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Abstract—Spatial information processing has been a focus of
research in the past decade. In spatial databases, data are
associated with spatial coordinates and extents, and are retrieved
based on spatial proximity. A formidable number of spatial
indexes have been proposed to facilitate spatial data retrieval.
In this paper, we propose a new scalable, reliable and consistent
architecture for spatial database indexing based on hyperbolic
topology. This structure uses a strategy that enables to avoid such
an exhaustive search that is based on the use of a centralized
index. Our architecture is comparable to the well-known R-
tree structure, but uses the hyperbolic geometry properties with
specific model called “Poincaré disk model”. It uses a distributed
balanced Q-degree spatial tree that scales with spatial data objects
insertions into potentially any number of storage servers through
virtual hyperbolic coordinates taken in hyperbolic space. In other
words, we propose a new model based on structured Distributed
Hash Table (DHT) in which a user/application of each server is
considered as a client node. Thus, a database server can connect
to the system through a random database server that already
addresses the tree with a free address given by one other database
server of the system. Database servers addresses are associated
with virtual hyperbolic coordinates computed by the system.
In this paper, we consider a 3-regular Hyperbolic-tree in the
hyperbolic plane; so, except for the root of this tree, others servers
have in the best cases two addresses to give a new one (server’s
father uses one address). In our work, we perform simulations
and we analyze the practicability and reliability compared with
other DHT, such as Chord, Pastry, Kademlia used in other spatial
databases. The results show that our spatial architecture based
on a hyperbolic tree is viable, consistent and has acceptable
performances given the scalability and flexibility it could provide
to distributed database applications.

Keywords–Spatial Database; Management; Hyperbolic-Tree;
Query; Storage.

I. INTRODUCTION

The typical notion of a database is that of a system
in which one stores data about a fixed enterprise that one
has modelled in some way. Quite often, the modelling is
constrained in ways that help to reduce the complexity to
a manageable level. The usual kinds of uses to which that
data are put include fairly straightforward applications, like
inventory management, shipping systems, and payroll systems.
However, research in databases has advanced the state-of-the-
art sufficiently that we are now moving into non-traditional
applications that could not have been foreseen even ten years
ago. This move has been largely demand-driven. For example,
the emergence of spatial databases was initially driven by the
demand for managing large volume of spatial data used in

the geosciences and Computer-Aided Design (CAD). Also, we
notice to a collection of spatial data that increasing as never
seen.

Thus, in this paper, we aim at indexing large datasets of
spatial objects, each uniquely identified by an Object IDentifier
(OID) and stored in the hyperbolic-tree with a given address.
We define a scalable and reliable index that generalizes R-
tree structure for a Spatial Database System (SDS) [1]. Our
architecture has conformed to the general principles of a
Seamless Data Distribution System (SDDS) [2]:

• No central directory is used for data addressing,

• Servers are dynamically added to the system when
needed,

• Servers address the structure through coordinates.

Our model permits redundancy of object references, like
MSPastry [3], Chord [4], and Kademlia [5]. The funda-
mental principle of our systems is to map a large database
object identifier space onto a set of servers localisation in a
deterministic and distributed way. Roughly, given an object
key, the system is able to obtain the locations of database
servers where the corresponding values are stored. The existing
issues consist mainly of how they store and look up key-value
pairs of spatial data. These two primitives remain a challenging
problem in distributed data despite the considerable research
efforts that have been made. A spatial information system is
a more general term to describe an SDS that has application
customized tools for analysing spatial properties of the data.
It has to model reality, integrate spatial data acquired from
different sources and by different means, and support process-
ing and analysis of data on demand. Without being exhaustive,
we outline here the key issues that we address. Besides, for
instance, store and lookup queries are messages forwarded in a
progressive manner across cluster paths to the adequate server
that contain response. Also, the underlying routing process thus
requires that each database server maintains the status of its
connections to other databases servers increasing drastically
the number of messages exchanged, and this may constitute a
severe scaling limitation. Furthermore, each database server’́s
routing table must always be kept as small as possible in
order to both reduce the store/lookup query latency and not
affect the performances of applications built over our spatial
database system. The same applies to the number of routing
hops that must not grow too fast with the number of database
servers in the system [6]. Moreover, most of spatial database
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systems suffer from the lack of flexibility in storage queries
(i.e., values placement) involving consequently a heavy lookup
traffic load on the lookup paths to the underlying servers. We
argue that we can address and overcome simultaneously all the
aforementioned issues by maintaining a good trade off between
robustness, efficiency and system complexity. To this end, we
promote an indexing system for spatial database relying on
hyperbolic geometry. In this paper, we make the following
contributions:

• We provide a new architecture for indexation in the
distributed database system without any constraints.
Thus, at first, the database servers can connect arbi-
trarily to each other during his phase of connection
to the system. In addition, the data objects can be in-
serted, updated or deleted out of the system efficiently,
without the cost of maintaining any global knowledge.
Our approach is based on the ground breaking work
of Kleinberg [7] that we have enhanced in order to
manage a dynamic topology which is able to grow and
shrink over time.

• We propose a specific key-based routing system for
storing the mapping of database object identifier to
addresses over hyperbolic system in a flexible and
efficient way. Values are stored in a way to avoid
overloading a particular zone of the spatial database
system. Furthermore, storage and retrieving queries
can be solved within O(logN) hops.

• To improve database object availability and access
performance, our system that is based on a Distributed
Hash Table (DHT) system embeds a redundancy and
caching scheme that can be parametrized to get a good
trade off between reliability and storage consumption.

• We have carried out simulations, firstly, to demonstrate
the interest in terms of feasibility to build a spatial
database system over architecture based on the hy-
perbolic plane, and secondly, to compare our solution
with others solutions existing based on DHT.

The remainder of this paper is organized as follows. Section
II gives a brief overview of the related previous work. Section
III highlights some properties of the hyperbolic plane when
represented by the Poincaré disk model. Section IV defines
the local addressing and greedy routing algorithms of the
distributed database system. Section V defines the binding al-
gorithm of our spatial database system. Section VI presents the
results of our practicability evaluation obtained by simulations
and we conclude in Section VII.

II. RELATED WORK

Spatial databases generally refer to the collection of data
which have spatial coordinates and are defined within a space.
Until recently, in the most of the spatial indexing design,
objects in SDS are of irregular shape, and the irregular shape
of these objects is the main cause for expensive spatial operator
computation. Consider one of the simplest operators, such as
intersection. The intersection of two polyhedra requires testing
all points of one polyhedron against the other. The intersection
of two polyhedra objects is not always a polyhedron; the
intersection may sometimes consist of a set of polyhedra. The

efficiency of these operations depends on the representation
of the data [8], storage of objects [9][10] and retrieval of
relevant data for computation. When data objects are stored in
disks, the semantics of the data must be captured so that they
can be reconstructed correctly and efficiently. Representation
schemes developed for geometric modelling [3][4][5] are
suitable for spatial objects. In all that precedes, they have used
an Euclidean space splitting or ring, which differs from our
case; we are interested in a tiling of the hyperbolic space,
generally, and more particularly, to the hyperbolic plan. An
elementary property of the Euclidean space is the impossibility
to create more than two half planes without they intersect.
Our embedding is based on the geometric property of the
hyperbolic plane which allows to create distinct areas called
half planes. As explained by Miquel [11], in the hyperbolic
plane, we can create n half spaces pair wise disjoint whatever
n. This property is the base of our embedded algorithm (red
line Figure 1). Another important property is that we can tile
the hyperbolic plane with polygons of any size, called p-gons.
Besides the Merkle Hash Tree (MH-tree) [12] is a main-
memory of Advanced Data System (ADS) that has influenced
several authenticated processing techniques. It is a binary tree
that hierarchically organizes hash1 values (or digests). We use
the similar principle except that the key serves to calculate
virtual coordinates of the hyperbolic space for more flexibility.
The VB-tree [13] is a disk-based ADS that establishes the
soundness, but not the completeness, in term of security of
the obtained result. For keyword-based retrieval, they have
integrated R-tree [14] with spatial index and signature file
[15]. By combining R-tree and signature, they have developed
a structure called the IR2-tree [15]. IR2-tree has merits of both
R-trees and signature files. Our system, like IR2-tree, preserves
objectś spatial proximity, which is important for solving spatial
queries; but furthermore, it permits a reliable replication, like
in Chord, MSPastry and Kademlia.

III. HYPERBOLIC GEOMETRY

The model that we use in our system to represent the
hyperbolic plane is called the Poincaré disk model. In the
Poincaré disk model, the hyperbolic plane is represented by
the open unit disk of radius 1 centered at the origin. In this
specific model:

• Points are represented by points within this open unit
disk.

• Lines are represented by arcs of circles intersecting
the disk and meeting its boundaries at right angles.

In this model, we refer to points by using complex coordinates.

An important property is that we can tile the hyperbolic
plane with polygons of any sizes, called p-gons. Each tessella-
tion is represented by a notation of the form {p, q}, where each
polygon has p sides with q of them at each vertex. There exists
a hyperbolic tessellation {p, q} for every couple {p, q} obeying
(p− 2) ∗ (q − 2) > 4. In a tiling, p is the number of sides of
the polygons of the primal (the black edges and green vertices
in Figure 1) and q is the number of sides of the polygons
of the dual (the red triangles in Figure 1). Our purpose is to
partition the plane and address each node uniquely. We set p
to infinity, thus transforming the primal into a regular tree of
degree q. The dual is then tessellated with an infinite number
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of q-gons. This particular tiling splits the hyperbolic plane in
distinct spaces and constructs an embedded tree that we use
to assign unique addresses to the nodes. An example of such
a hyperbolic tree with q = 3 is shown in Figure 1.

n1 [0.5;0]

n2 [-0.25;0.433]

n3 [-0.25;-0.433]

n0 [0;0]

n5

n4

n6

n7

n8

n9

Figure 1. 3-regular tree in the hyperbolic plane.

In the Poincaré disk model, the distances between any two
points z and w are given by curves minimizing the distance
between these two points and are called geodesics of the
hyperbolic plane. To compute the length of a geodesic between
two points z and w and thus obtain their hyperbolic distance
dH, we use the Poincaré metric which is an isometric invariant
given by the formula:

dH(z, w) = argcosh(1 + 2× |z − w|2

(1− |z|2)(1− |w|2)
) (1)

This formula is used by the greedy routing algorithm shown
in the next section.

IV. NAMING AND BINDING TECHNICAL IN THE
HYPERBOLIC PLANE

We now explain how we create the hyperbolic addressing
tree for spatial database servers joins and how queries can be
routed in our SDS. We propose here a dynamic and scalable
hyperbolic greedy routing algorithm [16]. The first step in the
creation of our SDS based on hyperbolic-tree of servers nodes
is to start the first database server and to choose the degree of
the addressing tree.

We recall that the hyperbolic coordinates (i.e., a complex
number) of a server node of the addressing tree are used as
the address of the corresponding database server in the SDS. A
server node of the tree can give the addresses corresponding to
its children in the hyperbolic-tree. The degree determines how
many addresses each database server will be able to give for
news nodes servers connexions. The degree of the hyperbolic-
tree is defined at the beginning for all the lifetime of the
SDS. The SDS is then built incrementally, with each new
data server joining one or more existing data servers. Over
time, the data servers will leave the overlay until there is no
server left which is the end of the SDS. So, for every data
object that must be stored in the system, an OID is associated
with it and map then in key-value pair. The key will allow to

determine in which data servers the object will be stored (like
in the Section V). Furthermore, when a data object is deleted,
the system must be able to update this operation in all the
system by forwarding query through the latter. This method is
scalable because unlike [17], we do not have to make a two-
pass algorithm over the whole spatial system to find its highest
degree. Also, in our system, a server can connect to any other
server at any time in order to obtain an address.

The first step is thus to define the degree of the tree because
it allows building the dual, namely the regular q − gon. We
nail the root of the tree at the origin of the primal and we
begin the tiling at the origin of the disk in function of q. Each
splitting of the space in order to create disjoint subspaces is
ensured once the half spaces are tangent; hence, the primal
is an infinite q-regular tree. We use the theoretical infinite
q-regular tree to construct the greedy embedding of our q-
regular tree. So, the regular degree of the tree is the number
of sides of the polygon used to build the dual (see Figure
1). In other words, the space is allocated for q child database
servers. Each database server repeats the computation for its
own half space. In half space, the space is again allocated for
q − 1 children. Each child can distribute its addresses in its
half space. Algorithm 1 shows how to compute the addresses
that can be given to the children of a database server. The first
database server takes the hyperbolic address (0;0) and is the
root of the tree. The root can assign q addresses.

Algorithm 1 Calculating the coordinates of a database server’s
children.

1: procedure CALCCHILDRENCOORDS(server, q)
2: step← argcosh(1/sin(π/q))
3: angle← 2π/q
4: childCoords← server.Coords
5: for i← 1, q do
6: ChildCoords.rotationLeft(angle)
7: ChildCoords.translation(step)
8: ChildCoords.rotationRight(π)
9: if ChildCoords 6= server.ParentCoords then

10: STORECHILDCOORDS(ChildCoords)
11: end if
12: end for
13: end procedure

This distributed algorithm ensures that the database servers
are contained in distinct spaces and have unique coordinates.
All the steps of the presented algorithm are suitable for dis-
tributed and asynchronous computation. This algorithm allows
the assignment of addresses as coordinates in dynamic topolo-
gies. As the global knowledge of the SDS is not necessary, a
new server can obtain coordinates simply by asking an existing
server to be its parent and to give it an address for itself. If the
asked server has already given all its addresses, the new server
must ask an address to another existing database server. When
a new server obtains an address, it computes the addresses (i.e.,
hyperbolic coordinates) of its future children(The new database
servers which shall connect to the SDS). The addressing
hyperbolic-tree is thus incrementally built at the same time
than the SDS.

When a new database server has connected to database
servers already inside the SDS and has obtained an address
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from one of those database servers, it can start sending requests
to store or lookup database object in the SDS. The routing
process is done on each database server on the path (starting
from the sender) by using the greedy algorithm 2 based on
the hyperbolic distances between the servers. When a query
is received by a database server, the database server computes
the distance from each of its neighbors to the destination and
forwards the query to its neighbor which is the closest to the
destination (destination database server computing is given in
the Section V). If no neighbor is closer than the server itself,
the query has reached a local minima and is dropped.

Algorithm 2 Routing a query in the distributed database
system.

1: function GETNEXTHOP(dataserver, query) return
dataserver

2: w = query.destinationServerCoords
3: m = server.Coords
4: dmin = argcosh

(
1 + 2 |m−w|2

(1−|m|2)(1−|w|2)

)
5: pmin = server
6: for all neighbor ∈ server.Neighbors do
7: n = neighbor.Coords

8: d = argcosh
(

1 + 2 |n−w|2
(1−|n|2)(1−|w|2)

)
9: if d < dmin then

10: dmin = d
11: pmin = neighbor
12: end if
13: end for
14: return pmin

15: end function

In a real network environment, link and server failures are
expected to happen often. If the addressing hyperbolic-tree is
broken by the failure of a database server or link, we flush the
addresses attributed to the servers beyond the failed server or
link and reassign new addresses to those servers (some servers
may have first to reconnect to other servers in order to restore
connectivity). But, this solution is not developed in this paper.

V. HYPERBOLIC ADRESSING AND DESTINATION SPATIAL
DATABASE SERVERS COMPUTING

In this section, we explain how our SDS computes the
destination database servers addresses for stores and retrieves
queries. Indeed, the first server contacted by a client (prime
server) for sending a query in the system considers this latter
as a data object that can be stored or looked up. Thus, this
server generates an OID associate to the data object and this
latter is mapped into hyperbolic addresses corresponding to
destination database servers addresses in the hyperbolic-tree.
Our solution of SDS is a structured DHT system that uses the
local addressing and the greedy routing algorithms presented
in Section IV. On start-up, each new client query is associated
with the data object with OID corresponding to the name of the
query and that identifies the query it runs on. This name will be
kept by the data object during all the lifetime of the SDS. When
the prime database server computes some specific addresses of
database servers, when it is about a storage query, it stores the
name (OID) and value of query in these specific addresses
of SDS, thus the data object in the DHT; when it is about a
retrieving query, it contacts database servers whose addresses

have been computed. In our spatial system, the name is used
as a key by a mathematical transformation. If the same name
is already stored in the SDS, an error message is sent back to
the prime server (Server to whom the client is directly bound)
in order to generate another name. Thus, the SDS structure
itself ensures that OIDs are unique.

HASHED 
KEY

CLOSEST 
BINDER

BINDING 

RADIUS

FARTHEST 
BINDER

BINDER

BINDER

SHORTCUT

Figure 2. Hyperbolic DHT system.

A (OID, value) pair, with the name acting as a key by
mapping is called a binding. Figure 2 shows how and where a
given binding is stored in the SDS. A binder is any database
server that stores these pairs. The depth of a server in the
addressing hyperbolic-tree is defined as the number of parent
servers to go through for reaching the root of the hyperbolic-
tree (including the root itself). When the distributed database
system is created, a maximum depth for the potential binders
is chosen. This value is defined as the binding hyperbolic-tree
depth. To ensure a load balancing of the system, the depth d
is chosen such d minimize the following in-equation :

p× (
(1− (p− 1)d)

2− p
) + 1 ≥ N (2)

with d the depth, p (p ≥ 3) the degree and N the number
of database servers.

When a new database server joins the SDS by connecting
to other servers, it obtains an address from one of these
servers. Next, the server stores its own binding in the system.
So, during his life, each database server tries to join others
by sending a join query. Each server cannot accept that a
limited number of join queries independently of the degree
of the Hyperbolic-tree. The new connections serve as shortcuts
during the phases of storage and retrieving of data objects. We
call these connections, shortened links, as indicated in Figure
2.

A. Storage query process

When a client wants to send a storage query (insert, etc.),
the first server with whom it is connected considers a query
as an object (thus generates an OID) and creates a key by
hashing its name with the SHA-512 algorithm. It divides the
512-bit key into 16 equally sized 32-bit sub keys (for redundant
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storage). The server selects the first sub key and maps it to an
angle by a linear transformation.

The angle is given by:

α = 2π × 32-bit subkey

0xFFFFFFFF
(3)

The database server then computes a virtual point v on the
unit circle by using this angle:

v(x, y) with
{
x = cos(α)
y = sin(α)

(4)

Next, the database server determines the coordinates of the
closest binder to the computed virtual point above by using the
given binding tree depth.

In Figure 2, we set the binding Hyperbolic-tree depth to
three to avoid cluttering the figure. It is important to note that
this closest binder may not really exist if no database server is
currently owning this address. The database server then sends
a storage query to this closest database server. This query is
routed inside the SDS by using the greedy algorithm of the
Section IV. If the query fails because the binder does not exist
or because of database server/link failures, it is redirected to the
next closest binder which is the father of the computed binder.
This process continues until the query reaches an existing
binder database server which can be any database server on the
path from the computed closest binder to the center database
server.

Upon reaching an existing binder, the query is stored
in that binder. The query can thus go up the addressing
Hyperbolic-tree to the center database server having the
address (0;0) which is the farthest binder. The path from the
computed closest binder to the farthest binder is defined as
the binding radius. This process ensures that the queries are
always stored first in the binders closer to the unit circle and
last in the binders closer to the disk center. However, to avoid
overloading the farthest binder particularly and to keep a load
balancing, we limit the number of storages S like follow:

S ≤ b1
2
× log(N)

log(q)
c (5)

with N equal to number of distributed database servers, q
to degree of hyperbolic-tree.

Furthermore, if addressing hyperbolic-tree is unbalanced
(because of servers leaving or failing in the system), many
queries may be stored in database servers close to the center
thus overloading them. Besides the previous solution, any
binder will be able to set a maximum number of stored queries
and any new database server to store will be refused and the
query redirected as above. Besides, to provide redundancy and
so ensure the availability and reduce the latency period in the
lookup process, the database server does the storage process
described above for each of the other 15 sub keys. Thus 16
differents binding radiuses will be used at the most and this
will improve the even distribution of the pairs (key-value).

In addition to this and still for redundancy purposes, a pair
key-value of the data object may be stored in more than one
database server of the binding radius. A binder could store
a data object and still redirect its query for storage in other

ancestor binders. The number of stored copies of a key-value
pair along the binding radius may be an arbitrary value set at
the SDS creation. Similarly, the division of the key in 16 sub
keys is arbitrary and could be increased or reduced depending
on the redundancy needed. To conclude, we can define two
redundancy mechanisms for storage copies of a given binding:

1) We can use more than one binding radius by creating
several uniformly distributed subkeys.

2) We can store the data object key-value pair in more
than one binder in the same binding radius.

Algorithm 3 Storage algorithm in the general context
1: function STOREPROCESS(PrimeDataServer Query)

return 0
2: OID ← Query.GetOID()
3: Key ← Hash(OID)
4: for A doll r ∈ RCircular

5: d← PMax

6: i← 1
7: while i ≤

⌊
1
2 ×

log(N)
log(q)

⌋
&& d ≥ 0 do

8: SubKey[r][d]← CSubkey(Key)[r][d]
9: TgServAd[r][d]← CAd(SubKey[r][d])

10: TgServ ← GetTg(TgServAd[r][d])
11: if route(Query, TgServer) then
12: i+ +
13: put(OID,Query)
14: end if
15: d−−
16: end while
17: end for
18: return 0
19: end function

These mechanisms enable our SDS to cope with a non-
uniform growth of the database servers and they ensure that
a data object will be stored in a redundant way that will
maximize the success rate of its retrieval.

The numbers of sub keys and the numbers of copies in
a radius are parameters that can be set at the creation of the
SDS. Increasing them leads to a trade-off between improved
reliability and lost storage space in binders.

Our solution has the property of consistent hashing: if one
database server fails, only its keys are lost but the other binders
are not impacted and the whole system remains coherent.

As in many existing systems, pairs (key-value) will be
stored by following a hybrid soft and the hard state strategy.
Every database server has to verify every X unit of time that
his neighbour is alive. When the database server leaves the
system, his neighbor tries to connect with his father for keeping
the hyperbolic-tree stable. But, we do not detail this dynamic
process in our paper. Algorithm 3 illustrates this mechanism.

B. Lookup query process

Now, if the client wants to lookup a data object in the
connected and use to store the data objects distributed SDS,
a prime server is contacted and this latter generates an OID
for the client query. Here again, OID is mapped into a key by
SHA-512 algorithm, thus the 512 bits key is divided into 16
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sub keys. Each sub key by the process describe in the Section
V-A, will be transform into address that represent address of
the database server where data object is stored. This latter is
contacted by prime database server for update, delete or select
the value associated.

Algorithm 4 Lookup algorithm in general context for inserting,
deleting and updating of data object

1: function LOOKUPPROCESS(PrimeDataServer,
Query) return V alue

2: OID ← Tg.GetQueryOID()
3: Key ← Hash(QueryOID)
4: for A doll r ∈ RCirculare

5: d← PMax

6: i← 1
7: while i ≤

⌊
1
2 ×

log(N)
log(q)

⌋
&& d ≥ 0 do

8: TgServAd[r][d]← GetV alue(Key)
9: V alue← GetV alue(TgSerAd[r][d], OID)

10: if V alue ! = null then
11: if Query == delete then
12: delete(OID)
13: end if
14: if (Query == update) then
15: update(OID)
16: end if
17: if Query == select then
18: return V alue
19: break
20: end if
21: i+ +
22: end if
23: d−−
24: end while
25: end for
26: return 0
27: end function

When the redundancy mechanism has been used to store
the data object, lookup process repeats the latter process of
lookup for any sub key, thus, the operation will be performed
on all database servers that contain the data object. Our SDS
ensures then the coherence of data objects of the spatial
database. The Algorithm 4 illustrates this mechanism.

VI. EXPERIMENTAL EVALUATION

We performed experiments evaluating the behaviour of our
SDS over large datasets of an hyperbolic plane. Furthermore,
we consider that the system is dynamic (there is join or leave
of database servers during the simulation) with rates of churn
variables. We use a simulator Peersim [18] for SDS simulation
and it allows to obtain dataset OIDs by generation following
the uniform distribution. The study involved the following
parameters of our SDS :

• number of database servers connected and used to
store the distributed data objects. Here we have con-
sidered 10000 at the beginning;

• we try to store 6 million data objects in our SDS
following an exponential distribution with a median
equal to 10 minutes;

• we perform simulation during 2 hours and, we fixed
the capacity of each server to 6000 objects.

• we consider that the rate of churn varies between 10%
and 60%.

We studied the behaviour of our architecture for the data
objects storage and retrieving in the system. So, we are
interested by certain properties.

A. Balance of the Hyperbolic-tree

Figure 3 shows an experimental distribution of points
corresponding to the scatter plot of the distribution of database
server in our system. Thus, we can mark that our hyperbolic-
tree is balanced. Indeed, we can noticed from part and others
around the unit circle which we have database servers. This has
an almost uniform distribution around the root, what implies
that our system builds a well-balanced tree what will more
easily allow to reach a load balancing of storage.
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Figure 3. Scatter plot corresponding to the distributed database servers.
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Figure 4. Distribution of database servers in the neighborhood on the edge
of the unit circle.

Figure 4 shows correspondingly Poincaré disk model that
no address of database server belongs on the edge of the unit
circle. Indeed, the addresses of database server were obtained
by projection of the tree of the hyperbolic plane in a circle of
the Euclidean plan of radius1 and of center of coordinate (0;
0).

The distances between any two points z and w in the
Poincaré disk model given in equation 6 can also be written
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like follows :

dH(z, w) = argcosh(1 + 2∆) (6)

with:

∆ =
|z − w|2

(1− |z|2)(1− |w|2)
(7)

For more details on the Poincaré metric, we refer the
reader to the proof in [19]. The hyperbolic distance dH(z, w)
is additive along geodesics and is a Riemannian metric. Thus,
we consider the formulae 6, the distance between O (0;0) and
any point on edge to the circle so much towards the infinite.
All the computed addresses associated to the database servers
should be inside the unit circle. This result shows that our
distributed database system can grow in the infinite, in theory.
In practice of other parameters than we have not evoke in
this paper have to intervene. Our system, besides ensuring the
security of the data object by hashing them, the availability
by the replication of the storage so the coherence of the data
object by the lookup for all the occurrences of an OID for the
update, the deletion, allows a passage to the scale in term of
the number of database servers interconnected in the system.

B. Load balancing of the Hyperbolic-tree

Figure 5 shows a plot of the evaluation of the average
number of objects stored by database server in time. This figure
shows a regular growth of this number of data objects stored
in function of time. Indeed, 293.27 data objects on average
are stored by database server after 10 minutes vs 620.4 after
2 hours. What is interesting to notice is that the standard
deviations seem low, approximately 10 % of the average.
This indicates a low dispersal of the number of objects stored
around of average during the simulation.
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Figure 5. Distribution of the spatial database servers on the hyperbolic-tree.

Indeed, if we use our results to build the confidence
interval, we can say that after 10 minutes of simulation, 68.2
% of the database servers stores between 263.69 and 322.71
data objects and 95 % stores it between 234.18 and 352.22
against 68.2 % of the database servers who stores between
560.18 and 681.58 data objects after 2 hours and 95 % of
the database servers who stores between 497.95 and 742.84
data objects after 2 hours. In view of these , we can say that
our system maintains a good enough load balancing between
database servers which is to ensure the stability of our SDS.

C. Storage and retrieval path length in Hyperbolic-tree

Figures 6 and 7 show that during the simulation, queries
in both cases can be answered within O (log N) or N equal
to the number of database server building the system. Indeed,
the standard deviation being very low (less than 5 % of the
average for storage et retrieving), we did not represent it. In
the worst case, queries contacts less than 4 database servers
in a system which in account 10000, for either to store, or to
retrieving a data object.

Besides, what is also interesting to note is that the plot
decreases slowly to become stationary after around 100 min-
utes in both cases. It can be explained because during the
simulation, the database servers create shortcuts as indicated
in the Section V. These shortcuts allow to reach their target
in fewer hops. The situation of stationarity is understandable
by the fact that after a while, all the database servers reached
their maximum of shortcuts create and most part of the queries
is processed on average in less than 3.75 hops in both cases.
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Figure 6. Path length of the storage’s queries in Hyperbolic-tree.
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Figure 7. Path length of the lookup’s queries in Hyperbolic-tree.

D. Analyses compared by the performances

Figure 8 shows that in a context where churn phenomenon
is equal to 10%, we can notice that all the successes rates
are between 83% and 88% when the churn rate becomes
60%, according to the number of replication, the success
rates is between 18% and 67%. This result indicates that
the replication strategy permits to reduce impact of the churn
phenomenon on our spatial database performance.
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Figure 8. Evaluation of resilient strategy against the churn phenomenon.

Figure 9 indicates that when the churn rate is between
10% and 60%, the average number of hops to send query
from source server to target server (server that contains the
data object searched) is approximatively the same. Thus,
through this result, we show that our system behaves well
with compared with the others such as Chord, MSPastry and
Kademlia. So, our spatial database that is based on this DHT
algorithm has a good performance.
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VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a new structure based on
the Poincaré disk model. The hyperbolic tree which is used
presents some properties that allow us to propose a consistent
system of distributed database servers using the virtual address
(hyperbolic coordinates). Next, we evaluated the performances
of our system according to some parameters.

We showed that our system was scalable in terms of the
number of database servers that we can connect as well as in
term of number of hops to solve the queries. We also showed
that the arrangement of the different database servers of the
model allows us to keep a well-balanced tree. Furthermore, we
showed that our system maintains a storage load balancing.
Furthermore, this model based on Disk of Poincaré present
a certain number of properties that permit him to be more
consistent and hardness than other existing solution. All these
results are encouraging and show us that our system is viable
in a dynamic context. In the continuation of our work, we
envisage to study our SDS in a realistic context and improve
on Churn-resilient replication strategy.
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