
Near Real-time Synchronization Approach for Heterogeneous Distributed Databases

Hassen Fadoua, Grissa Touzi Amel

LIPAH

FST, University of Tunis El Manar

Tunis, Tunisia

e-mail: hassen.fadoua@gmail.com, amel.touzi@enit.rnu.tn

Abstract—The decentralization of organizational units led to

database distribution in order to solve high availability and

performance issues regarding the highly exhausting consumers

nowadays. The distributed database designers rely on data

replication to make data as near as possible from the

requesting systems. The data replication involves a sensitive

operation to keep data integrity among the distributed

architecture: data synchronization. While this operation is

necessary to almost every distributed system, it needs an in

depth study before deciding which entity to duplicate and

which site will hold the copy. Moreover, the distributed

environment may hold different types of databases adding

another level of complexity to the synchronization process. In

the near real-time duplication process, the synchronization

delay is a crucial criterion that may change depending on

querying trends. This work is intended to establish a standard

synchronization process between different sites of a distributed

database architecture including database heterogeneity,

variable synchronization delays, network capability

restrictions and fault management ability.

Keywords-replication; synchronization; distributed databases;

heterogeneous databases

I. INTRODUCTION

A distributed database system is defined as a collection of

interconnected sites geographically stretched, but logically

related. The design of a distributed database (DDB) may

start from scratch to install a new environment of work. It

may also start from an existing environment of isolated

“data islands”. The bottom-up approach on a distributed

databases design starts with an existing environment

logically separated that must be unified behind a distributed

database system (DDBMS). Throughout this unification

process, many technical and foreign constraints may prevent

the use of the same database system on each site (database

license restriction, available operating systems, etc.). The

resulting distributed architecture is a heterogeneous

environment. A vital feature in such systems is the

synchronization process among the different copies of an

entity. In relational databases, it is always a matter of data

tables updates. However, a table definition may differ from

a DBMS to another. This is the case for data types, for

example. A simple string is not stored and defined in

PostgreSql [18] for example as in Firebird [14]. The blob

data type usually used to store binary files inside a table

column is not available in the list of the existing relational

database management systems (RDBMS). This storage

unit’s variety holds the first problem discussed in this paper:

data exchange format between the heterogeneous nodes in

the same Distributed Database Management System

(DDBMS). The process of transforming raw data from

source system to an exchange format is called serialization.

The reverse operation, executed by the receiver side, is

called deserialization. In the heterogeneous context, the

receiver side is different from one site to another, and thus

the deserialization implementation may vary depending on

the local DBMS. This data serialization is a very sensitive

task that may speed down the synchronization process and

flood the network. Moreover, the data integrity may be

altered if the relation between serialization and

deserialization is not symmetric.

The exhaustive nature of nowadays users also inserts a

new level of complexity toward building a standard

protocol. The user must have one-copy view of the database

and hence the correctness criterion known as 1-Copy

Serializability (1SR). In order to afford the same result

given by a centralized system to the end-users, the duplicate

copies of the physical data must be synchronized in the near

real-time scale between all the nodes. The real-time copy

updates is so far impossible in large scale systems due to

write lock concurrency problems and network latency. A

Delayed update process [8] can solve the issue if the

exchange protocol considers a proper synchronization

interval and reduces the local operation delays. The

Brewer's theorem [11] [17] states that a database cannot

simultaneously guarantee consistency, availability, and

partition tolerance [9]. Thus, to achieve partition tolerance

and availability strong consistency must be sacrificed. The

eventual-consistency mechanism can improve the

availability by providing a weakened consistency for

example.

In this work, we establish an exchange protocol for

duplicate entities in a distributed environment based on a

rotating pivot. This pivot must not be a bottleneck so it does

not block the full process on a single node failure. In such

cases, another pivot or leader will be elected by subscribed

nodes on the synchronization process. The frequency of

exchange operation and the different intervals are studied in

both most pessimistic and most optimistic scenario in order

to suggest the correct value for this protocol.

107Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

mailto:hassen.fadoua@gmail.com

Besides this introduction, this paper includes five

sections. Section 2 describes the different approaches and

their limitations. Section 3 presents the suggested

synchronization protocol. Section 4 details the data

serialization and the deserialization mechanism regarding

network bandwidth consumption and packet preparation

time impact. Section 4 studies the protocol performance on

the most optimistic and pessimistic scenarios. Section 5

reports the experimental tests of the implemented example

and discusses different aspects of the result. Section 6

summarizes the result of this work and opens the future

perspectives for it.

II. RELATED WORKS

A. Distributed databases synchronization

Along with the spread of distributed database systems,

many strategies were adopted by designers in order to keep

the distributed copies of an entity up-to-date. We are not

going to deal with the plain synchronization protocols such

as SyncML [15] and DRBDB because they better fit files

synchronization [19]. In any database, synchronizing data

files does not necessary ensure that the user will have the

same view of data. This fact is due to the programmatic

nature of a DBMS: Any update must be traced either in the

transaction manager history or the archive log and

maintained in a memory registry. As a consequence, a flat

copy of data files may corrupt the database.

The implemented approaches may be divided into two

classes: optimistic and pessimistic. The pessimistic family

operates as Read-One-Write-All (ROWA) [12]. If any site

from the topology is not available, the update will not be

written to any site. This is the main reason behind

considering this family as pessimistic. The processing

method replicates eagerly on all sites. The read operation

can be done from any replicated copy but the write

operation must be executed at all replicas [21].

In contrast, the optimistic class holds the Read-One-

Write-All Available (ROWA-A) [1] family. This class of

algorithms offers a flexible strategy regarding fault

tolerance, providing more flexibility in presence of failures.

Any site can read any replicated copy, but writes to all

available replicas (if any site is not available ROWA cannot

proceed but ROWA-A will still continue with write).

The exhausting consumers and the huge amounts of data

are still the main challenges. Dispatching the effort between

different nodes in a distributed architecture has shown a

good performance but data consistency does always matter

as the synchronization process implies huge efforts in active

mode (all the nodes access data in read/write mode). Hence,

we introduce a new protocol to solve the replica

synchronization problems in a distributed environment.

B. Serialization process

The serialization process in the context of our approach

may be defined as the metamorphosis of raw data from the

local database format to a universal format that preserves

the original information and can be processed by the

symmetric reverse operation. Much work has been invested

in this task. The old exchange protocols were inefficient

especially from a performance point of view [9]. Google

invested in Protocol Buffer and made it open source since

2007(under Berkeley Software Distribution license) [6]. The

apache community is also maintaining the great THRIFT

project [10] initially started in the Facebook labs. Both

technologies offer a good performance regarding

serialization and deserialization time [3], quite better than

plain Extensible Markup Language (XML) exchange

protocols [7]. Moreover, the binary format of Thrift and

ProtoBuf packets reduce drastically the bandwidth

consumption in a network without altering processing time.

III. THE DSYNC APPROACH

In this work, we introduce a new approach acting on the

applicative layer. Each successful operation executed to a

local database on a domain object is kept inside a queue.

Each node has its own queue (Figure 1). A dynamically

chosen node (the master) leads the objects’ exchange

protocol in a way to propagate all the queues items to all the

subscribed servers. This particular node also acts as a man-

in-the-middle [22] in network hacking context. The

exchange protocol is a set of scheduled events as in [4] and

[5], triggered either in the leader side or in the secondary

nodes (clients).

Figure 1. Dsync based approach

A. Dynamic Leader Node election

The leader node is a single network entity chosen by all

other entities to coordinate, organize, initiate and sequence

different tasks among the distributed architecture. This node

simplifies updates propagation over the distributed

topology. However, it creates a single point of failure as a

108Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

leader hang will limit the synchronization service [16].

Thus, electing this specific node dynamically provides a

solution for the single point of failure.

Several algorithms (LeLann-Chang-Roberts, Hirschberg

and Sinclair) were elaborated to establish the most efficient

method for election [2]. In this work, we can consider a new

facility to accelerate the election process. In a distributed

database context, adding nodes is not executed as often as in

a mobile network for example. To add a server in a

distributed context, many settings must be prepared before

adding a backup or a rescue server to the architecture. In the

configuration process, each server is given, manually, a

unique identifier over the network (may be its IP address)

and a sequence number (SN). The server with the lowest SN

is the most eligible server to be the leader (Figure 2). The

“Leader” election procedure is executed during the system

initialization and on the current leader failure. The failure

condition is relative to the distributed application context. In

this work, we consider the first communication problem for

all the nodes as a leader failure. When a node joins the

network with an active synchronization service, the leader

node information is given arbitrarily targeting any reachable

node on the distributed architecture. On the first inquiry, if

the described node is the active leader node, the new server

saves the information. The leader adds the new server to the

topology and propagates the information to the rest of the

nodes. If the target server is not the active leader, the answer

is rerouting the new node to the correct leader.

The complete topology is held by every node and is

synchronized on real time. Thus, on leader node failure, the

successor is automatically elected based on the SN criteria.

A minimal node object is described by its SN, an access

URL (protocol, IP, port, root context), the synchronization

objects contract, items to generate and the last

synchronization items treated on initialization. The

synchronization objects’ contract is the list of items to

which the node is configured to listen for synchronization.

A node can subscribe to all the items updates or limit its

subscription to some items only. In the other side of the

contract, the node is asked to generate a list of changes for

all the nodes of the topology.

Algorithm 1 : Dynamic Leader Node Election on plug

Require: Predefined Leader List LL, ordered by weight

1. L ← send_join_query(L.get_first(), current_node)

2. If(L is NULL)

a. While ((LL.has_next()) and (L is NULL))

i. Li ← LL.get_next()

ii. L ← send_join_query(Li, current_node)

3. If (L is NULL)

a. L ← current_node

Figure 2. Dynamic Leader Node Election Algorithm on plug

B. Secondary nodes subscription

After adding a server to the network, the new node can

ask for registration on the synchronization service. This

query may be achieved via a public web service exposed by

every node [20]. The subscription query is sent to the active

leader including the server unique identifier and the desired

items for synchronization. The leader acknowledges the new

node by the result of its subscription and if the

synchronization contract contains a new entity to

synchronize, it is added to the list of synchronization data

for generation (Figure 3).

Algorithm 2 : Secondary Node Subscription

Require: Leader Node L, a subscription contract ctr, a

node definition Ni

1. contract ← handle_subscription_query(L, Ni, ctr)

2. new_items ← diff(contract.sync_entities,

L.get_sync_entities())

3. if(new_items is not NULL)

a. add(new_items,L.get_sync_entities)

b. propagate_changes(new_items)

Figure 3. Secondary Node Subscription Algorithm

C. Synchronization data generation

In this work, an exchanged message containing a record

update is called “Dsync”. A Dsync holds the serialized

object in its latest state, the source server of the update and a

timestamp. The detailed specification of the Dsync is

summarized after the synchronization process specification.

Each entity on the database must be represented in the

application level by a Dsync custom implementation. Only

the serialization process will differ from an entity to

another. Dsyncs are generated on a record creation, update

or delete. The created Dsyncs are persisted in a database

queue to ensure an acceptable level of traceability and allow

the reconstruction process after a critical failure. By making

the queue persistent, the system administrator is able to

restore the database state based on a checkpoint and then

execute all the “Dsyncs” correctly after fixing the problem

that caused the hang or the failure.

D. Dsync execution

Periodically (every DEX milliseconds), an integration

process will collect the non-processed hits from the “Dsync”

table (the queue) where the source server is different from

the requesting server itself. “Dsync” processing is always in

timestamp order. The same applicative procedure used on

each server will be used to perform insert, update and

delete. It is essential to perform all those actions using the

same applicative procedure and not directly using the

database triggers.

109Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

The deserialization process impact is observed mainly in

this step. Serializing data may be efficient and very fast, but

transforming the binary data to an adapted copy of original

information may add a considerable duration to each

exchange sequence. This is especially true when lots of

format conversion is needed to transform a field from the

source node format to the target database format.

Figure 4. Sample synchronization workflow in the Dsync approach

E. Dsync exchange protocol

The running queries on the network in the established

communication protocol can be divided into two groups:

Leader initiated and Slave initiated. In Figure 4, the leader

initiated calls are represented in green color (a, b). The

slave’s initiated ones appear in red color (i, ii). A local

synchronization call is traced in black (1,2,3) and described

in Figure 7 (Algorithm 5). Finally, the call number (4) is a

Dsync execution command.

F. Leader initiated workflow

Periodically (each Leader Node Delay DLN), the leader

node sends queries to all the subscribed nodes asking for

any updates (Figure 5). When a slave node receives a query

from the leader, it fetches eligible “Dsyncs” from its

database. To avoid flooding the network, the maximum

number of “Dsyncs” to send in one response is a custom

configuration value (Maximum Packet Size MPS). An

eligible “Dsync” to send to the leader is any locally

generated “Dsync” (source server is the current node). On

leader response handling, the “Dsyncs” are saved into the

main queue ordered by timestamp. The leader then

acknowledges the source server by accepted items. Rejected

line processing is discussed in the subsection (III.H). The

accepted items are flagged as transferred to the leader on the

source server queue (Figure 6).

Algorithm 3 : Leader RFN – CRON- triggered

Require: Subscribed Nodes List LL

1. for (Li in LL)

a. serialized_packet ← request_for_updates(Li)

b. updated_rows_ Ii← deserialize(serialized_packet)

c. updated_rows.append(updated_rows_ i)

d. ACK(Li,updated_rows_i.size())

2. end For

3. arrange_Items_by_timestamp(updated_rows)

4. save(updated_rows)

Figure 5. Leader RFN – CRON- triggered Algorithm

Algorithm 4 : Slave Request Processing (SRPi)

Require:

1. updated_rows ←Fetch at most MPS rows from local

Dsync where “target server ids” contains L.getId()

and “ source node” equals S.getId()

2. packet_to_send ←serialize (updated_rows)

3. ack←answer_leader(packet_to_send)

4. if(ack.count() equals updated_rows.count())

a. mark_as_delivered(updated_rows)

Figure 6. Sample synchronization workflow in the Dsync approach

G. Slaves initiated workflow

Periodically (each Secondary Node Delay DSN), a slave

asks the leader server for related updates (Figure 7). When

the leader receives this type of queries, it fetches from

database the Dsyncs that were not generated by the querying

slave, not yet communicated to it and already mentioned in

its subscription contract (Figure 8). The subscription

contract holds the entity names that must be synchronized

with a server. The leader responses must not hold more than

MPS Dsyncs. When the agent receives the response from

the leader, it persists them into its queue and acknowledges

the server by the successfully received items. The non-

leader node flags the successful Dsyncs as transferred to the

leader with a timestamp. The obvious scenarios would be

removing them from the queue in order to keep it in a

workable size. In this scenario, it is advised to keep this

queue as long as possible in order to restore the whole

system in case of functional failure.

Algorithm 5 : Slave RFN – CRON- triggered

Require: Slave Node S

1. serialized_packet ← request_for_updates(S)

2. updated_rows← deserialize(serialized_packet)

3. ACK(L,updated_rows.size())

4. arrange_Items_by_timestamp(updated_rows)

5. mark_as_processed(updated_rows, false)

6. save(updated_rows)

Figure 7. Slave RFN – CRON- triggered Algorithm

Algorithm 6 : Leader Request Processing

Require: Slave Node S

5. updated_rows ←Fetch at most MPS rows from local

110Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Dsync where “target server ids” contains S.getId()

6. packet_to_send ←serialize (updated_rows)

7. ack←answer_agent(packet_to_send)

8. if(ack.count() equals updated_rows.count())

a. mark_as_delivered(updated_rows)

Figure 8. Leader Request Processing Algorithm

The mark_as_delivered function updates the target servers

IDs field to remove the node that acknowledged the

reception of this item. We denote the processing duration

for an update query “Persi”. The Dsync object can be

described by this minimal list of attributes:

 Source Node ID: The id of the server where the

Dsync was generated.

 Serialized Data: The content of the object to

propagate (last state).

 Generation timestamp: The moment when the

Dsync was generated.

 Delivery timestamp: The timestamp when the

Dsync reached a node.

 Processing timestamp: The timestamp just after

Dsync processing

 Target server Ids: Comma separated list of

separated servers IDs.

 Processed: indicates whether the Dsync was

integrated onto database or not

 Operation Type: INSERT, UPDATE, DELETE

 Target Domain Object: Name of the target object

H. Fault Management

The application has two functional modes: permissive

and strict mode. In the permissive mode, the principle is to

ignore and continue. In the strict mode, the synchronization

is suspended on the first failure. The leader is informed by

the problem. The protocol recommends a data destructive

behavior and all the updates after the rollback checkpoint

(failure item) are erased [11].

IV. SYNC INTERVALS EVALUATION

Several terms are considered in order to calculate the

propagation delay over the whole topology in the most

pessimistic and the most optimistic scenario. In the first

scenario, in a topology made of N nodes, the propagation

delay is :

T0 + DLN + DSN + (N * SRPi) + ND + DEX +Persi

where ND is the network delay introduced.

A : T0

 B : dt

C : N x Pti

D : dt

E :Dex

 F : Persisti

t+

Figure 9. Dsync lifecycle steps and time evaluation

The steps of the exchange operation (Figure 9) can be

described as:

A: Sending update requests to the leader from all the

subscribed servers.

B: Network latency.

C: Packet making duration required by the server.

D: Network Latency.

E: Dsync processing trigger interval.

F: Dsync processing time.

This delay equation may be reduced to:

Dmax=C+E+F

In the most pessimistic scenario, the maximum duration to

propagate a change to all the topology is Dmax. This result is

considerable because it does not depend on network size.

V. IMPLEMENTATION AND EVALUATION

In this section, we describe the implementation of the Dsync

protocol and discuss the experimental results in a test

environment.

A. Implementation

We implemented the prototype running the Dsync

protocol as a web application using Java 7 backend (Spring

Framework, JSF, Quartz API). The transport protocol is

HTTP1.1. The benchmark is a telecom operator directory

database. The simulated use case describes the

synchronization of all clients’ information between the

different systems of the operator. For example, if the

technical team installed a new phone land line for a client,

this telephone number must be available to the different

contributors as soon as possible (directory service, billing,

marketing, etc). The definition of “as soon as possible”

varies between the different systems depending on their

criticality. The more a system is critical, the smaller a server

DSN must be. We consider the billing system as the most

critical system, and thus DSN was defined to 2 seconds. The

leader node packet size is set up to 500 Dsyncs. The current

topology holds four (4) nodes with different RDBMS

behind: Oracle 11g, MySQL 6, Firebird 2 and PostgreSQL

9. The four nodes are virtual machines (VM Player)

distributed between two physical servers (laptops with i7

CPU and 8GB of memory). To simulate a realistic load, we

proceeded in 3 steps. The first step starts with a pre-filled

database with 1 million rows in the leader node, and empty

databases for the three other nodes. To synchronize the rest

of the nodes, a thread generates every 5 seconds 10000

dsyncs with “INSERT” in the operation type field. The three

nodes are subscribed for the synchronization of the

generated object in the leader. Once the four databases are

filled with all the records, we built a SQL script to update

addresses of 100000 rows and generated the “UPDATE”

Dsyncs on each slave node. Once we reached a distributed

synchronization state, we shutdown the initial leader and we

generated 1000 delete dsyncs on each node. The purpose of

111Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

shutting down the initial leader node is to test the leader

node election process. In this small topology, the result was

not significant as the operation took only 12 seconds.

The watched parameters are the Dsync propagation duration

(from Generation timestamp to Processing timestamp), the

bandwidth consumption, CPU consuming percentage.

B. Experimental result evaluation

The raw results were tuned on the smallest DSN (2s) for

presentation purposes only. The synchronization delay was

almost invisible in Figure 10 scale. Axis value unit is

seconds. Figure 10 shows the arrival time of the Dsyncs to

the three subscribed nodes. “Dsync gen” curve is the

generation time for each Dsync in the source node (leader).

The combination of DSN and the packet size for the “most

critical node” results into an acceptable synchronization

delay (< 50s). For non critical systems, we set the DSN to 5

seconds with a packet size (MPS) of 500 Dsyncs. The

propagation delay kept growing in time as the awaiting

Dsyncs count in the stack grows on each Dsync generation

interval. However, a distinct analysis of the running threads

on the leader shows minimal CPU time. The consumed

bandwidth is the lowest targeting the less critical system.

Figure 10. Experimental Result (tuned)

Figure 11 shows the different evaluation parameters and

the experimental relation between the memory usage, the

CPU time, the consumed bandwidth and the synchronization

delay. The applied DSN may be obsolete in a powerful

production environment, but we are limited with material

constraints. Real server may go further with smaller DSN

values and bigger packet size (MPS). The resulting protocol

is an easy to deploy solution that offers a distributed

database synchronization service where the user 1SR

condition is ensured even in heterogeneous context. The

solution is highly scalable and can be adopted even in

heterogeneous environments. In addition to basic process,

the protocol offers many custom services depending on the

nodes’ subscription contracts: A node can be subscribed to a

subset of items only and not all domain objects (very helpful

in distributed databases).

Figure 11. Watched parameters for different configurations

VI. CONCLUSION AND FUTURE WORK

The processing delays are fully customizable to be

adapted to client network performances and capabilities.

The bandwidth can be controlled too by setting the

maximum size of items’ package (queue items). The two

key features in this system are 1) the completeness of the

solution as no extra product licenses are needed (database

synchronization tools are very expensive) and 2) the

bottleneck free topology as main node can be quickly

ignored on fault detection. The system is also fault tolerant

and the recovery process does not need extra calculation

(rollback back to the first error detected).

Further work will cover the serialization process in order

to reduce packet sizes and lower consumed bandwidth. The

serialization process also must be associated with a

universal database access in order to overcome the diversity

constraint in heterogeneous environment.

REFERENCES

[1] A. Ghaffari, N. Chechina, P. Trinder, and J. Meredith,

“Scalable persistent storage for Erlang,” in Proceedings of the
twelfth ACM SIGPLAN workshop on Erlang - Erlang ’13,
2013, pp. 73–74.

[2] A. Iványi, “Leader election in synchronous networks,” Acta
Univ. Sapientiae, Math., vol. 5, no. 1, pp. 54–1, Jan. 2013.

[3] A. Sumaray and S. K. Makki, “A comparison of data
serialization formats for optimal efficiency on a mobile
platform,” in Proceedings of the 6th International Conference
on Ubiquitous Information Management and Communication
- ICUIMC ’12, 2012, pp. 48:1–48:6.

[4] C. M. Krishna, “Fault-tolerant scheduling in homogeneous
real-time systems,” ACM Comput. Surv., vol. 46, no. 4, pp.
1–34, Mar. 2014.

[5] F. Meyer, B. Etzlinger, F. Hlawatsch, and A. Springer, “A
distributed particle-based belief propagation algorithm for

112Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

cooperative simultaneous localization and synchronization,”
in 2013 Asilomar Conference on Signals, Systems and
Computers, 2013, pp. 527–531.

[6] G. Kaur and M. M. Fuad, “An evaluation of Protocol Buffer,”
in Proceedings of the IEEE SoutheastCon 2010
(SoutheastCon), 2010, pp. 459–462.

[7] J. Delgado, “Service interoperability in the Internet of
Things,” Stud. Comput. Intell., vol. 460, pp. 51–87, 2013..

[8] M. M. Elbushra and J. Lindström, “Eventual Consistent
Databases: State of the Art,” Open J. Databases, vol. 1, no. 1,
pp. 26–41, 2014.

[9] M. Raynal, Distributed Algorithms for Message-Passing
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013.

[10] M. Slee, A. Agarwal, and M. Kwiatkowski, “Thrift: Scalable
cross-language services implementation,” Facebook White
Paper, 2007. [Online]. Available:
http://trillian42.homelinux.org/dir/pdfs/thrift-20070401.pdf.
[Retrieved: April, 2015].

[11] M. Stonebraker, “Errors in database systems, eventual
consistency, and the cap theorem,” Communications of the
ACM, BLOG@ ACM, 2010. [Online]. Available:
http://db.cs.berkeley.edu/cs286/papers/errors-
cacmblog2010.pdf. [Retrieved: April, 2015].

[12] N. Ahmad, R. M. Sidek, M. F. J. Klaib, and T. L. Jayan, “A
Novel Algorithm of Managing Replication and Transaction
through Read-one-Write-All Monitoring Synchronization
Transaction System (ROWA-MSTS),” in 2010 Second
International Conference on Network Applications, Protocols
and Services, 2010, pp. 20–25.

[13] O. Kononenko, O. Baysal, R. Holmes, and M. W. Godfrey,
“Mining modern repositories with elasticsearch,” Proc. 11th
Work. Conf. Min. Softw. Repos. - MSR 2014, pp. 328–331,
2014.

[14] P. Vinkenoog, “Firebird SQL.” [Online]. Available:
http://www.firebirdsql.org/manual/qsg10-firebird-sql.html.
[Accessed: 04-May-2015].

[15] S. Chun, S. Lee, and D. Oh, “Formal verification of SyncML
protocol for ubiquitous data coherence,” in Lecture Notes in
Electrical Engineering, 2013, vol. 214 LNEE, pp. 415–422..

[16] S. Eken, F. Kaya, Z. Ilhan, A. Sayar, A. Kavak, U. Kocasarac,
and S. Sahin, “Analyzing distributed file synchronization
techniques for educational data,” in 2013 International
Conference on Electronics, Computer and Computation
(ICECCO), 2013, pp. 318–321..

[17] S. Gilbert and N. Lynch, “Perspectives on the CAP
Theorem,” Computer, vol. 45, no. 2. pp. 30–36, 2012.

[18] T. G. Lockhart, “PostgreSQL: Documentation: 8.1: Character
Types.” [Online]. Available:
http://www.postgresql.org/docs/8.1/static/datatype-
character.html. [Retrieved: 04-May-2015].

[19] W. Guo, F. Liu, Z. Q. Zhao, and C. Wu, “Method and
apparatus for efficient memory replication for high
availability (HA) protection of a virtual machine (VM).” 02-
Apr-2013.

[20] W. Zhao and Z. Xiaohong, “The Transaction Processing of
Heterogeneous Databases Application in Web Service,” 2012,
vol. 289, pp. 140–147.

[21] Y. Tang, H. Gao, W. Zou, and J. Kurths, “Distributed
synchronization in networks of agent systems with
nonlinearities and random switchings,” IEEE Trans. Cybern.,
vol. 43, no. 1, pp. 358–370, 2013.

[22] Y. Wang and Y. Li, “Heterogeneous Data Sources
Synchronization Based on Man-in-the-Middle Attack,” Proc.
4th Int. Conf. Comput. Eng. Networks, pp. 467–476, 2015.

113Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

