
OBDBSearch: A Keyword-based Semantic Search for Databases

Simone Miraglia∗, Clarissa Molfino† and Costanza Romano‡
DIBRIS - Università degli Studi di Genova

Genoa, Italy
Email: ∗simone.miraglia@gmail.com, †clarissa.molfino@gmail.com, ‡costanza.romano.cr@gmail.com

Abstract—In this paper, we consider a semantic approach to in-
formation retrieval in structured data. We designed an ontology-
based database search tool, namely OBDBSEARCH, that ex-
ploits ontologies to add semantics to traditional database-style
searching. Our goal is to retrieve all database information
somehow related to a set of keywords and to have them sorted
by relevance. A heuristic method to calculate relevance has
been devised. In order to apply and test our algorithm, we
considered an application to Key Performance Indicators (KPIs),
i.e., quantifiable and strategic measurements for an organization.
We observed consistency between experimental results and those
expected, even if testing on large amounts of data is still missing.

Keywords–Keyword-based search; Semantic search; Information
retrieval; Ontologies; Database access.

I. INTRODUCTION

Information retrieval concerns with all the activities re-
lated to the organization of, processing of, and access to,
information of all forms and formats. The objective of an
information retrieval system is to enable users to find relevant
information from an organized collection of documents [1].
As pointed out in [2], in response to various challenges of
providing information access, the field of information retrieval
evolved to give principled approaches to search various forms
of content. Information retrieval is fast becoming the dominant
form of information access, overtaking traditional database-
style searching. Since semantic web [3] is a growing field
and information retrieval is still evolving - but database-style
searching has not been overtaken yet - we sensed the need for
a semantic approach to information retrieval in structured data.

This paper addresses the problem of retrieving information
using ontologies to add semantics to traditional database-style
searching. In particular, we are given a database, an ontology
describing the underlying domain of the database and a set
of query keywords provided by users. We are interested in
retrieving and sorting by relevance all the database records
which are related to all the keywords.

We developed an ontology-based database search algo-
rithm, namely OBDBSEARCH, suitable for databases with
textual information. It easy to integrate and provides an origi-
nal heuristic ranking system to sort records. A case study has
been devised to apply and test such algorithm, investigating the
context of Key Performance Indicators (KPIs), i.e., quantifiable
and strategic measurements that reflect an organizations critical
success factors [4]. The main contributions of our work are:
• A novel keyword-based semantic search algorithm for

databases.
• An easy to integrate and database schema-independent

algorithm.
• An innovative heuristic ranking system to sort records

by relevance.

This paper is structured as follows. Section II reviews
related work, pointing out differences with our contribution.
Section III of this paper gives a brief overview of ontologies.
Section IV describes our case study, introducing what KPIs
are and how our database and ontology have been designed.
This should improve the understanding of our algorithm. In
Section V, we introduce the problem we are tackling. Modeling
and notation formalisation are given in Section VI. Section VII
is devoted to the presentation of our algorithm. Section VIII
is dedicated to the performance evaluation of our algorithm.
Section IX summarizes the results of our work.

II. RELATED WORK

Semantic search, as defined in [5], is a search paradigm
that makes use of explicit semantics to solve core search tasks,
i.e., to use semantics for interpreting query and data, matching
query against data and ranking results. As shown in [5], search
is commonly seen as an user-oriented application, which uses
user-friendly interfaces instead of complex structured queries.
The success of commercial search engines shows that users
are more comfortable with keyword-based interfaces.

We focus on approaches which express the information
needs as keywords. Several approaches in semantic search are
based on translating a given set of query keywords into a set
of conjunctive queries, which are evaluated with respect to an
underlying knowledge base. Examples of this approach can
be found in engines such as Hermes [6], SemSearchPro [7],
SPARK [8], AVATAR [9], CIRI [10] or in [11]. The semantic
approach we propose differs from the above engines since we
aim to retrieve data from databases instead of knowledge bases
and no conjunctive queries are formulated. We sense that a
semantic approach in database search is missing and our work
goes in that direction.

A semantic approach closed to ours is the one proposed
in [12]. The authors developed a semantic search engine
based on query refinement powered by ontology navigation
for traditional information retrieval purposes. The ontology
is regarded purely as a taxonomy, where focalization and
generalization are used to refine queries. Furthermore, results
are ranked by relevance according to standard information
retrieval techniques, such as tf/idf, while our approach uses
a heuristic method suitable for textual records.

YACOB [13] is a tool that uses domain knowledge in the
form of concepts and their relationships for formulating and
processing queries. The idea behind this approach is similar to
ours.

Substantial work has been done in the field of ontology-
based database access [14], such as [15] or [16]. Our work
differs from these approaches because databases and ontologies
are used togheter to search, but they are clearly separated and
database access is performed in a traditional fashion via SQL

82Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

queries. This should ease integration with existing databases.
If we left out semantics, our approach would be similar to

the one of DBXplorer [17], a system that enables keyword-
based search in relational databases. Given a set of keywords,
DBXplorer returns all rows, either from single tables or joined
tables, such that all the rows contain all the keywords. They
introduced a symbol table, which is used at search time to
determine the locations of query keywords in the database.
Results are ranked by the number of joins involved.

III. ONTOLOGIES

According to [18], ontologies are means to formally model
the structure of a certain system we are interested in. From
its observation, relevant entities and relations could emerge.
Entities are organized in concepts and relationships. The
backbone of an ontology is the generalization/specification
hierarchy of concepts, i.e., a taxonomy.

Ontologies could be defined as formal, explicit specification
of a shared conceptualization [19].

A conceptualization is an abstract, simplified view of the
world that we wish to represent for some purpose. Every
knowledge base, knowledge-based system, or knowledge-level
agent is committed to some conceptualization, explicitly or
implicitly [20]. In other words, a conceptualization is a list
of concepts relevant to the description of our domain. Such
conceptualization should be expressed in a computer readable
formal language, with proper definitions. Shared means that
several parties should agree with the formal conceptualization.
This helps large-scale interoperability.

One of the most popular languages for defining ontologies
is OWL 2 (Web Ontology Language Ver. 2) described in [21]
and supported by many tools. It points out that there are
two main types of relationship, is-a and object property. The
former implements the generalization/specification hierarchy,
while the latter allows any other type of relationship between
instances of two concepts, such as has or is related to. One of
the many features of [21] is the usage of Annotation properties,
useful to add literals, i.e., strings, to concepts.

IV. CASE STUDY

Now, we will briefly give an overview of KPIs and then
we will explain the design process of both the database and
ontology.

A. KPIs background
KPIs are defined as quantifiable and strategic measure-

ments that reflect an organization’s critical success factors.
KPIs are very important for understanding and improving
manufacturing performance; both from the lean manufactur-
ing perspective of eliminating waste and from the corporate
perspective of achieving strategic goals [4]. Several standards
exist, but we focused on just two: ISO 22400-2 [4] and SCOR
rev.11 [22]. Both describe KPIs for manufacturing operations
management.

In more detail, ISO 22400-2 defines KPIs by a standard
schema that contains: formula, time behaviour, unit/dimension,
rating, the user group where the KPIs are used and to what
production methodology they fit, as shown in [4].

SCOR is a reference model that links business process,
metrics, best practices and technology into a unified structure
to support communication among supply chain partners and

to improve the effectiveness of supply chain [22]. Therefore,
metrics are related to processes. Processes are organized in
a hierarchical structure with three levels, each one more
specialized than the previous. KPIs are also organized in a
hierarchical structure with several levels, i.e., KPIs residing at
a given level are calculated through KPIs from lower levels.
These are the main features of SCOR, others can be found in
[22].

B. Database design
In order to design a database to manage KPIs described

by different standards, such as SCOR and ISO 22400-2, a
common structure for KPIs has been designed. This com-
mon structure contains the most important fields of the two
standards (KPI Code, Name, Description, Formula, Unit of
Measure, Trend and Timing) and a note field for various other
information.

Database design is oriented towards SCOR since it has
additional features compared with ISO 22400-2. This means
that the hierarchical structure of both processes and KPIs has
been preserved, although in different ways. Process hierarchy
has been directly maintained in our database design, i.e.,
three tables have been created, one for each hierarchical level.
Conversely, since KPI hierarchy means that an upper level
KPI is calculated through lower levels KPIs, we decided to
have a single table with a recursive relationship to ensure links
between KPIs.

Regardless of their level, KPIs can refer to processes of
any level. Instead of linking the KPI table with all processes
tables, for the sake of simplicity, we decided to link just KPIs
and third level processes. In this way, we would preclude the
possibility of linking first and second level processes to corre-
sponding KPIs. To ensure that first and second level processes
are linked to KPIs anyway, we introduced default processes.
They are factitious processes which stand for corresponding
processes of superior levels. This way, instead of linking KPIs
with first or second level processes, we link KPIs to third level
default processes.

Figure 1 shows the E/R diagram of our database, pointing
out our design choices. We will now describe all our entities.

standards - this table allows us to consider several
standards of KPIs, with the ID, name and description.

performances - this table contains performances, with
their ID, name and description.

kpi - this table keeps track of KPIs, with their name,
ID, formula, description, unit of measure, trend, code, timing,
standard and performances.

kpi_hierarchy - this table shows the recursive rela-
tionship that allows us to define the KPI-hierarchy, listing the
IDs of KPI-parents and KPI-sons

processes_lv1 - this table keeps track of processes of
the first level, with their name and description.

processes_lv2 - this table keeps track of processes of
the second level, with their name and description and the IDs
of the processes of the first level. There are also first level
default processes.

processes_lv3 - this table keeps track of processes of
the third level, with their name and description and first and
second level default processes.

kpi_processes - this table realises the many-to-many

83Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

relationship between KPIs and processes of third level. It
associates a KPI to a process, maintaining their IDs.

input_processes - Each process produces documents
to be consumed by another one, i.e., a workflow exists. That
means that every process becomes input (output) process for
other processes. This table keeps track of input processes, with
their IDs, documents and IDs of the processes they are input
for.

output_processes - This table keeps track of output
processes, with their IDs and IDs of the processes they are
output for.

C. Ontology for KPIs
Afterwards, an ontology has been implemented in order

to represent the domain of KPIs in a supply chain context,
considering also the structure of the database. OWL 2 [21]
has been used to define the ontology.

Figure 2 shows the ontology, pointing out the structure of
KPIs domain. Obviously, it does not represent the whole KPIs
domain, it is just a small example. Now, we will describe it in
more detail.

KPI - this entity refers to the concept of KPI.
Process - this concept refers to supply chain processes.

Processes are linked to KPIs and thus on the ontology we
have a connection between concepts related to them.

Plan, Source, Make, Deliver, Enable, Return - these entities
are related to the main processes individuated by the SCOR
standard [22]. Therefore, they are linked to processes by an
is-a relationship.

Sphere - this concept refers to the scope of KPIs applica-
tion. It is linked to KPIs by a has relationship.

Time, Cost, Quality, Energy - these entities are related to
four different scopes. They are useful because some indicators
mainly refer to costs, whereas others point out timing aspects
of supply chain and so on. They are linked to Sphere by an
is-a relationship.

Industry - this concept refers to the industrial sector of
KPIs.

Continuous, Discrete - these entities are related to the two
types of industrial process. They are linked to Industry by an
is-a relationship.

Textile - this concept refers to a certain kind of discrete
industry and is linked to Discrete by an is-a relationship.

Pharma, Alimentary - these concepts refer to two types of
continuous industrial process and are linked to Continuous by
an is-a relationship.

Flour, Food&Beverages - these entities are related to two
possible types of food industry and are linked to Alimentary
by an is-a relationship.

As shown later in Section V, synonyms need to be man-
aged. In the ontology, for the sake of simplicity, we keep track
of synonyms by means of Annotation properties, not listed in
Figure 2.

V. THE PROBLEM

The problem we are addressing is the retrieval of informa-
tion from a database given a set of keywords. In other words,
we want to return a list of information related to all those
keywords. Furthermore, it is desirable to have such information
sorted by relevance. Our algorithm needs an existing database

- preferably with textual information - and an ontology de-
scribing the underlying domain.

Our aim was to develop a schema-independent algorithm,
both from database and ontology point of view. Furthermore,
we expect the algorithm to navigate between tables and
concepts of the ontology. Those issues reveal a need for
abstraction, which is addressed in Section VI.

In order to devise a flexible search algorithm, synonyms
need to be managed. In fact, a search keyword might not
appear in the database as it is, but as one of its synonyms:
if they were not tracked, these results would be lost. We can
take the keyword KPI as an example: this word can be found
in the database as it is or perhaps as Performance Indicator.

Since our results should be listed sorted by relevance, we
should define what relevance means in order to be able to
discriminate whether a certain result is more or less relevant
than another one. In Section VII-D, we give a thorough
description of the issue, devising a solution.

VI. MODELING AND NOTATION

In this section, we want to introduce some notation, useful
to describe the algorithm.

We can easily think of a database as a graph, since it is
none other than a set of tables linked by relationships. This
is true assuming it is well normalized, i.e., all many-to-many
relationships between a certain table A and a table B have been
transformed with two one-to-many relationships from A to C
and from B to C, where C is a newly created table storing at
least both primary keys of A and B [23].

Database metadata contain information regarding the struc-
ture of the database, i.e., tables, fields, foreign keys constraints.
Since they can be queried, we can get all information needed
to build straightforwardly the graph. This solves the problem
of having a schema-independent database because, once the
graph is created, we will only reason in terms of tables and
links, forgetting about the actual schema.

A similar approach is also applicable to ontologies, since
they are basically a set of concepts linked by relationships. No
particular assumptions have to be made to the ontology struc-
ture. We can also individuate two types of edges/relationships,
i.e., is-a relationships and object properties. Building a graph
is easy, since state-of-art programming libraries provide access
to ontologies, such as Apache Jena.

A graph structure is useful for navigation between nodes,
both database tables and ontology concepts, thanks to many
accomplished algorithms, such as Depth First Search (DFS)
and Breadth First Search (BFS)[24].

Therefore, we can define a database DB and an ontology
O as

DB := (T ,L) O := (C, E) (1)

where T is a set of tables and L a set of links between tables,
while C is a set of concepts and E a set of relations among
concepts. E can be subdivided in two disjoint sets H - is-a
relationships - and P - object properties.

A link l ∈ L is defined just as pair of tables and a
unique name. It is a matter of fact that multiple links between
the same pair of tables could exist. As shown in Figure 1,
kpi_hierarchy and kpi are connected twice. The unique
name is useful to discriminate links between the same pair of

84Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 1. E/R diagram for KPIs. Boxes are entities, i.e., database tables, while lines between entities represent one-to-many relationships. Trebled end point
indicates where the many is.

Figure 2. Designed ontology for the KPI context. Arrow lines refer to is-a relationships, e.g., Plan is-a Process, while dotted lines indicate object properties.

tables.
l := (name, t1, t2) (2)

Let t ∈ T be a table, defined as follows

t := (name, R) (3)

where name is table name and R a set of records.
We use a function GETLINKS (t): given a table, returns a

set of links involving t. In addition, we define another function
GETLINKEDTABLE (l, t): given a table and a link containing
that table, returns the linked table.

A record r ∈ R is defined as follows

r := (F) (4)

where F = {f1, . . . , fm} is a set of fields.
A field fi can be defined as

fi := (name, type, key, value) (5)

where name and type are trivial to understand, key indicates
whether fi is a primary key field or not and value is the actual
value of the field.

We can further individuate a subset LT ⊂ T containing
all tables added to the database while transforming all many-
to-many relationships into two one-to-many relationships.

Similarly, let c ∈ C be a concept, defined as follows

c := (name,S) (6)

where name is concept name and S = {s1, . . . , sk} a set of
synonyms.

We use a function GETNODE(O, name): given an ontology
and a name, returns a concept c such that c.name is equal to
name.

A relationship e ∈ E is defined just as a pair of concepts

e := (c1, c2) (7)

Furthermore, we can use three functions GETPARENTS(c),
GETCHILDREN(c) and GETHORIZLINKS(c): given a concept,
they return a set of parent concepts, a set of children con-
cepts and a set of concepts linked to c by object properties,
respectively.

VII. THE ALGORITHM

Given a set of keywords K, our goal is to retrieve a list
of results relevant to all ki ∈ K and have this list sorted by
relevance. For the sake of simplicity, we assume that a valid
keyword k must be a name of any concept of the ontology,

85Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

not one of the synonyms. In this section, we discuss how we
achieved such goal.

First, we define a result as a record r ∈ R of any tables
of DB such that is relevant to a certain keyword. We are
looking for all those results relevant to all ki ∈ K. We
further discuss in depth the relevance, but now say that a
record is relevant to a certain keyword k if k or one of its
synonyms is somehow contained in at least one of the fields
of the record. This means that we should only consider fields
fi : f.type ∈ {varchar, text}.

More formally, given a table t ∈ T , a record r and a
concept c linked to k, we say that r is relevant to k iff ∃ fi ∈ R
s.t.

k ∈ fi.value ∨ ∃ s ∈ c.S : s ∈ fi.value (8)

Let RSi be the set of heterogeneous results related only
to ki. We say heterogeneous since two results can come from
two different tables and thus their structure be different.

One of the cornerstones of our algorithm is the following
lemma

Lemma 1. A result r is relevant both to ki and kj iff r ∈
RSi ∧ r ∈ RSj

This gives us a way to design our algorithm. Precisely, we
can find a list of results relevant to all ki ∈ K by finding all
RSi for each ki separately and then intersect all those result
sets. Let RS be the final set of results given by

RS = RS1 ∩RS2 ∩ · · · ∩RS|K| (9)

Since it is a heterogeneous set, we assign an unique
identifier to each result in order to perform intersection and
union.

From now on we focus on the problem of finding all the
results relevant to a single keyword k.

We describe the algorithm starting from an example. Sup-
pose our keyword is Textile. As shown from the ontology
of Figure 2, Textile is a Discrete type of Industry for Kpi.
This means that we are looking for all KPIs related to textile
industry, and linked information. The keyword gives us hints
where to look, i.e., in which table (or tables) to start our search.
In fact, we are primarily looking for KPIs with certain features,
not for processes or anything else.

Once where to start searching has been found, we have to
actually search. Given the keyword, we fetch all the relevant
records. It is true that we are looking for Textile, but we need
to look also for its synonyms. In fact, there could be relevant
records that will not be added just because the description uses
the word Clothing or Fabric instead of Textile. This shows how
synonyms have to be taken into account when fetching records.

Suppose we fetched all records relevant to the keyword
and its synonyms. We might be interested in fetching records
relevant to generalizations or specifications of the concept
linked to the keyword. For instance, we are also interested
in records related to Discrete and its synonyms, since it is a
more general concept of Textile. Loosely speaking, the records
directly related to the keyword are more relevant than those
related to generalizations or specifications.

It is also valuable to find all information connected to
fetched records. For instance, if we had a certain KPI relevant
to Textile, we would like to have all processes related. This

could be achieved by moving from one table to another
exploiting the database graph.

We will describe the general idea of algorithm and its main
issues. Principal loop of the algorithm is shown in Figure 3. We
will now describe in detail the main functions of our algorithm.

Figure 3. Ontology-based database search algorithm. K is a set of keywords.

procedure OBDBSEARCH(K)
for all ki ∈ K do

table-list ← SEARCHSTARTINGTABLES(ki)
for all t ∈ table-list do

RSi ← RSi ∪ SEARCH(ki, t)
return

⋂
i RSi

A. Search starting tables
As we said in Section VII, the first step is to understand

from which table (or tables) we should start our search. This is
a key concept because it shows us one of the benefits of using
an ontology. Naively, we could use a brute-force approach by
looking for the keyword in every table of the database. Besides
efficiency issues, many unrelated records could be found. In
fact, suppose we are looking for Cost. Since Cost is a feature
of KPI, we should initially search the word Cost into the kpi
table. If we also looked for the word Cost in other tables, such
as processes_lv3 or standards, we would find records
containing Cost, but they would be semantically unrelated.
Indeed, a brute-force approach would go against a semantic
direction.

Ontologies should be exploited in order to understand if a
keyword can be a feature or a specification of another concept
- meaning there is a sort of container - and thus we expect a
database table related with such concept to exists. This way
we add semantics to the search.

A modified BFS on the ontology graph is executed in order
to find a set of starting tables. We start from the concept
directly related to the given keyword. Then we check if there
is correspondence between a database table and such concept.
If no table is found, we should expand from the main concept
to reach its neighbours and, for each neighbour, check the
existence of a table with a similar name. Intuitively, if we are
looking for a sort of container, there will be no need to expand
downwards, i.e., towards specifications of the main concept.
We stop this BFS once a table matching with a concept has
been found. From the set of candidate tables we should keep
out all tables t ∈ LT , i.e., tables which perform many-to-many
relationships. In fact, they are likely to be just a set of primary
keys pair, thus quite few textual information could be inferred.

There could be more than one matching table. Suppose
we are looking for Plan. Since there is no correspond-
ing table, we will reach Process. There are at least three
matching tables: processes_lv3, processes_lv2 and
processes_lv1 (since kpi_processes has been kept
out). Each one has to be considered.

We should also deal with the special case in which a match-
ing table is found at the first round. Suppose we are looking for
KPI. We will find a match with kpi table without any other
expansions. In that case, fetching all the records connected
to the keyword KPI from kpi table would be quite wrong.
Hence, we would fetch all records. Since actual fetching is

86Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

performed by a FETCH function in Figure 6, we should be
able to discriminate whether to get all the records or not.
So, we suppose to have two functions - SETFETCHALL(table)
and ISFETCHALL(table) - to indicate whether to fetch all the
records from a certain table. The last function will be used
inside FETCH.

The algorithm in Figure 4 recaps above features.

Figure 4. Starting tables search algorithm. ki is the current keyword. O and
DB are assumed to be global variables.

procedure SEARCHSTARTINGTABLES(ki)
tables ← ∅
queue Q← ∅
tableFound ← false
firstTime ← true

ENQUEUE(Q, GETNODE(O, ki))
while Q 6= ∅ ∧ ¬ tableFound do

c← DEQUEUE(Q)
SETVISITED(c)
KS ← c.name ∪ c.S
for all t ∈ DB.T ∧ t /∈ LT do

for all s ∈ KS do
if s ∈ t.name then

tableFound ← true
if firstTime then

SETFETCHALL(t)
tables ← tables ∪{t}

if ¬ tableFound then
for all v ∈ GETPARENTS(c) ∪ GETHORIZLINKS(c) do

if ¬ ISVISITED(v) then
ENQUEUE(Q, v)

firstTime ← false
return tables

B. Search concepts
Once the starting tables have been determined, we must

search the keyword and its synonyms inside those tables. This
is accomplished by the algorithm in Figure 5. As we said
before in Section VII, the ontology can also be exploited
to search generalizations/specifications of the main concept.
Those results should be marked as less relevant than those
directly connected to the main concept.

Since we are talking about concepts that are more or less
pertinent, the problem of results relevance starts to take shape.
This is completely clarified in Section VII-D, but we will
start to outline the matter in order to explain this step of the
algorithm.

Given a keyword, we can get its related concept and
thus actually get results by searching that keyword in the
current table - one of the starting tables. See algorithm in
Figure 6. With the purpose of getting information related to
generalizations or specifications of the principal concept, we
perform a modified BFS on the ontology, similar to the one in
Figure 4.

Concepts exploration is only upwards, towards general-
izations. Downwards exploration, i.e., towards specifications,
is useful only when starting from the main concept. In fact,
suppose k = Alimentary. We can explore upwards and search
Continuous. Since Alimentary is the main concept, we can also

go downwards and search both Flour and Food & Beverages.
This would be correct, because we would be looking for spec-
ifications of the main concept. On the contrary, if we explored
downwards from Continuous towards Pharma, we would be
wrong because Pharma is quite not linked with Alimentary. We
assume we have two functions SETVISITCHILDREN(node) and
VISITCHILDREN(node) that allow us to discriminate whether
children of node must be visited or not.

In order to measure relevance, and thus differentiate con-
cepts closer from those farther, we assign to each concept a
starting ranking. Intuitively, concepts closer will have a starting
ranking greater than those farther. How this works is shown
in detail in Section VII-D.

Figure 5. Keyword search algorithm. ki is current the keyword and t a
database table in which search ki. O is assumed to be a global variable.

procedure SEARCH(ki, t)
RS′

i ← ∅
queue Q← ∅
firstTime ← true

ENQUEUE (Q, GETNODE(O, ki), baseRanking)
while Q 6= ∅ do

(c, w)← DEQUEUE(Q)
SETVISITED(c)
KS ← c.name ∪ c.S
RS′

i ← RS′
i ∪ SEARCHTABLE(KS, t, w)

if firstTime then
SETVISITCHILDREN(c)

if VISITCHILDREN(c) then
for all u ∈ GETCHILDREN(c) do

SETVISITCHILDREN(u)
nodesToVisit← GETCHILDREN(c) ∪ GETPARENTS(c)

else
nodesToVisit ← GETPARENTS(c)

for all v ∈ nodesToVisit do
if ¬ ISVISITED(v) then

ENQUEUE(Q, v,w/10)
firstTime ← false

return RS′
i

C. Search table and linked records
Suppose we now have found a keyword to search -

regardless of whether it is a principal keyword or another
concept - and we want to actually fetch records from a certain
database table. This is accomplished by the FETCH function
from the algorithm in Figure 6, which is essentially a SQL
Select statement with a Like condition. In more detail, we
select all the records from the given table, checking if at least
one varchar or text type field contains the keyword or one of
its synonyms.

We should determine and attribute relevance to all records
returned from the FETCH function. The ADDRESULTS func-
tion takes care of this issue. Record relevance in connection
with a certain keyword is explained in Section VII-D, but,
roughly speaking, it depends on the number of occurences of
a certain word and in which type of field it occurs.

87Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 6. Search table algorithm. KS is a set of string composed by the
keyword and its synonyms, t is the table in which search and w is the

starting ranking.

procedure SEARCHTABLE(KS, t, w)
R← FETCH(t,KS)
RS′

i ← ADDRESULTS(t,KS,R,w)
for all r ∈ R do

RS′
i ← RS′

i ∪ LIMDFS(0, w,KS, t, l, r)
return RS′

i

So, we have a set of record R relevant to the keyword, but
related just to the starting table. As we said, it is also valuable
to get all records linked with those in R. In fact, we might
be interested in the processes related to a given set of KPIs.
The database graph could be exploited in order to get linked
results. As a matter of fact, we should be able to move from the
current table to those directly connected and, for each r ∈ R,
execute a join between those tables. This process should be
iterated to reach more tables. Hence, we launch a DFS from
each record r ∈ R, in order to get connected records from
linked tables.

This DFS should not visit tables, but relationships instead.
It could seem slightly like a nuance, but in truth it is not. In
fact, we are interested in getting connected records, i.e., to
perform joins between tables. So, starting from a given table
t1, we must perform all possible joins between t1 and all linked
tables. Since join conditions are individuated by foreign key
constraints and thus by relationships, we have to visit them
instead of tables. Suppose we perform a join between t1 and
t2, then we must iterate starting from t2.

If we ran a complete DFS, we would explore all links
and get a sort of big join among all database tables. This
is not advisable, because we cannot lose sight of our goal.
Since we are looking for records somehow semantically con-
nected to those in R, we should limit the depth of the
expansions. A heuristic maximum depth of two/three tables
seems reasonable. Figure 7 shows the limited DFS algorithm.
FETCHLINKEDTABLE processes the foreign key constraint and
returns all records linked to the one passed.

D. Results relevance
Relevance is measured by observing how much and in

which type of attribute the keyword appears in each record
found through the FETCH operation. Evidently, records re-
lated to principal keyword with a relevant number of occur-
rences should be listed before records related to a generaliza-
tion/specification of the keyword or, in the same way, related to
the principal keyword but with few occurrences. Therefore, we
associate a relevance level - starting ranking - to each record
found. This relevance level depends on the level of the searched
keyword. Later, this level will be increased or decreased using
a bonus/penalty system.

In more detail, let R be the record set returned after the
FETCH operation for a certain table t ∈ T . If r ∈ R, it
contains at least in one field a certain keyword k, as shown by
Equation 8. A starting ranking sr is assigned to each r ∈ R.
Sr will be different whether k is the principal keyword or a
linked concept. For example, say k = Textile has sr = 10.000,
while k = Discrete will have sr = 1.000. Each jump on the
ontology graph entails a division by 10.

Every field fi ∈ F gets a bonus/penalty wi weighted on sr

Figure 7. Limited Depth First search algorithm. d is current depth, w is the
starting ranking, KS is a set of string composed by the keyword and its
synonyms, t is the incoming table, l is the link we are visiting, r is the

current record to link.

procedure LIMDFS(d,w,KS, t, l, r)
RS′

i ← ∅
for all l ∈ GETLINKS(t) do

if ¬ ISVISITED(l) then
RS′

i ← RS′
i ∪ VISITDFS(0, w,KS, t, l, r)

return RS′
i

procedure VISITDFS(d,w,KS, t, l, r)
RS′

i ← ∅
if d ≤ maxDepth then

t2 ← GETLINKEDTABLE(l, t)
SETVISITED(l)
R← FETCHLINKEDTABLE(r, l)
RS′

i ← ADDRESULTS(t2,KS,R,w)
for all rl ∈ R do

for all l2 ∈ GETLINKS(t2) do
if ¬ ISVISITED(l2) then

d← d+ 1
return RS′

i∪ VISITDFS(d,w,KS, t2, l2, rl)
return RS′

i

(e.g., +20% of sr), because we want the ranking to oscillate
about the starting value. If fi is a description field wi depends
on the number of occurrences of k, if instead fi is a string field,
e.g., a name or a formula, wi is bonus if k is contained, no
penalties otherwise. More precisely, we recap bonus/penalties
values that we heuristically decided to use in Table I.

TABLE I. BONUS/PENALTIES OVERVIEW.

Field type Occurrences Bonus/penalty
String at least one +25% of sr
Description none −20% of sr
Description one −15% of sr
Description from 2 to 5 0
Description more than 5 +15% of sr

So, the record relevance is given by the sum of the starting
ranking and bonus or penalties associated with it. Negative wi

are not added if a string field containing k exists. This avoids
penalizing results in which k is contained in the name (so r is
very relevant) but description field has few occurrences. More
formally, let G ⊆ F be the set of string or description fields.

Relevance(r) := sr +
∑

i:fi∈G

δ(wi) (10)

where δ(wi) is a function that returns 0 if wi < 0 and a string
field containing k exists, otherwise it returns wi.

If a record is relevant to two or more keywords, the overall
relevance is evaluated as the sum of the single relevances.

VIII. PERFORMANCE EVALUATION
Our algorithm was evaluated considering a set of query,

where different combination of keywords have been consid-
ered, as shown in Table II. Standard precision, recall and
balanced f-measure were computed on the returned results.
We recall that

Precision =
Correct results

Retrieved results
Recall =

Correct results
Relevant results

(11)

88Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

F-measure = 2× Precision× Recall
Precision + Recall

(12)

In our case, results whose rank is greater than 1.000 are
considered as relevant. We tested our algorithm on a relatively
small size database. Although testing on a larger amount of
data is still missing, results are promising, as Table II clearly
shows.

TABLE II. PERFORMANCE EVALUATION.

Keywords Precision Recall F-measure
Plan 53.28% 100.00% 69.52%
Cost 80.00% 100.00% 88.89%
Make 31.30% 100.00% 47.68%
Plan, Cost 88.24% 100.00% 93.75%
Plan, Make 60.00% 100.00% 75.00%
Cost, Make 75.76% 100.00% 86.21%
Plan, Cost, Make 93.94% 100.00% 96.88%
Deliver 52.94% 100.00% 69.23%
Source 77.05% 100.00% 87.04%
Time 85.33% 100.00% 92.09%
Deliver, Source 83.48% 100.00% 91.00%
Deliver, Time 90.38% 100.00% 94.95%
Source, Time 96.43% 100.00% 98.18%
Deliver, Source, Time 96.08% 100.00% 98.00%
AVERAGE 76.01% 100.00% 84.89%

IX. CONCLUSION AND FUTURE WORK

In this work, we have devised a novel ontology-based
database search algorithm. So, we achieve the objective of
retrieving information from a database using a semantic ap-
proach. Specifically, given a set of keywords, our goal was to
retrieve a list of results relevant to all the keywords and have
this list sorted by relevance.

A case study has been examined to apply and test such
algorithm. We focused on the context of KPIs. In order
to design a database to manage KPIs described by several
standards, we have individuated a common structure for KPIs.
We also designed an ontology to describe the KPIs domain.
Obviously both database and ontology could be extended and
designed in many other ways.

We modeled both database and ontology as a graph to solve
flexibility and navigation issues. Semantic has been added
understanding which tables are relevant and searching not only
the principal keyword, but also those linked. Synonyms have
been taken into account while searching. In order to measure
the relevance, we introduced a heuristic ranking system, that
evaluates how much and in which type of attribute the keyword
appears in each record found.

Our algorithm requires just an existing database and an
ontology describing the underlying domain. From a practical
point of view, OBDBSearch is an external tool that could
be easily and immediately used with real-world systems to
perform semantic searches.

We observed promising experimental results, but testing on
a larger amount of data would be fundamental to try out our
algorithm performances.

REFERENCES
[1] G. Chowdhury, Introduction to Modern Information Retrieval, 3rd ed.,

2010.
[2] C. D. Manning, P. Raghavan, and H. Schütze, An Introduction to Infor-

mation Retrieval, online ed. Cambridge University Press, Cambridge,
England, 2009.

[3] P. Szeredi, G. Lukácsy, and T. Benkő, The Semantic Web Explained:
The Technology and Mathematics behind Web 3.0. Cambridge
University Press, Cambridge, England, Oct 2014.

[4] ISO-22400-2, “Manufacturing operations management — key perfor-
mance indicators — part 2: Definitions and descriptions of kpis”,
Standard ISO 22400-2, December 2012.

[5] T. Tran and P. Mika, “A survey of semantic search approaches”, 2012.
[6] T. Tran, H. Wang, and P. Haase, “Hermes: Data web search on a pay-

as-you-go integration infrastructure”, Web Semantics: Science, Services
and Agents on the World Wide Web, vol. 7, no. 3, 2009, pp. 189 – 203.

[7] T. Tran, D. M. Herzig, and G. Ladwig, “Semsearchpro – using semantics
throughout the search process”, Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 9, no. 4, 2011, pp. 349 – 364.

[8] Q. Zhou, C. Wang, M. Xiong, H. Wang, and Y. Yu, “Spark: Adapting
keyword query to semantic search”, in The Semantic Web. Springer
Berlin Heidelberg, 2007, vol. 4825, pp. 694–707.

[9] E. Kandogan, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and
H. Zhu, “Avatar semantic search: A database approach to information
retrieval”, in Proc. of the 2006 ACM SIGMOD International Conference
on Management of Data. ACM, 2006, pp. 790–792.

[10] E. Airio, K. Järvelin, P. Saatsi, J. Kekäläinen, and S. Suomela, “Ciri - an
ontology based query interface for text retrieval”, in Web Intelligence:
Proc. of the 11th Finnish Artificial Intelligence Conference, 2004.

[11] T. Tran, P. Cimiano, S. Rudolph, and R. Studer, “Ontology-based
interpretation of keywords for semantic search”, in Proc. of the 6th
International The Semantic Web and 2nd Asian Conference on Asian
Semantic Web Conference. Springer-Verlag, 2007, pp. 523–536.

[12] D. Bonino, F. Corno, L. Farinetti, and A. Bosca, “Ontology driven
semantic search”, dec 2004.

[13] K.U. Sattler, I. Geist, and E. Schallehn, “Concept-based querying in
mediator systems”, The VLDB Journal, vol. 14, 2005, pp. 97–111.

[14] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and
R. Rosati, “Ontology-based database access”, in Proc. of the Fifteenth
Italian Symposium on Database Systems, 2007, pp. 324–331.

[15] A. Poggi, M. Rodriguez, and M. Ruzzi, “Ontology-based database
access with dig-mastro and the obda plugin for protégé”, in Proc. of
the 4th Int. Workshop on OWL: Experiences and Directions, 2008.

[16] H. Dehainsala, G. Pierra, and L. Bellatreche, “Ontodb: An ontology-
based database for data intensive applications”, in Advances in
Databases: Concepts, Systems and Applications. Springer Berlin
Heidelberg, 2007, vol. 4443, pp. 497–508.

[17] S. Agrawal, S. Chaudhuri, and G. Das, “Dbxplorer: a system for
keyword-based search over relational databases”, in Proc. of the 18th
International Conference on Data Engineering, 2002, pp. 5–16.

[18] N. Guarino, D. Oberle, and S. Staab, International Handbooks on
Information Systems. Springer Berlin Heidelberg, 2009, ch. What
Is an Ontology?, pp. 1–17.

[19] R. Studer, R. Benjamins, and D. Fensel, “Knowledge engineering:
Principles and methods”, Data and Knowledge Engineering, vol. 25
(1-2), 1998, pp. 161–198.

[20] R. T. Gruber, “A translation approach to portable ontologies”, Knowl-
edge Acquisition, vol. 5 (2), 1993, pp. 199–220.

[21] P. Patel-Schneider, B. Parsia, and B. Motik, “{OWL} 2 web ontology
language structural specification and functional-style syntax (second
edition)”, W3C, {W3C} Recommendation, dec 2012.

[22] SCOR11, “Scor supply chain operations reference model”, Standard
SCOR rev. 11, December 2012.

[23] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System
Concepts, 5th ed., 2005.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. The MIT Press Cambridge, Massachusetts,
2009.

89Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

