
An Efficient Approach to Triple Search and Join of

HDT Processing Using GPU

YoonKyung Kim, YoonJoon Lee

Computer Science

KAIST

Daejeon, South Korea

e-mail: {ykkim, yjlee}@dbserver.kaist.ac.kr

JaeHwan Lee

Computer Science

IUPUI

Indianapolis, United States

e-mail: johnlee@iupui.edu

Abstract— Resource Description Framework (RDF) is

originally designed as a metadata data model. It has an

advantage of efficient exchange between different metadata by

supporting a set of common rules. To process RDF data

efficiently, SPARQL (SPARQL Protocol and RDF Query

Language) was introduced. In this era of emerging Web of

Data, the amount and size of published RDF data have

dramatically increased. Most studies so far have focused on

the compression of RDF data and fast SPARQL query

processing using single core CPUs. Thus, they do not utilize

well current multicore environment. We in this study propose

SPARQL query processing using a GPU multicore system. We

focus on a search and join method using Header, Dictionary,

Triples(HDT) data format and present its experimental results.

Keywords-Resource Description Framework (RDF); HDT;

SPARQL; GPGPU.

I. INTRODUCTION

The Resource Description Framework (RDF) is a
standard model for data interchange on the Web [1]. It has
been designed for flexible representation of the Semantic
Web. It was proposed to efficiently represent connections
between hyperlinks embedded along with a word or a string
in web data/pages such as Wikipedia. RDF consists of three
parts {subject-predicate-object} called triple. While subject
represents resource, predicate represents relation between
subject and object. For example, representing ‘His name is
Hoon’ in RDF can be {subject: He, predicate: name, and
object: Hoon}. As in this example, most of RDF data are
string data. To efficiently process large size of RDF data,
SPARQL Protocol and RDF Query Language (SPARQL) [9]
was introduced, and it supports extensible value testing and
constraining queries by source RDF graph. [2].

The size of published RDF datasets has dramatically
increased in this era of emerging Web of Data [3]. Previous
researches are mostly focused on the compression of RDF
data [11] and fast SPARQL query processing. We suggest
parallel processing using GPU multicore system.

This paper proposes a triple search method on HDT [3]
data format using a GPU and presents its experimental result.

In Section 2, we introduce Header, Dictionary, Triples
(HDT) which compresses RDF data format. RDF processing

using GPU is in Section 3, and experimental results in
Section 4.

II. BACKGROUND

A. Query patterns in RDF

If a query is consisted of following example, {?,
hasName, ?}, it means that find every triple which has
predicate ‘hasName’. While this query has predicate only
(subject and object are question mark), so it is called
pattern ?P? or P. Likewise, {Bob, hasTitle, ?} query means
that find triples that has subject ‘Bob’ and predicate
‘hasTitle’ This type of query is called pattern SP? or SP.

All queries should have at least one component that is not
a question mark. So, there are 7 query patterns in RDF: S??,
S?O, SP?, SPO, ?P?, ?PO and ??O. We focus on pattern ?P?
in following content.

B. RDF data compression based on HDT

In the past, several studies have been proposed, in which
their predominant method of RDF data compression is to use
a dictionary. For the compression, entropy coding is often
used to distribute short length words to more frequent bit-
pattern.

The most representative studies of RDF compression are
based on dictionary. RDF-3x [4] transforms triples using a
dictionary, saves them with a B+ tree method, and divides
queries to several partials to process the query.

Figure 1. Triple compression of HDT.

70Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Header, Dictionary, Triples (HDT) [3] transforms triple

expressions (subject-predicate-object) to unique integer IDs
using a lexicographically sorted dictionary. A triple is
represented as a tree having subject as its root. Each subject
has its own tree, so a whole set of triples are shaped like a
forest. To compress triples in a forest, as shown in Figure 1,
subjects, predicates, and objects are represented as bitmaps.
This bitmap array is filled with zeros and ones. Zero means
this element has same parent as the previous one, and one
means it has a new parent. For example, the 4th predicate of
Figure 1 is ‘3’, which has subject ‘2’, can be calculated by
adding predicate bitmap values from 1 to 4. One is
represented twice (at the 1st location and 4th location of the
bitmap array), meaning that predicate ‘3’ is connected with
subject ‘2’. The bitmap array of objects is similarly encoded
to grab its predicate.

Figure 2. Query pattern ratio in SP2 benchmark.

This method of compression shows better performance

when searching triples with subject (i.e., S??, SP?, S?O,
SPO), and other search cases are accelerated by making
index for predicate and object [4].

C. Problem Definition

Previous studies on RDF have mostly focused on a single
core query processing. The disadvantage is that a triple
search patterns, ?P? (P pattern) where only the predicate
exists, is extremely slow. P pattern is a query that find
subject and object which has a certain predicate. Unlike other
components, predicate has a few variety of elements. It
means that most of P pattern search results are too large to
calculate using a single core.

The variance of predicates in the data is small, meaning
that one predicate occurs very often. Also, the ratio of P
pattern in SP2 benchmark [6] take 73% of total query triples
as seen in Figure 2.

HDT makes an index for P pattern searching, but the
number of the indexes is too large to process. We suggest an
approach to improve this P pattern problem using GPGPU.
General purpose graphic processing unit (GPGPU) is

proposed in [5], focusing on its high level parallel
computation power.

III. METHODOLOGY

A. Triple Pattern Searching

In the proposed approach, we modify bitmap arrays for
parallel processing. The original HDT has used wavelet trees
[3] to support faster search of predicate index. However, the
method was optimized for single core processing. Instead,
we use a GPU’s scan algorithm to obtain the parent’s index
in a constant time. The scan algorithm constructs a position
array that has the summation result of occurrences of ones
from location 1 to each element’s location in parallel as
shown in Figure 3. In this way, predicate and object’s parents
(subject and predicate, respectively) can be found in a
constant time using this array.

Figure 3. GPU scan algorithm for bitmap array.

After populating the position array, Figure 4 shows how

this array represents predicates connected to each object. For
example, object ‘20’ (third element in object array) refers to
position array (also third element in position array) which
tells that ‘2’ (second) element of predicate array is predicate
of its triple. We can also find a subject using a predicate. As
we allocate one object per GPU core, processing time to
search a triple is constant.

Figure 4. Connection between predicate and object using object’s

position array.

We copy predicate, object, and object position arrays to

GPU memory to search a pattern P as shown in Figure 5.
After allocating all the triples to GPU cores, the search first

71Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

determines whether each object’s predicate is equal to given
pattern P or not. We use object array to determine triples,
while others (predicate, subject) are compressed.

The object array points to the predicate array, and the
predicate array points to subject array. These connections are
directional, which means the predicate and subject array do
not know which element of object is connected. So, the
object array is needed to extract triples from the HDT data
set which is compressed.

Figure 5. P pattern search using GPU.

B. Join Processing

Due to large size of RDF data, it restricts join algorithms
from a result array point of view. First, if we save the result
in one big array, an atomic operation of result array’s pointer
is needed for every new result. All other threads have to wait
until the lock is released. Another method is allocating arrays
to each triple, requiring N2 memory where N is the size of
input triples. It takes 1TB GPU memory for one million
integer data. Considering these conditions, [7] use hash join
algorithm for GPU.

With the result that GPU joins become faster with data
larger than 5 million. [7] Even with data size larger than 5GB,
a join hardly exceeds five million. Hence, we use a CPU
sort-merge join method which original HDT uses in join
processing.

IV. EXPERIMENT AND ANALYSIS

We process an experiment to compare the effect of RDF
join process using GPU with previous researches (RDF-3x,
original HDT).

TABLE I. EXPERIMENTAL ENVIRONMENT

CPU AMD A10-5800K 3.80GHz

RAM 16GB

GPU Geforce GTX 750Ti, Geforce GTX 660

Data 5GB, 1GB dataset, SP2 benchmark

OS Win7 in GPU, Ubuntu 12.04 in others

A. Experimental Approach

We use SP2 benchmark [6] with several queries. Q1, Q2,
Q3a, Q3b, Q3c, Q5a, and Q5b are join queries. Q10 is single
O pattern query, and Q11 is single P pattern query. We
exclude Q4, Q6, Q7, Q8, Q9, Q12, with following reasons.
Q4 is a query for FILTER function in SPARQL, Q6, Q7 for
OPTIONAL, Q8, Q9 for UNION, and Q12 for ASK. These
functions are not supported in original HDT and don't have

relationship with join processing. We also remove Q11's
ORDERBY, LIMIT, and OFFSET to compare single P
pattern search speed. All results are average of five
executions while removing maximum and minimum
outcomes.

We also try to use Apache Jena [10], and Bitmat [11] to
compare results, but it did not work in our data set due to
large size (1,5GB).

B. Experimental Results

Search speed values for each triple pattern are shown in
Figure 6. The triple search using a GPU is eight times faster
than other methods in P pattern, while the search speeds of
other patterns are slower than those of existing methods.

Figure 6. Speed of triple searching.

Next, we use two GPUs (shown in Table 1) to determine

the number of GPU cores and memory size effect on
processing speed. We use GTX 750 Ti and GTX 660, where
the latter has 50% more cores than the former. Figure 7
shows the results for query processing speed. GTX660 is
faster than GTX750 Ti with 5% ratio. Considering the
difference in the number of cores between the two GPUS, it
does not effect on GPU processing. Thus, memory transfer is
critical for GPU processing. [8]

Figure 8 shows the results of SP2 benchmark. GPU
processing is slower in Q1, Q3b, Q3c, and Q10, which has
result of small size. Other queries are faster. Q2’s result for
the original HDT is zero because it produced a wrong answer
due to a program fault.

72Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

V. CONCLUSION

We propose an efficient RDF (HDT) query processing
focusing on P pattern. Previous methods are slow based on
the number of answer triples. Parallel processing using GPU
increases the speed of P pattern searching. Our first approach
was affected by size of memory, but not the number of GPU
cores. Thus, we choose HDT to which compresses RDF data.
This improved method is faster than original HDT and RDF-
3x when the number of answers is large.

Our future work includes support for GPU SPARQL
query processing (e.g. FILTER, UNION, and GROUPBY),
and determine to use or not to use GPU based on expected
speed of query processing. And a study for HDT join
processing using GPU is also needed.

Figure 7. Query speed of GTX 660 (left), GTX 750Ti (right).

Figure 8. SP2 benchmark result.

Acknowledgements This work was funded by Brain Pool
Program, KOFST (The Korean Federation of Science and
Technology Societies).

REFERENCES

[1] W3C. http://www.w3.org/RDF/, 2004 [retrieved: March, 2015].

[2] Prud'hommeaux, E., Seaborne, A. Sparql query language for
rdf, http://www.w3.org/TRlrdf-sparqlquery, 2008 [retrieved:
March, 2015].

[3] Martínez-Prieto, Miguel A., Mario Arias Gallego, and Javier
D. Fernández. "Exchange and consumption of huge RDF
data." The Semantic Web: Research and Applications.
Springer Berlin Heidelberg, 2012. pp. 437-452.

[4] Neumann, Thomas, Gerhard Weikum. "The RDF-3X engine
for scalable management of RDF data." The VLDB Journal
19.1 (2010): pp. 91-113.

[5] NVIDIA CORPORATION. 2013. Nvidia GPU Programming
Guide for Geforce 8 and later GPUs

[6] Schmidt, Michael, et al. "SP^ 2Bench: a SPARQL
performance benchmark." Data Engineering, 2009. ICDE'09.
IEEE 25th International Conference on. IEEE, 2009.

[7] Senn, Jürg. "Parallel Join Processing on Graphics Processors
for the Resource Description Framework." Architecture of
Computing Systems (ARCS), 2010 23rd International
Conference on. VDE, 2010. pp. 1-8

[8] Dimitrov, Martin, Mike Mantor, and Huiyang Zhou.
"Understanding software approaches for GPGPU reliability."

73Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Proceedings of 2nd Workshop on General Purpose Processing
on Graphics Processing Units. ACM, 2009.

[9] Quilitz, Bastian, and Ulf Leser. Querying distributed RDF
data sources with SPARQL. Springer Berlin Heidelberg, 2008.

[10] Jena, Apache. "Apache jena." jena. apache. org. Available:
http://jena. apache. Org, 2013 [Accessed: Mar. 20, 2014].

[11] Atre, Medha, and James A. Hendler. "BitMat: a main memory
bit-matrix of RDF triples." The 5th International Workshop
on Scalable Semantic Web Knowledge Base Systems
(SSWS2009). 2009.

74Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

