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Abstract—The decentralization of organizational units led to 

database distribution in order to solve high availability and 

performance issues regarding the highly exhausting consumers 

nowadays. The distributed database designers rely on data 

replication to make data as near as possible from the 

requesting systems. The data replication involves a sensitive 

operation to keep data integrity among the distributed 

architecture: data synchronization. While this operation is 

necessary to almost every distributed system, it needs an in 

depth study before deciding which entity to duplicate and 

which site will hold the copy. Moreover, the distributed 

environment may hold different types of databases adding 

another level of complexity to the synchronization process. In 

the near real-time duplication process, the synchronization 

delay is a crucial criterion that may change depending on 

querying trends. This work is intended to establish a standard 

synchronization process between different sites of a distributed 

database architecture including database heterogeneity, 

variable synchronization delays, network capability 

restrictions and fault management ability. 

 

Keywords-replication; synchronization; distributed databases; 

heterogeneous databases 

 

I. INTRODUCTION 

A distributed database system is defined as a collection of 

interconnected sites geographically stretched, but logically 

related. The design of a distributed database (DDB) may 

start from scratch to install a new environment of work. It 

may also start from an existing environment of isolated 

“data islands”.  The bottom-up approach on a distributed 

databases design starts with an existing environment 

logically separated that must be unified behind a distributed 

database system (DDBMS). Throughout this unification 

process, many technical and foreign constraints may prevent 

the use of the same database system on each site (database 

license restriction, available operating systems, etc.). The 

resulting distributed architecture is a heterogeneous 

environment. A vital feature in such systems is the 

synchronization process among the different copies of an 

entity. In relational databases, it is always a matter of data 

tables updates. However, a table definition may differ from 

a DBMS to another. This is the case for data types, for 

example. A simple string is not stored and defined in 

PostgreSql [18] for example as in Firebird [14]. The blob 

data type usually used to store binary files inside a table 

column is not available in the list of the existing relational 

database management systems (RDBMS). This storage 

unit’s variety holds the first problem discussed in this paper: 

data exchange format between the heterogeneous nodes in 

the same Distributed Database Management System 

(DDBMS). The process of transforming raw data from 

source system to an exchange format is called serialization. 

The reverse operation, executed by the receiver side, is 

called deserialization. In the heterogeneous context, the 

receiver side is different from one site to another, and thus 

the deserialization implementation may vary depending on 

the local DBMS. This data serialization is a very sensitive 

task that may speed down the synchronization process and 

flood the network. Moreover, the data integrity may be 

altered if the relation between serialization and 

deserialization is not symmetric. 

The exhaustive nature of nowadays users also inserts a 

new level of complexity toward building a standard 

protocol. The user must have one-copy view of the database 

and hence the correctness criterion known as 1-Copy 

Serializability (1SR). In order to afford the same result 

given by a centralized system to the end-users, the duplicate 

copies of the physical data must be synchronized in the near 

real-time scale between all the nodes. The real-time copy 

updates is so far impossible in large scale systems due to 

write lock concurrency problems and network latency. A 

Delayed update process [8] can solve the issue if the 

exchange protocol considers a proper synchronization 

interval and reduces the local operation delays. The 

Brewer's theorem [11] [17] states that a database cannot 

simultaneously guarantee consistency, availability, and 

partition tolerance [9]. Thus, to achieve partition tolerance 

and availability strong consistency must be sacrificed. The 

eventual-consistency mechanism can improve the 

availability by providing a weakened consistency for 

example. 

In this work, we establish an exchange protocol for 

duplicate entities in a distributed environment based on a 

rotating pivot. This pivot must not be a bottleneck so it does 

not block the full process on a single node failure. In such 

cases, another pivot or leader will be elected by subscribed 

nodes on the synchronization process. The frequency of 

exchange operation and the different intervals are studied in 

both most pessimistic and most optimistic scenario in order 

to suggest the correct value for this protocol.  
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Besides this introduction, this paper includes five 

sections. Section 2 describes the different approaches and 

their limitations. Section 3 presents the suggested 

synchronization protocol. Section 4 details the data 

serialization and the deserialization mechanism regarding 

network bandwidth consumption and packet preparation 

time impact. Section 4 studies the protocol performance on 

the most optimistic and pessimistic scenarios. Section 5 

reports the experimental tests of the implemented example 

and discusses different aspects of the result. Section 6 

summarizes the result of this work and opens the future 

perspectives for it. 

II. RELATED WORKS 

A. Distributed databases synchronization 

Along with the spread of distributed database systems, 

many strategies were adopted by designers in order to keep 

the distributed copies of an entity up-to-date. We are not 

going to deal with the plain synchronization protocols such 

as SyncML [15] and DRBDB because they better fit files 

synchronization [19]. In any database, synchronizing data 

files does not necessary ensure that the user will have the 

same view of data. This fact is due to the programmatic 

nature of a DBMS: Any update must be traced either in the 

transaction manager history or the archive log and 

maintained in a memory registry.  As a consequence, a flat 

copy of data files may corrupt the database.  

The implemented approaches may be divided into two 

classes: optimistic and pessimistic. The pessimistic family 

operates as Read-One-Write-All (ROWA) [12]. If any site 

from the topology is not available, the update will not be 

written to any site. This is the main reason behind 

considering this family as pessimistic. The processing 

method replicates eagerly on all sites. The read operation 

can be done from any replicated copy but the write 

operation must be executed at all replicas [21]. 

In contrast, the optimistic class holds the Read-One-

Write-All Available (ROWA-A) [1] family. This class of 

algorithms offers a flexible strategy regarding fault 

tolerance, providing more flexibility in presence of failures. 

Any site can read any replicated copy, but writes to all 

available replicas (if any site is not available ROWA cannot 

proceed but ROWA-A will still continue with write). 

The exhausting consumers and the huge amounts of data 

are still the main challenges. Dispatching the effort between 

different nodes in a distributed architecture has shown a 

good performance but data consistency does always matter 

as the synchronization process implies huge efforts in active 

mode (all the nodes access data in read/write mode).  Hence, 

we introduce a new protocol to solve the replica 

synchronization problems in a distributed environment. 

 

B. Serialization process 

The serialization process in the context of our approach 

may be defined as the metamorphosis of raw data from the 

local database format to a universal format that preserves 

the original information and can be processed by the 

symmetric reverse operation. Much work has been invested 

in this task. The old exchange protocols were inefficient 

especially from a performance point of view [9]. Google 

invested in Protocol Buffer and made it open source since 

2007(under Berkeley Software Distribution license) [6]. The 

apache community is also maintaining the great THRIFT 

project [10] initially started in the Facebook labs.  Both 

technologies offer a good performance regarding 

serialization and deserialization time [3], quite better than 

plain Extensible Markup Language (XML) exchange 

protocols [7]. Moreover, the binary format of Thrift and 

ProtoBuf packets reduce drastically the bandwidth 

consumption in a network without altering processing time. 

III. THE DSYNC APPROACH 

In this work, we introduce a new approach acting on the 

applicative layer. Each successful operation executed to a 

local database on a domain object is kept inside a queue. 

Each node has its own queue (Figure 1). A dynamically 

chosen node (the master) leads the objects’ exchange 

protocol in a way to propagate all the queues items to all the 

subscribed servers. This particular node also acts as a man-

in-the-middle [22] in network hacking context. The 

exchange protocol is a set of scheduled events as in [4] and 

[5], triggered either in the leader side or in the secondary 

nodes (clients). 

 

 
 

Figure 1.  Dsync based approach 

 

A. Dynamic Leader Node election 

The leader node is a single network entity chosen by all 

other entities to coordinate, organize, initiate and sequence 

different tasks among the distributed architecture. This node 

simplifies updates propagation over the distributed 

topology. However, it creates a single point of failure as a 
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leader hang will limit the synchronization service [16]. 

Thus, electing this specific node dynamically provides a 

solution for the single point of failure.  

Several algorithms (LeLann-Chang-Roberts, Hirschberg 

and Sinclair) were elaborated to establish the most efficient 

method for election [2]. In this work, we can consider a new 

facility to accelerate the election process. In a distributed 

database context, adding nodes is not executed as often as in 

a mobile network for example. To add a server in a 

distributed context, many settings must be prepared before 

adding a backup or a rescue server to the architecture. In the 

configuration process, each server is given, manually, a 

unique identifier over the network (may be its IP address) 

and a sequence number (SN). The server with the lowest SN 

is the most eligible server to be the leader (Figure 2). The 

“Leader” election procedure is executed during the system 

initialization and on the current leader failure. The failure 

condition is relative to the distributed application context. In 

this work, we consider the first communication problem for 

all the nodes as a leader failure. When a node joins the 

network with an active synchronization service, the leader 

node information is given arbitrarily targeting any reachable 

node on the distributed architecture.  On the first inquiry, if 

the described node is the active leader node, the new server 

saves the information. The leader adds the new server to the 

topology and propagates the information to the rest of the 

nodes. If the target server is not the active leader, the answer 

is rerouting the new node to the correct leader. 

The complete topology is held by every node and is 

synchronized on real time. Thus, on leader node failure, the 

successor is automatically elected based on the SN criteria. 

A minimal node object is described by its SN, an access 

URL (protocol, IP, port, root context), the synchronization 

objects contract, items to generate and the last 

synchronization items treated on initialization. The 

synchronization objects’ contract is the list of items to 

which the node is configured to listen for synchronization. 

A node can subscribe to all the items updates or limit its 

subscription to some items only. In the other side of the 

contract, the node is asked to generate a list of changes for 

all the nodes of the topology.   

 

Algorithm 1 : Dynamic Leader Node Election on plug 

Require: Predefined Leader List LL, ordered by weight 

 

1. L ← send_join_query(L.get_first(), current_node) 

2. If(L is NULL) 

a. While (( LL.has_next()) and  (L is NULL)) 

i. Li ←  LL.get_next() 

ii. L ← send_join_query(Li, current_node) 

3. If (L is NULL) 

a. L  ← current_node 

 

Figure 2. Dynamic Leader Node Election Algorithm on plug 

B. Secondary nodes subscription 

After adding a server to the network, the new node can 

ask for registration on the synchronization service. This 

query may be achieved via a public web service exposed by 

every node [20]. The subscription query is sent to the active 

leader including the server unique identifier and the desired 

items for synchronization. The leader acknowledges the new 

node by the result of its subscription and if the 

synchronization contract contains a new entity to 

synchronize, it is added to the list of synchronization data 

for generation (Figure 3).  

 

Algorithm 2 : Secondary Node Subscription 

Require: Leader Node L, a subscription contract ctr, a 

node definition Ni 

 

1. contract ← handle_subscription_query(L, Ni, ctr) 

2. new_items  ←  diff(contract.sync_entities, 

L.get_sync_entities()) 

3. if(new_items is not NULL) 

a. add(new_items,L.get_sync_entities) 

b. propagate_changes(new_items) 

 

Figure 3. Secondary Node Subscription Algorithm 

C. Synchronization data generation 

In this work, an exchanged message containing a record 

update is called “Dsync”. A Dsync holds the serialized 

object in its latest state, the source server of the update and a 

timestamp. The detailed specification of the Dsync is 

summarized after the synchronization process specification. 

Each entity on the database must be represented in the 

application level by a Dsync custom implementation. Only 

the serialization process will differ from an entity to 

another. Dsyncs are generated on a record creation, update 

or delete. The created Dsyncs are persisted in a database 

queue to ensure an acceptable level of traceability and allow 

the reconstruction process after a critical failure. By making 

the queue persistent, the system administrator is able to 

restore the database state based on a checkpoint and then 

execute all the “Dsyncs” correctly after fixing the problem 

that caused the hang or the failure.  

 

D. Dsync execution 

Periodically (every DEX milliseconds), an integration 

process will collect the non-processed hits from the “Dsync” 

table (the queue) where the source server is different from 

the requesting server itself. “Dsync” processing is always in 

timestamp order. The same applicative procedure used on 

each server will be used to perform insert, update and 

delete. It is essential to perform all those actions using the 

same applicative procedure and not directly using the 

database triggers.  
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The deserialization process impact is observed mainly in 

this step. Serializing data may be efficient and very fast, but 

transforming the binary data to an adapted copy of original 

information may add a considerable duration to each 

exchange sequence. This is especially true when lots of 

format conversion is needed to transform a field from the 

source node format to the target database format. 

 

 
 

Figure 4. Sample synchronization workflow in the Dsync approach 

E. Dsync exchange protocol 

The running queries on the network in the established 

communication protocol can be divided into two groups: 

Leader initiated and Slave initiated. In Figure 4, the leader 

initiated calls are represented in green color (a, b). The 

slave’s initiated ones appear in red color (i, ii). A local 

synchronization call is traced in black (1,2,3) and described 

in Figure 7 (Algorithm 5). Finally, the call number (4) is a 

Dsync execution command. 

F. Leader initiated workflow 

Periodically (each Leader Node Delay DLN), the leader 

node sends queries to all the subscribed nodes asking for 

any updates (Figure 5). When a slave node receives a query 

from the leader, it fetches eligible “Dsyncs” from its 

database. To avoid flooding the network, the maximum 

number of “Dsyncs” to send in one response is a custom 

configuration value (Maximum Packet Size MPS). An 

eligible “Dsync” to send to the leader is any locally 

generated “Dsync” (source server is the current node). On 

leader response handling, the “Dsyncs” are saved into the 

main queue ordered by timestamp. The leader then 

acknowledges the source server by accepted items. Rejected 

line processing is discussed in the subsection (III.H). The 

accepted items are flagged as transferred to the leader on the 

source server queue (Figure 6). 

 

Algorithm 3 : Leader RFN –  CRON- triggered 

Require: Subscribed Nodes List LL 

1. for (Li in LL) 

a. serialized_packet ← request_for_updates(Li) 

b. updated_rows_ Ii← deserialize(serialized_packet) 

c. updated_rows.append(updated_rows_ i) 

d. ACK(Li,updated_rows_i.size()) 

2. end For 

3. arrange_Items_by_timestamp(updated_rows) 

4. save(updated_rows) 

 
Figure 5. Leader RFN – CRON- triggered Algorithm 

 

Algorithm 4 : Slave Request Processing (SRPi) 

Require:  

1. updated_rows ←Fetch at most MPS rows from local 

Dsync where “target server ids” contains L.getId() 

and “ source node” equals S.getId() 

2. packet_to_send ←serialize (updated_rows) 

3. ack←answer_leader(packet_to_send) 

4. if(ack.count() equals updated_rows.count()) 

a. mark_as_delivered(updated_rows) 

 
Figure 6. Sample synchronization workflow in the Dsync approach 

G. Slaves initiated workflow 

Periodically (each Secondary Node Delay DSN), a slave 

asks the leader server for related updates (Figure 7). When 

the leader receives this type of queries, it fetches from 

database the Dsyncs that were not generated by the querying 

slave, not yet communicated to it and already mentioned in 

its subscription contract (Figure 8). The subscription 

contract holds the entity names that must be synchronized 

with a server. The leader responses must not hold more than 

MPS Dsyncs. When the agent receives the response from 

the leader, it persists them into its queue and acknowledges 

the server by the successfully received items. The non-

leader node flags the successful Dsyncs as transferred to the 

leader with a timestamp. The obvious scenarios would be 

removing them from the queue in order to keep it in a 

workable size. In this scenario, it is advised to keep this 

queue as long as possible in order to restore the whole 

system in case of functional failure.  

Algorithm 5 : Slave RFN –  CRON- triggered 

Require: Slave Node S 

1. serialized_packet ← request_for_updates(S) 

2. updated_rows← deserialize(serialized_packet) 

3. ACK(L,updated_rows.size()) 

4. arrange_Items_by_timestamp(updated_rows) 

5. mark_as_processed(updated_rows, false) 

6. save(updated_rows) 

 

Figure 7. Slave RFN –  CRON- triggered Algorithm 
 

Algorithm 6 : Leader Request Processing 

Require: Slave Node S 

5. updated_rows ←Fetch at most MPS rows from local 
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Dsync where “target server ids” contains S.getId()  

6. packet_to_send ←serialize (updated_rows) 

7. ack←answer_agent(packet_to_send) 

8. if(ack.count() equals updated_rows.count()) 

a. mark_as_delivered(updated_rows) 

 
Figure 8. Leader Request Processing Algorithm 

 

The mark_as_delivered function updates the target servers 

IDs field to remove the node that acknowledged the 

reception of this item. We denote the processing duration 

for an update query “Persi”. The Dsync object can be 

described by this minimal list of attributes: 

 Source Node ID: The id of the server where the 

Dsync was generated. 

 Serialized Data: The content of the object to 

propagate (last state). 

 Generation timestamp: The moment when the 

Dsync was generated. 

 Delivery timestamp: The timestamp when the 

Dsync reached a node. 

 Processing timestamp: The timestamp just after 

Dsync processing 

 Target server Ids: Comma separated list of 

separated servers IDs.  

 Processed: indicates whether the Dsync was 

integrated onto database or not 

 Operation Type: INSERT, UPDATE, DELETE 

 Target  Domain Object: Name of the target object 

 

H. Fault Management 

The application has two functional modes: permissive 

and strict mode. In the permissive mode, the principle is to 

ignore and continue. In the strict mode, the synchronization 

is suspended on the first failure. The leader is informed by 

the problem. The protocol recommends a data destructive 

behavior and all the updates after the rollback checkpoint 

(failure item) are erased [11]. 

IV. SYNC INTERVALS EVALUATION 

Several terms are considered in order to calculate the 

propagation delay over the whole topology in the most 

pessimistic and the most optimistic scenario. In the first 

scenario, in a topology made of N nodes, the propagation 

delay is : 

T0 +  DLN + DSN + (N * SRPi) + ND + DEX +Persi 

where ND is the network delay introduced.  

A : T0  

 B : dt  

 

C : N x Pti  

 

D : dt  

 
E :Dex  

 F : Persisti 

t+         

Figure 9. Dsync lifecycle steps and time evaluation 

The steps of the exchange operation (Figure 9) can be 

described as: 

A: Sending update requests to the leader from all the 

subscribed servers. 

B: Network latency. 

C: Packet making duration required by the server. 

D: Network Latency. 

E: Dsync processing trigger interval. 

F: Dsync processing time. 

 

This delay equation may be reduced to:  

Dmax=C+E+F 

In the most pessimistic scenario, the maximum duration to 

propagate a change to all the topology is  Dmax. This result is 

considerable because it does not depend on network size.  

V. IMPLEMENTATION AND EVALUATION 

In this section, we describe the implementation of the Dsync 

protocol and discuss the experimental results in a test 

environment. 

A. Implementation 

We implemented the prototype running the Dsync 

protocol as a web application using Java 7 backend (Spring 

Framework, JSF, Quartz API). The transport protocol is 

HTTP1.1. The benchmark is a telecom operator directory 

database. The simulated use case describes the 

synchronization of all clients’ information between the 

different systems of the operator. For example, if the 

technical team installed a new phone land line for a client, 

this telephone number must be available to the different 

contributors as soon as possible (directory service, billing, 

marketing, etc). The definition of “as soon as possible” 

varies between the different systems depending on their 

criticality. The more a system is critical, the smaller a server 

DSN must be. We consider the billing system as the most 

critical system, and thus DSN was defined to 2 seconds. The 

leader node packet size is set up to 500 Dsyncs. The current 

topology holds four (4) nodes with different RDBMS 

behind: Oracle 11g, MySQL 6, Firebird 2 and PostgreSQL 

9. The four nodes are virtual machines (VM Player) 

distributed between two physical servers (laptops with i7 

CPU and 8GB of memory). To simulate a realistic load, we 

proceeded in 3 steps. The first step starts with a pre-filled 

database with 1 million rows in the leader node, and empty 

databases for the three other nodes. To synchronize the rest 

of the nodes, a thread generates every 5 seconds 10000 

dsyncs with “INSERT” in the operation type field. The three 

nodes are subscribed for the synchronization of the 

generated object in the leader. Once the four databases are 

filled with all the records, we built a SQL script to update 

addresses of 100000 rows and generated the “UPDATE” 

Dsyncs on each slave node.  Once we reached a distributed 

synchronization state, we shutdown the initial leader and we 

generated 1000 delete dsyncs on each node. The purpose of 
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shutting down the initial leader node is to test the leader 

node election process. In this small topology, the result was 

not significant as the operation took only 12 seconds.  

The watched parameters are the Dsync propagation duration 

(from Generation timestamp to Processing timestamp), the 

bandwidth consumption, CPU consuming percentage. 

B. Experimental result evaluation 

The raw results were tuned on the smallest DSN (2s) for 

presentation purposes only. The synchronization delay was 

almost invisible in Figure 10 scale. Axis value unit is 

seconds. Figure 10 shows the arrival time of the Dsyncs to 

the three subscribed nodes. “Dsync gen” curve is the 

generation time for each Dsync in the source node (leader). 

The combination of DSN and the packet size for the “most 

critical node” results into an acceptable synchronization 

delay (< 50s). For non critical systems, we set the DSN to 5 

seconds with a packet size (MPS) of 500 Dsyncs. The 

propagation delay kept growing in time as the awaiting 

Dsyncs count in the stack grows on each Dsync generation 

interval. However, a distinct analysis of the running threads 

on the leader shows minimal CPU time. The consumed 

bandwidth is the lowest targeting the less critical system.  

 
 

Figure 10. Experimental Result (tuned) 

 

Figure 11 shows the different evaluation parameters and 

the experimental relation between the memory usage, the 

CPU time, the consumed bandwidth and the synchronization 

delay. The applied DSN may be obsolete in a powerful 

production environment, but we are limited with material 

constraints. Real server may go further with smaller DSN 

values and bigger packet size (MPS). The resulting protocol 

is an easy to deploy solution that offers a distributed 

database synchronization service where the user 1SR 

condition is ensured even in heterogeneous context. The 

solution is highly scalable and can be adopted even in 

heterogeneous environments. In addition to basic process, 

the protocol offers many custom services depending on the 

nodes’ subscription contracts: A node can be subscribed to a 

subset of items only and not all domain objects (very helpful 

in distributed databases). 

 

 
 

Figure 11. Watched parameters for different configurations 

VI. CONCLUSION AND FUTURE WORK 

The processing delays are fully customizable to be 

adapted to client network performances and capabilities. 

The bandwidth can be controlled too by setting the 

maximum size of items’ package (queue items). The two 

key features in this system are 1) the completeness of the 

solution as no extra product licenses are needed (database 

synchronization tools are very expensive) and 2) the 

bottleneck free topology as main node can be quickly 

ignored on fault detection. The system is also fault tolerant 

and the recovery process does not need extra calculation 

(rollback back to the first error detected). 

Further work will cover the serialization process in order 

to reduce packet sizes and lower consumed bandwidth. The 

serialization process also must be associated with a 

universal database access in order to overcome the diversity 

constraint in heterogeneous environment.  
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