
JAebXR: a Java API for ebXML Registries
for Federated Health Information Systems

Antonio Messina, Pietro Storniolo and Alfonso Urso
ICAR - CNR
Palermo, Italy

Email: {messina, storniolo, urso}@pa.icar.cnr.it

Abstract—The traditional Java API for Registries (JAXR) pro-
vides a useful way for Java developers to use a single simple
abstraction API to access a variety of registries. The unified
JAXR information model (Infomodel), which describes content
and metadata within registries, provides a simple way to access
registries information. However, when a JAXR registry provider
implements the OASIS (Organization for the Advancement of
Structured Information)/ebXML Registry Services Specification,
it internally works with ebXML Registry Information Model
(RIM) objects which should be exposed as JAXR Infomodel
objects. Furthermore, any application using ebXML RIM objects,
before the access to the registry via a JAXR provider, has to
convert them to the Infomodel counterpart. To deal with this
problem, in this paper we suggest a new tool for the ebXML
software development, which focuses on an extension of the
traditional JAXR layer, providing the native use of ebXML RIM
objects in client side applications with a direct access to the
ebXML RIM SOAP service, and avoiding any conversion to/from
JAXR Infomodel objects. The proposed approach reduces the
developers duty, allowing them to focus exclusively on the ebXML
objects use and it considerably speeds up the interactions with
every ebXML registries.

Keywords–ebXML, Registry Services, Registry Client, SOAP,
JAXR, JAVA.

I. INTRODUCTION

In recent years, we have been involved in the development
of some software components within the project OpenInFSE,
an experimental interoperability infrastructure based on the
InFSE architecture [1], which represents a multi-level service-
oriented architecture for sharing medical data among federated
Health Information Systems (HIS) [2]. This infrastructure
is based on the extensive use of Web Service technology
and XML data exchanged as Simple Object Access Protocol
(SOAP) messages in accordance to the Health Level 7 (HL7)
[3] Clinical Document Architecture (CDA) standard.

All of the software components included in the InFSE
Component layer interact with the Federated Index Registry,
which enables the query of medical data, managed by several
HIS, to a federated system of regional registries in Italy, each
of them able to localize the data achieved in the regional
repositories.

Currently, there are two preeminent registry standards:
Universal Description, Discovery, and Integration (UDDI) [4]
and Electronic Business using eXtensible Markup Language
(ebXML) [5] [6]. Using one of these registry standards, it is
possible to publish a set of Web services, enabling internal or
external business partners to discover them.

A registry typically works as electronic Yellow Pages,
where information about businesses, and the products and
services they offer are published and discovered. A registry can
also serve as a database or as a storage of shared informations.

A registry can also work as an electronic bulletin board in
which the partners share information in a dynamic and ad hoc
manner.

Submission and storing of shared information are important
operations performed by registry-service clients. These clients
also need to complete various registry management operations,
such as identifying, naming, describing, classifying, asso-
ciating, grouping, and annotating registry metadata. Finally,
clients also must be able to query, discover, and retrieve shared
information from the registry so that they expect that a typical
registry supports most of these operations.

The ebXML is designed to create a global electronic
market place where enterprises of any size, anywhere, can find
each other electronically and conduct business using exchange
of XML messages according to standard business process
sequences and mutually agreed trading partner protocol agree-
ments. This standard overcomes the limitations of existing
business-to-business frameworks and technologies, because,
for example, UDDI does not provide repository capability for
business objects, SOAP in its basic form does not provide
reliable and secure message delivery, and the Web Service
Definition Language (WSDL) does not address business col-
laboration.

The Java API for XML Registries (JAXR) [7] provides a
standard Application Programming Interface (API) for pub-
lication and discovery of Web services through underlying
registries. JAXR does not define a new registry standard.
Instead, this standard Java API performs registry operations
over a various set of registries and defines a unified information
model to describe registry contents.

The JAXR specification defines a general-purpose API,
allowing any JAXR client to access and interoperate with any
business registry accessible via a JAXR provider. In this sense,
JAXR provides a Write Once, Run Anywhere API for registry
operations, simplifying Web services development, integration,
and portability.

During the development of OpenInFSE project, JAXR
has been initially adopted to access to underlying ebXML
registries. Even though JAXR can be used for the access to
ebXML registries, it can be considered unsuitable because it
heavily depends on the registry implementation, it involves
too many data conversion and it may lead to a serious general
inefficiency of the entire infrastructure.

33Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

In this paper, the development of JAebXR, which is a JAXR
extension, is proposed. This extension can be viewed as a com-
plementary API to offer an ebXML provider implementation
and to complete the current JAXR reference implementation.

The paper is organized as follow. Section 2 presents
the JAXR architecture, also illustrating some typical registry
operation. Section 3 presents the motivations for this work.
Section 4 presents our proposed approach to assist the ebXML
client code development. Section 5 introduces the open source
ebXML registry service developed as natural counterpart of
JAebXR within the OpenInFSE Project. Finally, conclusions
and the presentation of some future works are reported.

II. JAXR ARCHITECTURE

The JAXR architecture defines three important architectural
actors:

• A registry provider implements an existing registry
standard, such as the Organization for the Advance-
ment of Structured Information (OASIS)/ebXML Reg-
istry Services Specification 3.0.

• A JAXR provider offers an implementation of the
JAXR specification approved by the Java Community
Process (JCP) in May 2002. You can implement a
JAXR provider as its own JAXR-compliant registry
provider. However, you would more likely implement
a JAXR provider as an interface to an existing registry
provider, like UDDI or ebXML type. Currently, the
JAXR reference implementation 1.0 offers a JAXR
UDDI provider implementation.

• A JAXR client is a Java program that uses JAXR to
access the registry provider via a JAXR provider. A
JAXR client can be either a standalone Java 2 Platform
Standard Edition (J2SE) application or Java 2 Platform
Enterprise Edition (J2EE) components, such as Enter-
prise JavaBeans (EJBs), Java Servlets, or JavaServer
Pages (JSs). The JAXR reference implementation also
supplies one form of a JAXR client, a Swing-based
registry browser application.

Because JAXR offers a standard API for accessing var-
ious registry providers and a unified information model to
describe registry contents, JAXR clients, whether HTML
browsers, J2EE components, or standalone J2SE applications,
can uniformly perform registry operations over various registry
providers.

Figure 1 shows a high-level view of the current JAXR
architecture.

Note that the JAXR client connects with the JAXR
provider, not the registry provider. The JAXR provider acts as
a proxy on the client’s behalf, directing and invoking methods
on the appropriate registry provider. The connection maintains
client state. In addition, the JAXR client dynamically sets its
authentication information and communication preference on
the connection any time during the connection’s lifetime.

After the JAXR client invokes JAXR capability-level meth-
ods, the JAXR provider transforms these methods into registry-
specific methods and executes requests to the underlying
registry providers.

Figure 1. Current available JAXR architecture.

The communication protocol between a JAXR provider and
a registry provider depends on the registry type and it is trans-
parent to the JAXR client. A JAXR provider communicates
with the UDDI registry provider by exchanging basic SOAP
messages, while the JAXR provider should communicate with
an ebXML registry provider through SOAP messaging or
ebXML message service.

A. Capability profiles
Because among registry provider capabilities some diver-

sity exists, the JAXR expert group decided to add multilayer
API abstractions through capability profiles. A capability level
is assigned to each method of a JAXR interface, and those
JAXR methods with the same capability level define the JAXR
provider capability profile.

Currently, JAXR defines only two capability profiles:
level 0 profile for basic features and level 1 profile for
advanced features. Level 0’s basic features support the so-
called business-focused APIs, while level 1’s advanced features
support generic APIs. At the minimum, all JAXR providers
must implement a level 0 profile. A JAXR client application
using only those methods of the level 0 profile can access
any JAXR provider in a portable manner. JAXR providers for
UDDI must be level 0 compliant.

JAXR providers can optionally support the level 1 profile.
The methods assigned to this profile provide more advanced
registry capabilities needed by more demanding JAXR clients.
Support for the level 1 profile also implies full support for the
level 0 profile. JAXR providers for ebXML must be level 1
compliant.

B. JAXR information model
Invoking life-cycle and query management methods on the

JAXR provider requires the JAXR client to create and use the
JAXR information model objects.

The JAXR information model resembles the one defined in
the ebXML Registry Information Model 2.0, but also accom-
modates the data types defined in the UDDI Data Structure
Specification.

Although developers familiar with the UDDI information
model might face a slight learning curve, once understood, the
JAXR information model will provide a more intuitive and
natural interface to most developers.

34Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

C. JAXR interations
Figure 2 shows the JAXR interactions in a client-server

communication.

Figure 2. JAXR interactions.

1) A JAXR client uses JAXR interfaces and classes to
request access to a registry. The client sends the
request to a JAXR provider.

2) When a JAXR provider receives a request from a
JAXR client, it transforms the request into an equiv-
alent request that is based on the specifications of
the target registry. The JAXR provider then passes
this transformed request to a registry provider.

3) The registry provider receives a request from a JAXR
provider and processes it. The process is then re-
versed.

4) The registry provider returns a response to the JAXR
provider, which transforms it to an equivalent JAXR
response.

5) The JAXR provider sends the JAXR response to the
JAXR client.

III. MOTIVATION

In the development of applications or software layers
that need to interact with ebXML registries there are some
alternative ways:

1) direct use of the ebXML SOAP service exposed by
a standard ebXML registry;

2) direct use of registries proprietary APIs;
3) JAXR APIs.

Because the first is well documented but not very practical
and a developer should try to avoid the second for portability
reasons, JAXR seems to be an obvious choice.

JAXR was our first choice but immediately we have
obtained unsatisfactory results for the following reasons:

• Both the request from a JAXR client to a JAXR
provider and the JAXR response sent back to the
JAXR client carry Infomodel objects. It means that
the JAXR client has to manage such objects.

• As mentioned in previous section, the current JAXR
reference implementation offers only a JAXR UDDI
provider implementation. It means that when we de-
velop some ebXML-related piece of software, we need
to map our ebXML objects to JAXR Infomodel objects
for the requests and viceversa for the responses.

• Avaliable open-source ebXML registry providers, i.e.,
Omar [8], present a JAXR side-server interface but
they internally work on ebXML objects. It means
that external JAXR requests are translated to ebXML
requests and the ebXML responses are translated back
to JAXR responses.

Figure 3 shows the ebXML-over-JAXR interactions in a
client-server communication.

Figure 3. ebXML-over-JAXR interactions.

We refer interested readers to [9] for more details.

The reasons stated above involve considerable complexity
in the code development and a substantial performance degra-
dation.

In the following section, we propose an extension of the
traditional JAXR layer, providing the native use of ebXML
RIM objects in client side applications with a direct access to
the ebXML RIM SOAP service, and avoiding any conversion
to/from JAXR Infomodel objects.

The proposed approach reduces the developer’s duty, al-
lowing them to focus exclusively on the ebXML object’s use
and it may considerably speed up the interactions with every
ebXML registries.

35Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

IV. JAXR EXTENSION: JAEBXR
The Java API for ebXML Registries (JAebXR) library has

been developed in order to facilitate, standardize and optimize
interactions with ebXML registries.

Its architecture is directly derived from JAXR, incorpo-
rating and extending its functionality to ensure support to
the types of objects and services defined by OASIS ebXML
RegRep 3.0 specifications.

For this reason JAebXR can be considered as a JAXR
Provider Level 1 implementation, because it also supports
UDDI registries type (level 0).

Figure 4 shows a high-level view of the JAebXR architec-
ture.

Figure 4. JAebXR architecture.

The API is independent of the particular implementations
of ebXML registries. Interactions with ebXML registries occur,
in fact, simply by invoking the SOAP web services exposed, as
per OASIS specifications. In such circumstances, queries and
transactions exclusively refer to ebXML RIM objects, properly
encapsulated using the Java Architecture for XML Binding
(JAXB) [10].

To speed up operations, in particular queries on registry
objects, the API uses the in-memory object cache implemen-
tation provided by cache2k [11].

A. Implementation
The package javax.ebxml.registry, like the package

javax.xml.registry in JAXR, contains the definition and im-
plementation of the interfaces to register access, as shown in
Figure 5.

The classes BusinessLifeCycleManager, BusinessQuery-
Manager, Connection, ConnectionFactory, DeclarativeQuery-
Manager, LifeCycleManager, QueryManager, and Registry-
Service are implementations of the homonymous JAXR in-
terface classes, extended by specific methods for the ebXML
RIM objects.

The sub packages javax.ebxml.registry.security and
javax.ebxml.registry.soap handle the secure client-server
SOAP interactions using Apache WSS4J [12], which
implements the primary security standards for web services,
namely the OASIS Web Services Security (WS-Security)
specifications [13].

In the following subsections, a more detailed description
of some of the main classes is reported.

Figure 5. The JAebXR Java package.

B. ConfigurationFactory
Configuration issues are managed by the ConfigurationFac-

tory class, which was built as a singleton: there is just a private
constructor and a static getter method that returns an instance
of the class, creating it in advance or at the first invocation of
the method, by storing the reference in a static private attribute.

The class expects configuration directives given in a text
properties file called ebxml.properties and, once instantiated,
reads that file to set the required attributes to instantiate a
SOAPMessenger object to invoke the ebXML registry web
service in authenticated mode.

Figure 6 shows a sample configuration file:

Figure 6. Sample ebxml.properties

The supported attributes are:

• connectionFactoryClass: fully qualified name of the
registry class, which implements the JAXR Connec-
tionFactory interface. It is required only when JAebXR

36Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

is used in a JAXR-way, as better specified in the next
subsection;

• aliasName and aliasPass: registry user credential;
• keystorePath, keystorePass and certificateType: key-

store related parameters to access to the user certifi-
cate;

• cacheExpirationTime: time duration in minutes after
an entry expires. A value of 0 disables the cache;

• cacheMaxSize: maximum cache size limit in KBytes;
• sqlQueries: enable the use of optional SQL-92 [14]

queries instead of standard ebXML filter queries.

C. ConnectionFactory
The ConnectionFactory class is the base class essential

for the creation of a JAXR connection, which can be done
by searching via the Java Naming and Directory Interface
(JNDI) [15] or directly, through the use of the static method
newInstance().

We have chosen the second way, which requires the instan-
tiation of the class that implements the interface Connection-
Factory.

The registry connection is also completely managed in
terms of authentication, using the user credentials contained
in a specific keystore. That means that an invocation of the
method createConnection() returns a ready-to-use Connection
object.

D. LifeCycleManager and BusinessLifeCycleManager
The LifeCycleManager interface class in JAXR is devoted

essentially to the management of Infomodel objects by the
declaration of several abstract methods.

The LifeCycleManager class in JAebXR fully implements
the interface javax.xml.registry.LifeCycleManager and extends
it to support all the ebXML RIM objects by methods named
using the Type suffix. It means, for example, that the creation of
a RIM registry object is realized by the createRegistryObject-
Type() method, the creation of a RIM classification scheme is
realized by the createClassificationSchemeType() method, and
so on.

Object storage and cancellation are achieved by the meth-
ods saveObjectTypes() and deleteObjectTypes(). Both of these
methods call the generic method submitObjectTypes(), which
actually implements the above operations using SOAP mes-
sages sent directly to the ebXML registry.

The BusinessLifeCycleManager class extends LifeCycle-
Manager and implements the ebXML version of traditional
JAXR methods.

E. RegistryService
The RegistryService class is the principal interface imple-

mented by a JAXR provider and it can be obtained from a
Connection to a registry.

In JAebXR, a RegistryService object is instantiated even
when there is no JAXR connection. Therefore you can always
use it to obtain the references to the fundamental BusinessLife-
CycleManager, DeclarativeQueryManager and BusinessQuery-
Manager objects.

F. DeclarativeQueryManager

The class fully implements the interface
javax.xml.registry.DeclarativeQueryManager and extends
it to support all the ebXML query types, such as:

• ebXML Registy Services Filter queries;

• SQL-92 queries;

• Stored queries;

The queries are incapsulated in an AdhocQueryRequest
object before they are sent via SOAP. Then the results are
returned as a complex type RegistryResponseType object.

G. BusinessQueryManager and SQLBusinessQueryManager

The BusinessQueryManager class, which is exposed by
the Registry Service, implements the business style query
interface. It supports all the standard JAXR methods and it
also provides several new methods to interact with ebXML
registries. Queries are done using the mandatory ebXML query
types.

The derived class SQLBusinessQueryManager implements
some of the business queries rewriting them using SQL-92,
optionally supported by the OASIS ebXML standards.

H. JAebXRClient

This is an auxiliary class, designed as a singleton, provided
to develop ebXML clients simply and quickly. Once instanti-
ated, it immediately sets up all that is necessary and it creates
all the main objects able to interact with an ebXML registry:

• lcm: BusinessLifeCycleManager;

• dqm: DeclarativeQueryManager;

• bqm: BusinessQueryManager (or SQLBusinessQuery-
Manager, according to the sqlQueries parameter’s
value in configuration file).

Their values are available to the outside via the get-
ter methods getBusinessLifeCycleManager(), getDeclarative-
QueryManager() and getBusinessQueryManager(), as shown
in the figure below.

Figure 7. JAebXRClient sample use

37Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

V. TEST CASE

The use of the library is pretty simple: first of all the
configuration file is prepared and then, as reported in the
sample code shown in Figure 7, an instance of JAebXRClient
class is created.

All our tests have been done using the ebXML Registry by
ICAR CNR (eRIC) version 3.2 [16].

To test the ebXML specifications compliance, we have
chosen the eRIC JAXR client test suite [17] as starting point
and we have rewritten it in a JAebXR way. The library passed
all the tests.

Finally, we have put together various pieces of code from
previous tests to execute a sort of benchmark to also check the
performances. We did the same with the JAXR version of the
source code.

We have grouped the tests in the following four macro-
categories:

• RIM
◦ creation, addition of attributes, storage, load

and deletion of a Person object and a User
object;

◦ creation, storage, load and deletion of Classi-
ficationScheme object and of some its multi-
level ClassificationNode childs;

◦ creation, storage, modification, load and dele-
tion of a RegistryPackage and associated Clas-
sification;

◦ nested Classifications update;
• ebXML:

◦ creation and deletion of an Association be-
tween two objects;

◦ creation, storage and deletion of an Extrinsi-
cObject;

◦ simple AdhocQuery execution;
• BusinessQueryManager:

◦ search of services by organization, by name
pattern, by organization and name;

◦ creation of a ServiceBinding with a specifica-
tion object that is a ClassificationNode with no
parent and then search of a service bindings by
specification object;

• LifeCycleManager:
◦ test of SetStatusOnObject extension protocol,

which allows setting status of an object to
any ClassificationNode within canonical Sta-
tusType ClassificationScheme;

◦ invocations of various API methods with null
parameter;

◦ implicit storage of true-composed objects;
◦ implicit storage of associations and associated

objects.

Figure 8 shows the tests results, where execution times
are in milliseconds. Also note that the JAebXR version was
executed two times: one with the configuration parameter
sqlQueries set to false, the other with a value of true.

If you take into account that the JAebXR code is actually
just a research project and it isn’t ready for production use,
tests results can be considered very interesting, namely:

Figure 8. JAebXR Benchmarks

• with standard ebXML filter queries, we saw an in-
crease in performance equal to 8.42% minimum to a
maximum equal to 24.69%;

• with SQL-92 mode enabled, the improvement was
even more relevant: minimum equal to 10.87% and
maximum equal to 26,59%.

VI. CONCLUSION AND FUTURE WORK

In this work, we have highlighted the constraints and
challenges faced by developers for producing Java code able
to handle ebXML RIM objects in a JAXR environment.

We have explained how to use the JAXR API and methods
of implementation of related source code.

Lack of an efficient handling of ebXML RIM objects was
our motivation for the design and implementation of a new
assistance layer for a better use of standard ebXML registriy
services.

The result of current work is a simple easy-to-use API
which extends JAXR to manage ebXML objects in a efficient
way. Moreover, although the main scope of this work was
related to a HIS project, the API is absolutely independent of
health information.

Future work to improve this layer, along with the eRIC
Registry, includes full support of the latest ebXML specifica-
tions published by the OASIS Consortium, ebXML RegRep
v4.0 [18].

REFERENCES
[1] M. Ciampi, G. De Pietro, C. Esposito, M. Sicuranza, and P. Donzelli,

“On Federating Health Information Systems,” International Conference
on Green and Ubiquitous Technology, Jul. 2012, pp. 139–143, ISBN:
978-1-4577-2172-4.

[2] R. Hauxe, “Health information systems,” International Journal of Medical
Informatics, vol. 75(3), Mar. 2012, pp. 268–281.

[3] D. F. Sittig, G. J. Kuperman, and J. M. Teich, “WWW-based interfaces
to clinical information systems: the state of the art,” Proceedings of the
AMIA Annual Fall Symposium, 1996, pp. 694–698.

[4] OASIS UDDI Specification Technical Committee, “Universal
Description, Discovery and Integration v3.0.2 (UDDI),” 2004, URL:
https://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-
v3.0.2-20041019.htm [accessed: 2015-01-22].

38Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

[5] OASIS ebXML Registry Technical Committee, “ebXML Registry
Information Model (RIM) v3.0,” 2005, URL: http://docs.oasis-
open.org/regrep/regrep-rim/v3.0/regrep-rim-3.0-os.pdf [accessed: 2015-
01-22].

[6] OASIS ebXML Registry Technical Committee, “ebXML Reg-
istry Services and Protocols v3.0,” 2005, URL: http://docs.oasis-
open.org/regrep/regrep-rs/v3.0/regrep-rs-3.0-os.pdf [accessed: 2015-01-
22].

[7] Java Community Process, “JSR 93: Java API for XML Registries 1.0
(JAXR),” 2002, URL: https://jcp.org/ja/jsr/detail?id=93 [accessed: 2015-
01-22].

[8] “Omar: OASIS ebXML Registry Reference Implementation Project
(ebxmlrr),” 2007, URL: http://ebxmlrr.sourceforge.net [accessed: 2015-
01-22].

[9] M. Topolnik, D. Pintar and I. Matasic, “Implementation of the ebXML
Registry Client for the ebXML Registry Services,” Proceedings of the 7th
International Conference on Telecommunication, Zagreb, Croatia, Jun.
2003, pp. 551–556, ISBN: 953-184-052-0.

[10] Java Community Process, “JSR 222: Java Architecture for XML
Binding (JAXB) 2.0,” 2009, URL: https://jcp.org/en/jsr/detail?id=222
[accessed: 2015-01-22].

[11] headissue GmbH, “cache2k - High Performance Java Caching,” 2015,
URL: http://cache2k.org [accessed: 2015-03-19].

[12] Apache Software Foundation, “Apache WSS4J - Web Services Security
for Java,” 2015, URL: https://ws.apache.org/wss4j/ [accessed: 2015-03-
19].

[13] OASIS Web Services Security Technical Committee, “WS-
Security OASIS Standard 1.1,” 2006, URL: https://www.oasis-
open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf [accessed: 2015-03-19].

[14] ISO ANSI, “Database Language SQL ISO/IEC 9075:1992,” , Jul. 1992.
[15] Oracle Corporation, “Java Naming and Directory Interface 1.2,”

1999, URL: http://www.oracle.com/technetwork/java/jndi-150206.pdf
[accessed: 2015-01-22].

[16] A. Messina, “eRIC: ebXML Registry by ICAR CNR,” 2014, URL:
https://github.com/IcarPA-TBlab/eRIC [accessed: 2015-03-02].

[17] A. Messina, “eRIC Test suite,” 2014, URL: https://github.com/IcarPA-
TBlab/eRIC/tree/master/eric-test-3.2 [accessed: 2015-03-02].

[18] OASIS ebXML Registry Technical Committee, “ebXML RegRep v4.0,”
2012, URL: http://docs.oasis-open.org/regrep/regrep-core/v4.0/os/regrep-
core-v4.0-os.zip [accessed: 2015-01-22].

39Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

