
Extending PostgreSQL with Column Store Indexes

Minoru Nakamura, Tsugichika Tabaru, Yoshifumi Ujibashi, Takushi Hashida, Motoyuki Kawaba, Lilian Harada

Computer Systems Laboratories

Fujitsu Laboratories Ltd.

Kawasaki, Japan

{nminoru, tabaru, ujibashi, hashida, kawaba, harada.lilian}@jp.fujitsu.com

Abstract — The importance of database systems to support

mixed online transaction processing (OLTP) and online

analytical processing (OLAP) workloads, the so-called OLXP

workloads, has attracted much attention recently. Some

research projects and also commercial database systems with

focus on OLXP have appeared in the last few years. In this

paper, we present our work aiming at extending the

PostgreSQL OSS database system to efficiently handle OLXP

workloads. Besides PostgreSQL’s traditional OLTP-oriented

row data store, a new OLAP-oriented column data store is

added in the form of a new index. Unlike previous works

focusing on OLXP, our column store index has no restrictions

concerning data size and/or updatability. Therefore,

transactional data inserted to PostgreSQL row data store

become immediately available for efficient query processing

using this new column store index.

Keywords - PostgreSQL; columnar data; OLTP; OLAP;

OLXP.

I. INTRODUCTION

Historically, database systems were mainly used for

online transaction processing (OLTP) where transactions

access and process only few rows of the data tables. Then, a

new usage of database systems where queries access

substantial portions of the data tables in order to aggregate

few columns have evolved into the so-called online

analytical processing (OLAP). The execution of OLAP

query processing led to resource contentions and severely

hurt mission-critical OLTP. Therefore, the data staging

architecture where a dedicated OLTP database system

whose changes are extracted, transformed and loaded into a

separate OLAP database system was used for decades [1].

However, new real-time/operational business intelligence

applications require OLAP queries on the current, up-to-

date state of the transactional OLTP data [2] [3]. This OLXP

workload, i.e., mixed workloads of OLTP and OLAP on the

same database, has been extensively addressed recently.

Some approaches adopt the columnar data store for both

OLTP and OLAP [4] but it is still to be proven that

columnar data stores can efficiently support mission-critical

OLTP applications. Other hybrid approaches allow a data

table to be represented simultaneously in both formats: row

data for OLTP and columnar data for OLAP but with some

constraints in the columnar data size and its

updatability/synchronization with row data [5] [6].

In this work, we propose a new approach to enhance

PostgreSQL [7] so that it can effectively handle OLXP

workloads without any constraints on data sizes nor

updatability. In our approach, columnar data are created as

indexes of data tables with no size restrictions and are

completely synchronized with row data for any

insertions/updates/deletions in the data tables. There are

other works that extend PostgreSQL to support columnar

data stores for time-series data [8] and OLAP [9]. However,

to the best of our knowledge, this is the first work extending

the PostgreSQL OSS database to support OLXP.

In section II we describe how data are stored and queries

executed using the proposed column store index. Section III

shows some preliminary evaluation results. Some

concluding remarks are presented in section IV.

II. COLUMN STORE INDEX

In the following, we give a brief description of how we
are extending PostgreSQL to efficiently support a column
store index.

A. Data store

Updates to PostgreSQL’s row data store have to be

immediately reflected to the column store index without

degradation of the performance of OLTP transactions. Some

previous works adopt the Write-Optimized-Storage (WOS)

/Read-Optimized-Storage (ROS) approach where the

updates are first buffered at WOS in row format and then

asynchronously transferred to ROS in columnar format [10].

However, unlike previous approaches, as illustrated in Fig. 1,

instead of writing all the row data into WOS, we only write

PostgreSQL’s original Tuple Identifiers (TIDs) into the

Insert List (InsL). Only when transferring data from InsL to

ROS, the columnar data values identified by the TIDs are

used. For performance reasons, deletions are not in-place,

but a Deletion List (DelL) and a ROS delete-vector are used

to immediately hide data that are physically deleted later.

Data in ROS are grouped in units, called extents, for data

management.

We use the same Multi-Version Concurrency Control

(MVCC) used in PostgreSQL to guarantee data consistency

when transferring data from InsL to ROS (the same data

cannot be found at InsL and ROS), and to handle

uncommitted transactions (only insert/update/delete of

committed transactions are reflected to ROS).

51Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 1. InsL/DelL and ROS Configuration

B. Query Execution

When the Query Optimizer chooses to execute a

query/subquery using the columnar data instead of the

traditional row data, the execution is handled by our new

columnar data engine. For each query, the necessary portion

of data in InsL is temporarily converted to a columnar data

format (called Local ROS) and merged with the ROS data

for processing, as shown in Fig. 2.

Figure 2. Combining Local ROS and ROS for Query Processing

The extents are processed in parallel by PostgreSQL’s

Dynamic Background Workers. For an efficient parallel

processing, a mechanism where data containing pointers can

be shared among the multiple processes is necessary.

However, using PostgreSQL’s Dynamic Shared Memory,

the mapping location is different between the processes and

thus it doesn’t allow the straightforward sharing of pointers.

Aiming at solving this problem, we designed a new shared

memory mechanism called Shared Memory Context (SMC).

SMC interface is compatible with PostgreSQL’s memory

Figure 3. Parallel Processing using SMC

context interface. Therefore, pre-existing PostgreSQL’s

routines can be called, and memory that is newly allocated

within those routines is mapped to SMC space. As

illustrated in Fig. 3, using SMC, the Backend Process and

the Dynamic Background Workers can share the necessary

data for an efficient processing of queries in parallel.

III. PERFORMANCE EVALUATION

Although we are at a preliminary stage of evaluation
using the DBT-3 benchmark [11], the results are promising.
For instance, for query 1 of DBT-3, a speed-up ratio of 50
was achieved, when using the column store index against
PostgreSQL’s original row data, on the same server (a 2-
CPU machine with 16 cores).

IV. CONCLUSION AND FUTURE WORK

In this paper, we have briefly presented our work in
progress on extending the PostgreSQL OSS database system
with a column store index to handle OLXP workloads. We
have introduced new mechanisms to efficiently synchronize
the inserts/updates/deletes of row data with the column store
indexes, and to efficiently process them in parallel using a
new shared memory mechanism that is fully compatible with
PostgreSQL’s memory context interface.

We are now planning to evaluate the extensions we have
introduced to PostgreSQL by using the CH-benCHmark [12]
and some real applications.

REFERENCES

[1] S. Chaudhuri and U. Dayal, “An Overview of Data Warehousing and
OLAP Technology”, Proc. VLDB, 1997, pp.65-74.

[2] A. Kemper and T. Neumann, “Hyper: A Hybrid OLTP&OLAP Main
Memory Database System Based on Virtual Memory Snapshots”,
Proc. IEEE ICDE, 2011, pp.195-206.

[3] H. Plattner, “The Impact of Columnar In-MemoryDatabases on
Enterprise Systems”, Proc. VLDB, 2014, pp.1722-1729.

[4] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhövd,
“Efficient Transaction Processing in SAP HANA Database: The End
of a Column Store Myth”, Proc. ACM SIGMOD, 2012, pp.731-741.

[5] “Oracle Database In-Memory”, Oracle White Paper, October 2014,
Available from: http://www.oracle.com/technetwork/database/in-
memory/overview/twp-oracle-database-in-memory-2245633.html
[retrieved: March, 2015].

[6] P. Larson, et al., “Enhancements to SQL Server Column Stores”, Proc.
ACM SIGMOD, 2013, pp.1159-1168.

[7] “PostgreSQL”, Available from: http://www.postgresql.org/
[retrieved: March, 2015].

[8] K. Knizhnik, “In-Memory Columnar Store extension for
PostgreSQL”, Available from: http://www.pgcon.org/2014/schedule/
events/643.en.html [retrieved: March, 2015].

[9] “PostgreSQL Columnar Store for Analytics Workloads”, Citusdata,
Available from: http://www.citusdata.com/blog/76-postgresql-
columnar-store-for-analytics.

[10] Mike Stonebraker, et al., “C-store: a column-oriented DBMS”, Proc.
VLDB, 2005, pp.553-564.

[11] Database Test Suite, Available from: http://sourceforge.net/projects/

osdldbt/files/dbt3 [retrieved: March, 2015]..

[12] R. Cole, et al., “The mixed workload CH-bencCHmark”, Proc.
DBTest, 2011, article no. 8.

52Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

http://www.oracle.com/technetwork/database/in-memory/overview/
http://www.oracle.com/technetwork/database/in-memory/overview/
http://www.citusdata.com/blog/76-postgresql-columnar-store-for-analytics
http://www.citusdata.com/blog/76-postgresql-columnar-store-for-analytics

