct Access Imputation (DAI) O Full Scanning Imputation (FSI)

2
s
=
a

Berkeley Dataset (~1 GB) Synthetic Dataset(~10 GB)
Number of Missing Values

0

Normalized Total Exe

ocoooooo

BN ws 0o
10 MVs

@ ulh

g
s
o
3

uhlh

1000 Mvs [

500 MVs
10 Mvs

1000 MVs

Fig. 7. Time Comparison between DAI, BBI, and FSI Based Cptibased
Most Common Value Methods Using Different Numbers of MigsWalues
(MVs)

time for DAI, BBI, and FSI methods is shown in Figure 6 withg |mpact of the Number of Distinct Values

different number of missing values in both target dataséts. figure

shows that DAI and BBI methods speeds up the imputation peoce

compared to the FSI method. The overall time is dominated
the index generation time. If the index can be pre-geneyatesl

method can provide very large speedups. The figure also shows.

important observation. In the Berkeley dataset, DAl sa&tisé higher
performance compared to BBl method with larger number osmés
values. However, in the synthetic dataset, the BBI gives ghdri
performance. The reason of this behavior that BBI dependthen
number of distinct values in the target attributes (i.e.this case
the missing value’s attribute and the label attribute) e DAI

depends on the number of matched records for each missing.val

In the Berkeley dataset, the number of distinct values int#nget
attributes is large compared to the synthetic dataset wigfatively
impact the BBI performance.

OIndex Generation B Bitmap-based Imputation (BBI

m Direct Access Imputation (DAI) O Full Scanning Imputation (FSI)

07
06

2" N N

z

0

2 2

s s

= =

2 8

S

Berkeley Dataset (~1 GB) Synthetic Dataset(~10 GB)
Number of Missing Values

o oo
> o

ool s o

rmalized Total Execution Tim
ocoooo
Bowen

omvs 1

500 MVs
1000 MVs
10 MV:
50 MV:
100 MV:
500 MV:
1000 MVs [ I

Fig. 6. Time Comparison between DAI, BBI, and FSI Based Cptibased
Mean Attribute Value Methods Using Different Numbers of bigy Values
(MVs)

4) Concept-based Mean Attribute Value (CMAM)he efficiency
of implementing the Concept-based Mean Attribute Valuedtigm

A single bitmap vector is built for each distinct value in kac
tribute, unless binning is used. Increasing the numbedigifnct
lues in each attribute impacts both the index generatioa and
the proposed imputation methods based on bitmap vectosedthis
impact, we evaluate the performance of each imputationridfgo
using both DAI and BBI methods with different number of disti
values in each attribute. Our experiment assumes thatrigjriginot
used. In this experiment, we generate five synthetic datasih
the same number of records (i.eQ - 107) and attributes (i.e., nine
attributes and one label), but with different number ofidistvalues
jn each attribute (i.e., 100, 500, 1000, 5000, and 10000).

The performance of both CMC and CMAV methods with different
number of distinct values is shown by Figure 8. It is not sisipg
that execution time increase with increasing number ofrdisvalues.
A more significant observation is that the BBl method becomase
with very large number of distinct values. The BBl method etets
on scanning the bitmap vectors to estimate the missing yvaoe
increasing the number of distinct values increases the purob
bitmap vectors generated, which slowdown the imputaticcess.
Overall, it will be better to use binning when the number cftidict
values is large.

C. Scalability

The goal of this experiment is to evaluate the scalabilityoof
proposed methods when imputing missing values in datasits w
increasing sizes. Five synthetic datasets are used inxtperienent,
i.e., 5, 10, 15, 20, and 30 GB. These datasets were randombr-ge
ated in two different manners: by increasing the number twibates
and by increasing the number of records. Each dataset was als
generated to include 100 missing values distributed aaldferent
attributes. Because our goal is to evaluate the runtimealsitity of
proposed methods, we only recorded the total execution dineach
imputation algorithm, without including the index genésattime.

The results are shown in Figures 9 and 10. As shown in the Bgure
the execution times only increase linearly as the datasetiscreases
— either by increasing the number of records or by increasiirg
number of attributes in each record. This experiment alsmwvsh
another observation, as illustrated particularly by FegurlO(b)

with both DAI and BBI methods is shown by Figure 7. On bottnd 10(c). Because the BBI method needs to analyse the sndice
target datasets, the DAl and BBl methods are more faster thmn files to impute the missing values, increasing the numbeecbnds

FSI method with different number of missing values. Just tike case
of the Concept-based Most Common Attribute Value methodhén
Berkeley dataset the DAl is faster than BBI because of ladgginct

values in the target attributes. However, in the synthesitaset the
performance gains from the BBI method is more significantabise

negatively impacts the efficiency of BBl method compared #l D
method in both Concept-based Most Common value and Concept-
based Mean Attribute imputation algorithms.

D. Imputation Method Impact on Data Mining

the BBI method does not require any 1/O processing compaved t Since accuracy comparisons on synthetic datasets are mpt ve

DAl method.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

meaningful, and because the size of the dataset was not mgr-

172



DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

20000

——Direct Access Imputation (DAI)
-0~ Bitmap-based Imputation (BBI)

20000

——Direct Access Imputation (DAI)
-0~ Bitmap-based Imputation (BBI)

’
.

15000

10000

5000

Total Execution Time (Sec)

100

Number of Distinct Values in Each Column

(a) Concept-based Most Common Value (CMC)

500 1000

15000

10000

5000

N
Total Execution Time (Sec)

5000 10000 100

500

1000 5000 10000

Number of Distinct Values in Each Column

(b) Concept-based Mean Attribute Value (CMAV)

Fig. 8. Performance of Different Imputation Algorithms iDifferent Numbers of Distinct Values

= ==Direct Access Imputation (DAI) ‘

§ 15
10

Total Executio
o

10 20 20 40
(*5GB)  (~10GB)  (~15GB)  (~20GB)
Total Number of Attributes

(a) Global Closest Fit

55
(~30GB)

3500
o =rw=Direct Access Imputation (DAI) ‘

. .
w
© 3000 3 Bitmap-based Imputation (BBI) /

£ 2500 =

= 2000 /

s

2 /
1000 i

H-_‘_r,___u-

- - =0
S—

10 20 30 40 55
(~5GB)  (~10GB) (~15GB)  (~20GB)  (~30GB)
Total Number of Attributes

(b) Concept-based Most Common Value

3 3500 | =r=Direct Access Imputation (DAI) .
) " N

g 3000 =0 Bitmap-based Imputation (BBI)

= 2500 i

c

-]

10 20 30 40 55
(~5GB)  (~10GB)  (~15GB)  (~20GB)  (~30GB)
Total Number of Attributes

(c) Concept-based Mean Attribute Value

Fig. 9. Scalability: Influence of Increasing the Number ofriduites on DAI and BBI based Imputation Algorithms

N
~

g ==Direct Access Imputation (DAI)‘

010

<

o 8

£

26

L

5 4

g =

a2 ;

® VA4

8o
10E7 20E7 30€E7 40E7 60E7
(¥5GB) ~ (~10GB)  (~15GB)  (~20GB)  (“30GB)

Total Number of Records

(a) Global Closest Fit

=r=Direct Access Imputation (DAI) A

7/ =0 Bitmap-based Imputation (BBI) [d
ag
n==

5000

Total Execution Time (Sec)
&
S
S
I
N
N
\ \

1087
(~5GB)

20E7 30E7 40E7
(~10GB)  (~15GB)  (~20GB)
Total Number of Records

60E7
(~30GB)

(b) Concept-based Most Common Value

__7000
o =] Bitmap-based Imputation (BBI) O
“;-" 6000 =r=Direct Access Imputation (DAI) _- -
£ 5000 o
= 4000 r”
7/
= 3000 ’ =N
7/
£ 2000 L7 =
E 1000
e o
10E7 20€E7 30€E7 40E7 60E7
(~5GB)  (~10GB)  (~15GB)  (~20GB)  (~30GB)

Total Number of Records

(c) Concept-based Mean Attribute Value

Fig. 10. Scalability: Influence of Increasing the Number @cBrds on DAl and BBI based Imputation Algorithms

tant, we used seven benchmarks datasets from the UCI repyo/d0]
for accuracy comparisons. The latter are summarized ineT#bl

the end goal of DAI and BBI methods is not to produce the same re
sults as the full-scan methods, but to support the data mimiocess.

specifically, we show different characteristics of eactaslet such as With this observation, we evaluate different imputatiogaaithms

the number of records, attributes, and classes. We conaltiéne
attributes as numerical attributes. In the case of symtaititbutes,
we convert then into numeric format during the preprocessiage.

TABLE II. UCI DATASETS DESCRIPTION

with respect to the final results from a specific classificatizethod.
Particularly, a rule-based classification algorithm (ihe CPAR
classifier) is used [11]. This algorithm depends on genayadiset of

predicative association rules from labeled records in argidataset
to classify unlabeled records in the same dataset. Congpddn

other association rules-based classifiers, CPAR algoritasnseveral
advantages such as: avoiding redundant rule generationsimng u

Dataset No. records| No. attributes| No. classeg
Glass 214 10 7 dynamic programming, generating a small set of associatites,
Identification and achieving higher accuracy [28]. Because our main godhds
Ge’mg‘;a‘:fed" 1000 20 2 imputation process, we only use a single classificationrihyo to
ndiar Liver T3 0 > compare t.he accuracy between dn‘ferent proppsed impotatiocess.
Patient (ILP) Imputation using different methods is applied on datasets o
Mammographics| 961 6 2 classification, and subsequently, the classifier obtaiseevaluated
Pima Indians 768 8 2 using a popular metric, which is th&filson’s Noise Rati¢31]. This
uSe?ﬁﬁf;‘iﬁse d55 403 - ; metric identifies the noise rate in a given dataset, i.e.,rétie of
Modeling (UKM) records. |dent|f|.ed agoisy to tlhe tota! number of records. In turn, a
Wisconsin 599 10 7 record is considered noisy if labelling it using the KNN aigfam

(assigning it the most common label among #eearest records)

As we stated above, all imputation methods are heuristibsis,T leads to an incorrect label. An effective Imputation altfori should

Copyright (c) IARIA, 2015.

ISBN: 978-1-61208-408-4

173



DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

impute values that reduce th#ilson’s Noise Ratioln this exper- Our work falls in the categoy of missing value imputation. iyla
iment, we compare th#Vilson's Noise Ratidor imputed datasets, existing approaches involve a direct imputation operafiom the
after applying the FSI, DAI, and BBI methods, respectivdlye complete rows of the same dataset to estimate the missingszal
used the standarB -Fold Cross-Validation technique with the CPARBesides the methods our work builds on, i.e, the Most Common
algorithm to classify the given dataset records, i.e., tbmplete Attribute Value [13] and Global Closest Fit [10], other apaches
dataset after the missing value imputation operation igldi/ into are based on k-nearest neighbors [33] and k-means clustEd).
K parts. Each part is used to train the CPAR model to predict tihdaximum likelihood approach is also a popular approach tonese
label for the otherK — 1 parts records. Each record is labeled withthe missing values. In this approach, a statistical modebuiit
the common label predicated using the other nine parts. on a given incomplete dataset, using a machine learningoappy
We set up different parameters that are required by the CPARd model parameters are estimated. For example, the Bxipeet
algorithm based on the default values given in an earliedysfa8] Maximization (EM) algorithm has been used to estimate th&sing
(i.e., totalweight=0.05, decayfactor=2/3, and ngain=0.7). For the values [35]-[37]. Similarly, neural networks also can bedi® build
Wilson’s Noise Ratio, we use# = 5. Comparing using Wilson’s a data model to fill the missing values given incomplete @satES6].
Noise Ratio, we can estimate the impact of our proposed appes A somewhat different problem, improving query execution on
on the results of the CPAR classification algorithm. incomplete datasets by modifying indexing methods, has béen
A comparison between the brute-force approach and propossddied [23] [38] [39]. One of these efforts is based on bjima
imputation approaches (i.e., DAl and BBI) are shown by Tdlle indexing [23]. The goal of our work is quite different, as watimate
with and without the binning strategy. We used seven dadsetn missing values, in preparation for further analysis andimgirof the
the UCI repository for this purpose. For the seven datasetsidered dataset.
in our study, the noise ratio values for FSI, DAI, and BBI alma@st
the same for different imputation algorithms. This obstéorashows VI. CONCLUSION
that using bitmaps, the imputed values lead to the sametyuali Datasets arising in real applications tend to have manyrtaingy
classifier as the brute-force FSI approach. We have alsortezbo or incompleteness issues, one of which is the problem ofingjss
the noise ratio when imputation is not applied. As the Tallle lvalues. There are many existing methods for choosing aylikalue

shows, for six of the seven datasets, very significant résludn
noise ratio is achieved by applying imputation methods.r@lewe
can see that DAI and BBI methods not only improve the effigievfc
imputation, but help improve the quality of the data mininggess

for a missing value, to be able to support other queries olysisa
on the dataset. However, a common theme in all of the work in
this area is that algorithms for imputing missing value aarscale
to large datasets. This paper has addressed this shorgarhitne

after imputation. existing work. Particularly, we have shown how bitmaps can b
used to accelerate missing value imputation. We have piexséwo
approaches, including one in which bitmap indices can hetjuce
the number of records to be retrieved, and the second whdye on

bitmaps are used to select a value to replace the missing.valu

TABLE Ill. COMPARING IMPUTATION METHODS BASED ON
WILSON’S NOISE RATIO

Dataset Before| Imput. | FSI DAT (%) BBI (%) Through extensive evaluation, we have shown large perfocma
Imput. | Alg. | (%) |WIOT W [WO] W improvements. Even after including index generation timey
(*%) R 1‘31";6 Bin. | Bin. | Bin. methods are faster. However, if an index has already bedh tbui
Glass Mev— e — 17— support other functionality (such as supporting query essing), the
Identification | ©7-28 [ CMC 11176/ 1176 1276 1176 - improvements from our methods are very large. On other hted,
CMAV | 11.76] 11.76] 11.76] 11.76] 11.76 result of the data mining process stays approximately tieesas
GCF [10.88[10.88] - - - with the original methods.
German Credit 70.0 MCV [ 11.17] - - 11.17
Data ** [TCMC [10.88] 10.88] 10.88] 10.88] -
CMAV | 10.88] 10.88] 10.88| 10.88] 10.88 REFERENCES
] ] GCF | 37.69|37.69| - - - [1] J. Dean and S. Ghemawat, “Mapreduce: simplified datagssing on
Indian Liver | ,o ¢, | MCV [19.89] - -_[1989 large clusters,” Communications of the ACM, vol. 51, no. @08, pp.
Patient CMC | 19.89] 19.89] 19.89] 19.89] - 107-113
CMAV | 19.89[ 19.89] 19.89] 19.89] 19.89 S M : f missi d sdd
CCF 151001 5100 - . [2] L. L L|u'Peng, A review of missing ata treatment metisgdinter-
) MCV 15236 — — 536 national journal of intelligent information systems andciie2005, pp.
Mammographics 53.69 =y 5726 52.26| 49.63[ 52.78] - 412-419. _ o
CMAV | 52.78| 52.78| 52.78| 52.78| 52.78 [3] K. J. Cios and L. A. Kurgan, “Trends in data mining and kheslge
GCF [ 923 9.23| - - - discovery,” in Advanced techniques in knowledge discovangl data
Pima Indians 34.89 MCV | 9.23 - - 9.23 mining. Springer, 2005, pp. 1-26.
Diabetes CMC [ 923] 923]923][923]| - [4] D. F. Heitjfan and S. Basu, “Distinguishing missing at dam and
CMAV [ 923 9.23] 923 ] 923 | 9.23 missing completely at random,” The American Statisticiasi, 50, no. 3,
User Knowledge r\ﬁg\s 170.2%8 10—.48 7_26 - 1996, pp. 207-213.
Wedss 67.7 . . [5] P.Clark and T. Niblett, “The cn2 induction algorithm,”ddhine learning,
Modeling CMC | 7.26 | 7.26 | 887 | 7.26 | -
CMAV | 7.26 | 7.26 | 7.26 | 7.26 | 7.26 vol. 3, no. 4, 1989, pp. 261-283. _ , ,
GCE [ 1176 1176 - . . [6] I. Kononenko, |. Bratko, and E. Roskar, “Experiments intamatic
Wi ) 34.48 | MCV_[T2.19] - 12,190 learning of medical diagnostic rules,” in InternationalhSol for the
Isconsin ’ CMC | 11.76| 11.76] 11.76[ 11.76| - Synthesis of Experts Knowledge Workshop, Bled, Slovengg41l
CMAV | 11.76] 11.76] 11.76] 11.76] 11.76 [7] 3. W. Grzymala-Busse, “On the unknown attribute valuedeiarning

from examples,” in Methodologies for intelligent systemsSpringer,
1991, pp. 368-377.
[8] J. W. Grzymala-Busse and M. Hu, “A comparison of sevegraaches
to missing attribute values in data mining,” in Rough setd auorrent
trends in computing.  Springer, 2001, pp. 378-385.
S. Aslan, C. Yozgatligil, Clyigiin, I. Batmaz, M. Turkes, and H. Tatli,
“Comparison of missing value imputation methods for tunkimonthly

V. RELATED WORK

This section gives a brief overview of related work in migsin
values imputation and using bitmap to index incomplete skt
Several approaches have been proposed to avoid the neative

—

pact of missing values in a dataset while performing datarginThe
treatment involves estimating missing values, or buildingifferent
data view that can be used instead of the incomplete dataggt [

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

total precipitation data,” in 9th International Conferenon Computer
Data Analysis and Modeling: Complex Stochastic Data ande®ys,
Minsk, Belarus, 2010, pp. 7-11.

174



DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

Copyright (c) IARIA, 2015.

S. Gaur and M. Dulawat, “A closest fit approach to missatgibute
values in data mining,” International Journal of advaneeSéience and
Technology, vol. 2, no. 4, 2011, pp. 18-24.

J. Luengo, S. Garcia, and F. Herrera, “On the choice hef best
imputation methods for missing values considering threeugs of
classification methods,” Knowledge and information systemol. 32,
no. 1, 2012, pp. 77-108.

L. Wohlrab and J. Furnkranz, “A review and comparisdrstoategies for
handling missing values in separate-and-conquer rulaitegl Journal
of Intelligent Information Systems, vol. 36, no. 1, 2011, 33-98.

J. W. Grzymala-Busse, L. K. Goodwin, W. J. Grzymala-8#sand
X. Zheng, “Handling missing attribute values in preternttbilata sets,”

(34]

(35]

[36]

in Rough Sets, Fuzzy Sets, Data Mining, and Granular Comguti [37]

Springer, 2005, pp. 342-351.
P. O’Neil and D. Quass, “Improved query performancehwiariant

indexes,” in ACM Sigmod Record, vol. 26. ACM, 1997, pp. 38-49 [38]

K. Wu, W. Koegler, J. Chen, and A. Shoshani, “Using bipmiadex
for interactive exploration of large datasets,” in Sciéotand Statistical
Database Management, 2003. 15th International ConferemcelEEE,
2003, pp. 65-74.

Y. Wang, Y. Su, A. Gagan, and T. Liu, “SciSD: Novel Subgpo
Discovery Over Scientific Datasets Using Bitmap Indicesgthnical
Report OSU-CISRC-3/15-TR03, Ohio State University, Te&tep.,
2015.

N. Koudas, “Space efficient bitmap indexing,” in Prodiegs of the
ninth international conference on Information and knowgkednanage-
ment. ACM, 2000, pp. 194-201.

G. Antoshenkov, “Byte-aligned bitmap compressiom, Tiata Compres-
sion Conference, 1995. DCC'95. Proceedings. |EEE, 199876.

K. S. Kumar, M. Laxmaiah, and C. S. Kumar, “A compactediriap
vector technique to evaluate iceberg queries efficientiyternational
Journal, vol. 3, no. 6, 2013, pp. 412-418.

S. J. van Schaik and O. de Moor, “A memory efficient redditg data
structure through bit vector compression,” in Proceediofjshe 2011
international conference on Management of data. ACM, 2@,
913-924.

F. Deliege and T. B. Pedersen, “Position list word adid hybrid: opti-
mizing space and performance for compressed bitmaps,’doeedings
of the 13th International Conference on Extending DataBasénology.
ACM, 2010, pp. 228-239.

Y. Su, Y. Wang, and G. Agrawal, “In-situ bitmaps gene&mat and
efficient data analysis based on bitmaps,” in HPDC. ACM, 2015
G. Canahuate, M. Gibas, and H. Ferhatosmanoglu, “lindexxcomplete
databases,” in Advances in Database Technology-EDBT 2@}8inger,
2006, pp. 884-901.

“Bitmap index vs. b-tree index: Which and when?” httwiw.
oracle.com/technetwork/articles/sharma-indexes-8938ml, [Online;
accessed 1-January-2015].

J. Chou, K. Wu, O. Rubel, M. Howison, J. Qiang, B. Austi, W.
Bethel, R. D. Ryne, A. Shoshani et al., “Parallel index an@rguor
large scale data analysis,” in High Performance Compubiggyorking,
Storage and Analysis (SC), 2011 International Conference fIEEE,
2011, pp. 1-11.

B. He, H.-l. Hsiao, Z. Liu, Y. Huang, and Y. Chen, “Efficieiceberg
query evaluation using compressed bitmap index,” Knowdealgd Data
Engineering, IEEE Transactions on, vol. 24, no. 9, 2012 1pF0-1583.
Y. Su, G. Agrawal, and J. Woodring, “Indexing and pahtjuery pro-
cessing support for visualizing climate datasets,” in Rer®rocessing
(ICPP), 2012 41st International Conference on. |EEE, 2@p2,249—
258.

X. Yin and J. Han, “Cpar: Classification based on predichssociation
rules.” in SDM, vol. 3. SIAM, 2003, pp. 331-335.

“Berkeley earth,” http://www.berkeleyearth.org, fillhe; accessed 12-
January-2015].

C. Blake and C. J. Merz, {UCI} repository of machine learning
databases,” http://www.ics.uci.eduhlearn/MLRepository.html, 1998,
[Online; accessed 12-January-2015].

D. L. Wilson, “Asymptotic properties of nearest neiginbrules using
edited data,” Systems, Man and Cybernetics, IEEE Tramswcton,
no. 3, 1972, pp. 408-421.

S. Parthasarathy and C. C. Aggarwal, “On the use of quneé
reconstruction for mining massively incomplete data sétspwledge
and Data Engineering, IEEE Transactions on, vol. 15, no.0632pp.
1512-1521.

ISBN: 978-1-61208-408-4

[39]

[33] G. E. Batista and M. C. Monard, “An analysis of four miggidata treat-

ment methods for supervised learning,” Applied Artificiatelligence,
vol. 17, no. 5-6, 2003, pp. 519-533.

D. Li, J. Deogun, W. Spaulding, and B. Shuart, “Towardssimg data
imputation: A study of fuzzy k-means clustering method,Raugh Sets
and Current Trends in Computing. Springer, 2004, pp. 573-57
A. P. Dempster, N. M. Laird, D. B. Rubin et al., “Maximurikélihood
from incomplete data via the em algorithm,” Journal of they&o
Statistical Society, vol. 39, no. 1, 1977, pp. 1-38.

Z. Ghahramani and M. |. Jordan, “Learning from incontplelata,”
Technical Report Al Lab Memo No. 1509, CBCL Paper No. 108, MIT
Al Lab, August 1995.

W. R. Harvey, User's guide for LSML76: Mixed model leastuares
and maximum likelihood computer program. Ohio State Ursigr
1977.

B. C. Ooi, C. H. Goh, and K.-L. Tan, “Fast high-dimensabdata search
in incomplete databases.” in VLDB, vol. 98, 1998, pp. 357~36

M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski, “Skgdi query
processing for incomplete data,” in Data Engineering, 2008E 2008.
IEEE 24th International Conference on. IEEE, 2008, pp. 5566~

175



