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Abstract — The importance of database systems to support 

mixed online transaction processing (OLTP) and online 

analytical processing (OLAP) workloads, the so-called OLXP 

workloads, has attracted much attention recently. Some 

research projects and also commercial database systems with 

focus on OLXP have appeared in the last few years. In this 

paper, we present our work aiming at extending the 

PostgreSQL OSS database system to efficiently handle OLXP 

workloads. Besides PostgreSQL’s traditional OLTP-oriented 

row data store, a new OLAP-oriented column data store is 

added in the form of a new index. Unlike previous works 

focusing on OLXP, our column store index has no restrictions 

concerning data size and/or updatability. Therefore, 

transactional data inserted to PostgreSQL row data store 

become immediately available for efficient query processing 

using this new column store index. 

Keywords - PostgreSQL; columnar data; OLTP; OLAP; 

OLXP. 

I.  INTRODUCTION 

Historically, database systems were mainly used for 

online transaction processing (OLTP) where transactions 

access and process only few rows of the data tables. Then, a 

new usage of database systems where queries access 

substantial portions of the data tables in order to aggregate 

few columns have evolved into the so-called online 

analytical processing (OLAP). The execution of OLAP 

query processing led to resource contentions and severely 

hurt mission-critical OLTP. Therefore, the data staging 

architecture where a dedicated OLTP database system 

whose changes are extracted, transformed and loaded into a 

separate OLAP database system was used for decades [1].  

However, new real-time/operational business intelligence 

applications require OLAP queries on the current, up-to-

date state of the transactional OLTP data [2] [3]. This OLXP 

workload, i.e., mixed workloads of OLTP and OLAP on the 

same database, has been extensively addressed recently. 

Some approaches adopt the columnar data store for both 

OLTP and OLAP [4] but it is still to be proven that 

columnar data stores can efficiently support mission-critical 

OLTP applications. Other hybrid approaches allow a data 

table to be represented simultaneously in both formats: row 

data for OLTP and columnar data for OLAP but with some 

constraints in the columnar data size and its 

updatability/synchronization with row data [5] [6]. 

In this work, we propose a new approach to enhance 

PostgreSQL [7] so that it can effectively handle OLXP 

workloads without any constraints on data sizes nor 

updatability. In our approach, columnar data are created as 

indexes of data tables with no size restrictions and are 

completely synchronized with row data for any 

insertions/updates/deletions in the data tables. There are 

other works that extend PostgreSQL to support columnar 

data stores for time-series data [8] and OLAP [9]. However, 

to the best of our knowledge, this is the first work extending 

the PostgreSQL OSS database to support OLXP. 

In section II we describe how data are stored and queries 

executed using the proposed column store index. Section III 

shows some preliminary evaluation results. Some 

concluding remarks are presented in section IV. 

II. COLUMN STORE INDEX 

In the following, we give a brief description of how we 
are extending PostgreSQL to efficiently support a column 
store index.  

A. Data store 

Updates to PostgreSQL’s row data store have to be 

immediately reflected to the column store index without 

degradation of the performance of OLTP transactions. Some 

previous works adopt the Write-Optimized-Storage (WOS) 

/Read-Optimized-Storage (ROS) approach where the 

updates are first buffered at WOS in row format and then 

asynchronously transferred to ROS in columnar format [10]. 

However, unlike previous approaches, as illustrated in Fig. 1, 

instead of writing all the row data into WOS, we only write 

PostgreSQL’s original Tuple Identifiers (TIDs) into the 

Insert List (InsL). Only when transferring data from InsL to 

ROS, the columnar data values identified by the TIDs are 

used. For performance reasons, deletions are not in-place, 

but a Deletion List (DelL) and a ROS delete-vector are used 

to immediately hide data that are physically deleted later. 

Data in ROS are grouped in units, called extents, for data 

management.  

We use the same Multi-Version Concurrency Control 

(MVCC) used in PostgreSQL to guarantee data consistency 

when transferring data from InsL to ROS (the same data 

cannot be found at InsL and ROS), and to handle 

uncommitted transactions (only insert/update/delete of 

committed transactions are reflected to ROS). 
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Figure 1. InsL/DelL and ROS Configuration 
 

B. Query Execution 

When the Query Optimizer chooses to execute a 

query/subquery using the columnar data instead of the 

traditional row data, the execution is handled by our new 

columnar data engine. For each query, the necessary portion 

of data in InsL is temporarily converted to a columnar data 

format (called Local ROS) and merged with the ROS data 

for processing, as shown in Fig. 2. 
 

 

Figure 2. Combining Local ROS and ROS for Query Processing 
 

The extents are processed in parallel by PostgreSQL’s 

Dynamic Background Workers.  For an efficient parallel 

processing, a mechanism where data containing pointers can 

be shared among the multiple processes is necessary. 

However, using PostgreSQL’s Dynamic Shared Memory, 

the mapping location is different between the processes and 

thus it doesn’t allow the straightforward sharing of pointers. 

Aiming at solving this problem, we designed a new shared 

memory mechanism called Shared Memory Context (SMC). 

SMC  interface is compatible  with  PostgreSQL’s   memory   
 

 

 
 

Figure 3. Parallel Processing using SMC 

context interface. Therefore, pre-existing PostgreSQL’s 

routines can be called, and memory that is newly allocated 

within those routines is mapped to SMC space. As 

illustrated in Fig. 3, using SMC, the Backend Process and 

the Dynamic Background Workers can share the necessary 

data for an efficient processing of queries in parallel. 

III. PERFORMANCE EVALUATION 

Although we are at a preliminary stage of evaluation 
using the DBT-3 benchmark [11], the results are promising. 
For instance, for query 1 of DBT-3, a speed-up ratio of 50 
was achieved, when using the column store index against 
PostgreSQL’s original row data, on the same server (a 2-
CPU machine with 16 cores). 

IV. CONCLUSION AND FUTURE WORK 

In this paper, we have briefly presented our work in 
progress on extending the PostgreSQL OSS database system 
with a column store index to handle OLXP workloads. We 
have introduced new mechanisms to efficiently synchronize 
the inserts/updates/deletes of row data with the column store 
indexes, and to efficiently process them in parallel using a 
new shared memory mechanism that is fully compatible with 
PostgreSQL’s memory context interface. 

We are now planning to evaluate the extensions we have 
introduced to PostgreSQL by using the CH-benCHmark [12] 
and some real applications.  
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