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Abstract—In mining incomplete data, we have a choice for
interpretation of missing attribute values. In this paper, we con-
sider two such interpretations: lost values and attribute-concept
values. To measure the number of conditions and rules for each
interpretation, we conducted experiments on eight incomplete
data sets using three kinds of probabilistic approximations:
singleton, subset and concept, with eleven values of probability.
Using a 5% significance level, the results show that the number
of rules is always smaller for attribute-concept values than for
lost values. Additionally, the total number of conditions is smaller
for attribute-concept values than for lost values for seven out of
eight data sets.

Index Terms—Data mining; rough set theory; probabilistic
approximations; MLEM2 rule induction algorithm; lost values;
attribute-concept values.

I. INTRODUCTION

In this paper, we use two interpretations of a missing
attribute value: lost values and attribute-concept values. Lost
values indicate that the original values were erased, and as a
result we should use only existing, specified attribute values
for rule induction. Attribute-concept values mean that the
missing attribute value may be replaced by any specified
attribute value, typically for a given concept.

The idea of complexity of rule sets induced from incomplete
data sets with lost values and attribute-concept values was
introduced in [1]. In [1], experiments were conducted using
only one type of probabilistic approximation (concept) and
only three probabilities used for probabilistic approximations
(0.001, 0.5 and 1.0). In this paper we use three kinds of
probabilistic approximations (singleton, subset and concept)
and eleven values of probability, starting from 0.001 and then
from 0.1 to 1.0 with an increment of 0.1.

Our previous research [2][3] shows that the quality of rule
sets, evaluated by an error rate computed by ten-fold cross
validated, does not differ significantly with different combi-
nations of missing attribute and probabilistic approximation
type. As a result the main objective of this paper is research
on complexity of rule sets, in terms of the number of rules and
total number of rule conditions, induced from data sets with
lost values and attribute-concept values. In previous work and
in this work, the Modified Learning from Examples Module,
version 2 (MLEM2) was used for rule induction.

The main results of this paper show that the size of rule
set was always smaller for attribute-concept values than for
lost values. The total number of conditions in rule sets was
smaller for attribute-concept values for 22 of 24 combinations
of the type of data set and probabilistic approximation. In the
remaining two combinations, the total number of conditions in
rule sets did not differ significantly. Thus, we may claim that
attribute-concept values are better than lost values in terms of
rule complexity. While our previous work discussed a subset of
these findings, the primary contribution of this paper is that the
results are more extensive and decisive than those presented
in [1].

Our secondary objective was to check which probabilistic
approximation (singleton, subset or concept) is the best from
the point of view of rule complexity. The difference between
all three approximations was insignificant.

This paper starts with a discussion on incomplete data in
Section II where we define approximations, attribute-value
blocks and characteristic sets. In Section III, we present
singleton, subset and concept probabilistic approximations
for incomplete data. Section IV contains the details of our
experiments. Finally, conclusions are presented in Section V.

II. INCOMPLETE DATA

Fundamental concepts of rough set theory are standard
lower and upper approximations. A probabilistic approxi-
mation, associated with a probability α, is an extension of
the standard approximation. For α = 1, the probabilistic
approximation is reduced to the lower approximation; for very
small α, it is reduced to the upper approximation. Research
on theoretical properties of probabilistic approximations was
initiated in [4] and then was continued in, e.g., [5]–[9].

Incomplete data sets are analyzed using special approxima-
tions such as singleton, subset and concept [10][11]. Proba-
bilistic approximations, for incomplete data sets and based on
an arbitrary binary relation, were introduced in [12], while first
experimental results using probabilistic approximations were
published in [13]. In experiments reported in this paper, we
used three kinds of probabilistic approximations: singleton,
subset and concept.

We assume that the input data sets are presented in the
form of a decision table. An example of a decision table
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TABLE I
A DECISION TABLE

Attributes Decision

Case Wind Humidity Temperature Trip

1 high low high yes
2 − low ? yes
3 low − high yes
4 − low low yes
5 high high ? no
6 low ? − no
7 high high low no
8 − low low no

is shown in Table I. Rows of the decision table represent
cases, while columns are labeled by variables. The set of all
cases will be denoted by U . In Table I, U = {1, 2, 3, 4,
5, 6, 7, 8}. Independent variables are called attributes and a
dependent variable is called a decision and is denoted by d.
The set of all attributes will be denoted by A. In Table I, A
= {Wind, Humidity, Temperature}. The value for a case x and
an attribute a will be denoted by a(x).

In this paper, we distinguish between two interpretations
of missing attribute values: lost values, denoted by “?” and
attribute-concept values, denoted by “−” [14][15]. Table I
presents an incomplete data set affected by both lost values
and attribute-concept values.

One of the most important ideas of rough set theory [16] is
an indiscernibility relation, defined for complete data sets. Let
B be a nonempty subset of A. The indiscernibility relation
R(B) is a relation on U defined for x, y ∈ U as defined in
equation 1.

(x, y) ∈ R(B) if and only if ∀a ∈ B (a(x) = a(y)) (1)

The indiscernibility relation R(B) is an equivalence rela-
tion. Equivalence classes of R(B) are called elementary sets
of B and are denoted by [x]B . A subset of U is called B-
definable if it is a union of elementary sets of B.

The set X of all cases defined by the same value of
the decision d is called a concept. For example, a concept
associated with the value yes of the decision Trip is the set {1,
2, 3, 4}. The largest B-definable set contained in X is called
the B-lower approximation of X , denoted by appr

B
(X), and

defined in equation 2.

∪{[x]B | [x]B ⊆ X} (2)

The smallest B-definable set containing X , denoted by
apprB(X) is called the B-upper approximation of X , and is
defined in equation 3.

∪{[x]B | [x]B ∩X 6= ∅} (3)

For a variable a and its value v, (a, v) is called a variable-
value pair. A block of (a, v), denoted by [(a, v)], is the set
{x ∈ U | a(x) = v} [17]. For incomplete decision tables the

definition of a block of an attribute-value pair is modified in
the following way.
• If for an attribute a there exists a case x such that a(x) =

?, i.e., the corresponding value is lost, then the case x
should not be included in any blocks [(a, v)] for all values
v of attribute a,

• If for an attribute a there exists a case x such that
the corresponding value is an attribute-concept value,
i.e., a(x) = −, then the corresponding case x should
be included in blocks [(a, v)] for all specified values
v ∈ V (x, a) of attribute a, where V (x, a) is defined by
equation 4.

V (x, a) =

{a(y) | a(y) is specified , y ∈ U, d(y) = d(x)} (4)

For the data set from Table I, we have
V (2,Wind) = {low, high}, V (3, Humidity) = {low},
V (4,Wind) = {low, high}, V (6, T emperature) = {low}
and V (8,Wind) = {low, high}.

For the data set from Table I the blocks of attribute-value
pairs are:

[(Wind, low)] = {2, 3, 4, 6, 8},
[(Wind, high)] = {1, 2, 4, 5, 7, 8},
[(Humidity, low)] = {1, 2, 3, 4, 8},
[(Humidity, high)] = {5, 7},
[(Temperature, low)] = {4, 6, 7, 8}, and
[(Temperature, high)] = {1, 3}.
For a case x ∈ U and B ⊆ A, the characteristic set KB(x)

is defined as the intersection of the sets K(x, a), for all a ∈ B,
where the set K(x, a) is defined in the following way:
• If a(x) is specified, then K(x, a) is the block [(a, a(x))]

of attribute a and its value a(x),
• If a(x) =? then the set K(x, a) = U , where U is the set

of all cases,
• If a(x) = −, then the corresponding set K(x, a) is equal

to the union of all blocks of attribute-value pairs (a, v),
where v ∈ V (x, a) if V (x, a) is nonempty. If V (x, a) is
empty, K(x, a) = U .

For Table I and B = A,
KA(1) = {1},
KA(2) = {1, 2, 3, 4, 8},
KA(3) = {3},
KA(4) = {4, 8},
KA(5) = {5, 7},
KA(6) = {4, 6, 8},
KA(7) = {7}, and
KA(8) = {4, 8}.
First we will quote some definitions from [18]. Let X be

a subset of U . The B-singleton lower approximation of X ,
denoted by apprsingleton

B
(X), is defined by equation 5

{x | x ∈ U,KB(x) ⊆ X} (5)

The B-singleton upper approximation of X , denoted by
apprsingletonB (X), is defined by equation 6.

{x | x ∈ U,KB(x) ∩X 6= ∅} (6)
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Fig. 1. Size of the rule set for the Bankruptcy data set

The B-subset lower approximation of X , denoted by
apprsubset

B
(X), is defined by equation 7.

∪ {KB(x) | x ∈ U,KB(x) ⊆ X} (7)

The B-subset upper approximation of X , denoted by
apprsubsetB (X), is defined by equation 8.

∪ {KB(x) | x ∈ U,KB(x) ∩X 6= ∅} (8)

The B-concept lower approximation of X , denoted by
apprconcept

B
(X), is defined by equation 9.

∪ {KB(x) | x ∈ X,KB(x) ⊆ X} (9)

The B-concept upper approximation of X , denoted by
apprconceptB (X), is defined by equation 10.

∪ {KB(x) | x ∈ X,KB(x) ∩X 6= ∅} =
∪ {KB(x) | x ∈ X} (10)

For Table I and X = {5, 6, 7, 8}, all A-singleton, A-subset
and A-concept lower and upper approximations are:
apprsingleton

A
(X) = {5, 7},

apprsingletonA (X) = {2, 4, 5, 6, 7, 8},
apprsubset

A
(X) = {5, 7},

apprsubsetA (X) = U ,
apprconcept

A
(X) = {5, 7},

apprconceptA (X) = {4, 5, 6, 7, 8}.

III. PROBABILISTIC APPROXIMATIONS

In this section we will extend definitions of singleton, subset
and concept approximations to corresponding probabilistic
approximations. A B-singleton probabilistic approximation
of X with the threshold α, 0 < α ≤ 1, denoted by
apprsingletonα,B (X), is defined by equation 11.

{x | x ∈ U, Pr(X | KB(x)) ≥ α} (11)

Here Pr(X | KB(x)) = |X ∩ KB(x)|
|KB(x)| is the conditional

probability of X given KB(x) and |Y | denotes the cardinality
of set Y . A B-subset probabilistic approximation of the set X
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Fig. 2. Size of the rule set for the Breast cancer data set
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Fig. 3. Size of the rule set for the Echocardiogram data set
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Fig. 4. Size of the rule set for the Hepatitis data set

with the threshold α, 0 < α ≤ 1, denoted by apprsubsetα,B (X),
is defined by equation 12.

∪{KB(x) | x ∈ U, Pr(X | KB(x)) ≥ α} (12)

A B-concept probabilistic approximation of the set X with
the threshold α, 0 < α ≤ 1, denoted by apprconceptα,B (X), is
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Fig. 5. Size of the rule set for the Image segmentation data set
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Fig. 6. Size of the rule set for the Iris data set
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Fig. 7. Size of the rule set for the Lymphography data set

defined by equation 13.

∪{KB(x) | x ∈ X, Pr(X | KB(x)) ≥ α} (13)

Note that if α = 1, the probabilistic approximation becomes
the standard lower approximation and if α is small, close to 0,
in our experiments it was 0.001, the same definition describes
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Fig. 8. Size of the rule set for the Wine recognition data set
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Fig. 9. Number of conditions for the Bankruptcy data set

the standard upper approximation.
For Table I and the concept X = [(Trip, yes)] = {1, 2, 3, 4},

there exist the following distinct probabilistic approximations:
apprsingleton1.0,A ({1, 2, 3, 4})= {1, 3},
apprsingleton0.8,A ({1, 2, 3, 4})= {1, 2, 3},
apprsingleton0.5,A ({1, 2, 3, 4})= {1, 2, 3, 4, 8},
apprsingleton0.333,A ({1, 2, 3, 4})= {1, 2, 3, 4, 6, 8},
apprsubset1.0,A ({1, 2, 3, 4})= {1, 3},
apprsubset0.5,A ({1, 2, 3, 4})= {1, 2, 3, 4, 8},
apprsubset0.333,A({1, 2, 3, 4})= {1, 2, 3, 4, 6, 8},
apprconcept1.0,A ({1, 2, 3, 4})= {1, 3},
apprconcept0.333,A({1, 2, 3, 4})= {1, 2, 3, 4, 8},

IV. EXPERIMENTS

Our experiments are based on eight data sets that are
available on the University of California at Irvine Machine
Learning Repository.

For every data set, a template was created. Such a template
was formed by replacing randomly 35% of existing specified
attribute values by lost values. The same template was used for
constructing a corresponding data set with attribute-concept
values, by replacing “?”s with “−”s.
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Fig. 10. Number of conditions for the Breast cancer data set
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Fig. 11. Number of conditions for the Echocardiogram data set
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Fig. 12. Number of conditions for the Hepatitis data set

For any data set we compared the size of rule set and the
total number of conditions in the rule set for two interpreta-
tions of missing attribute values assuming the same type of
probabilistic approximation. We used the Wilcoxon matched-
pairs signed-ranked test with 5% significance level and with
Bonferroni correction for multiple comparisons. In our ex-
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Fig. 13. Number of conditions for the Image segmentation data set
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Fig. 15. Number of conditions for the Lymphography data set

periments, we used the MLEM2 rule induction algorithm of
the Learning from Examples using Rough Sets (LERS) data
mining system [13][19][20]. Results of our experiments are
presented in Figures 1–16.

For rule sets, in all 24 combinations of the type of prob-
abilistic approximation and data set, the size of the rule set

125Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications



20 

40 

60 

80 

100 

120 

140 

160 

180 

0 0.2 0.4 0.6 0.8 1 

C
on

di
tio

n 
co

un
t 

Parameter alpha 

Wine singleton ? Wine singleton - 
Wine subset ? Wine subset - 
Wine concept ? Wine concept - 

Fig. 16. Number of conditions for the Wine recognition data set

was always smaller for attribute-concept values than for lost
values. For the total number of conditions, for the iris data
set and for singleton and concept probabilistic approximations
(Figure 6), the results were statistically inconclusive. For
remaining 22 combinations, the total number of conditions
was always smaller for attribute-concept values than for lost
values.

In six out of the eight data sets, results of our experiments
show some level of variability in the number of rules and
conditions as the parameter alpha changes. However, for
the bankruptcy and echocardiogram data sets, within given
interpretation of missing attribute values, these numbers are
constant for all values of the parameter α. The results for
the bankruptcy and echocardiogram are different from the
results for the remaining six data sets since for the former all
attributes have numeric values while for the latter attributes
are symbolic. For numeric attributes, during rule induction,
the same numeric intervals are created for all possible values
of the parameter α.

V. CONCLUSIONS

As follows from our experiments, the size of rule set was
always smaller for attribute-concept values than for lost values.
The total number of conditions in rule sets was smaller for
attribute-concept values for 22 combinations of the type of data
set and probabilistic approximation (out of 24 combinations
total). In remaining two combinations, the total number of
conditions in rule sets did not differ significantly. Thus, we
claim that attribute-concept values are better than lost values
in terms of rule complexity.

Additionally, results of our experiments show that in induc-
tion of least complex rule sets the difference between all three
probabilistic approximations (singleton, subset and concept)
was not statistically significant.
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