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Abstract—We propose a new privacy notion called query-based
`-diversity. A database instance T is `-diverse with respect to
given authorized queries if an attacker cannot narrow down the
number of possible values of the sensitive information to less
than ` by inference using the result of the authorized queries
on the instance T and the meaning of the queries. We provide
two approaches to deciding the query-based `-diversity. In the
first approach, a decision algorithm is given by using relational
operations, which can be directly implemented by a relational
database management system, e.g., Structured Query Language
(SQL). The second approach transforms a given input to a logical
formula and decides the problem by model counting using a
#SAT solver. We discuss the effectiveness and scalability of the
two approaches based on the experimental results.

Keywords–Database Privacy; Diversity; Inference Attack; Rela-
tional Databases.

I. INTRODUCTION

Database security is one of the most important challenges
to minimize the leakage of the sensitive information over the
accesses or the data publishing, which have been growing
rapidly and more powerful. Access control is a traditional
mechanism for confidentially restricting accesses to a database
made by a user by dividing the queries into authorized and
unauthorized ones, and restricting the portion of the data that
can be retrieved and updated by the user.

Inference attack is a malicious way to infer the sensitive
information protected by access control. An attack is con-
ducted by combining the result of authorized queries, the
code (the meaning) of the queries and other available external
information to obtain the candidate values of the sensitive
information, as shown in Example 1. Thus, we need an
appropriate quantitative notion of the security of a database
against inference attacks.

Example 1: Table I shows a database instance consisting of
six tuples. Assume that {Zipcode, Gender, Age} is the quasi-
identifier and Diagnosis is the sensitive attribute. Assume that
query (1) extracts tuples of {Zipcode, Age} where “Age” ≤ 60
from Table I, as shown in Table II, and query (2) extracts tuples
of {Age, Diagnosis}, as shown in Table III. If we combine two
results of queries (1) and (2), we can obtain candidate set of
the type of “Diagnosis”, as shown in Table IV. This cannot
guarantee that this database instance is safe against inferencing.

As described in Related Work, there are well-known related
notions such as k-anonymity and `-diversity. Intuitively, a
database is k-anonymous if for every individual x, there are
at least k different records (or tuples in the relational database

TABLE I. A SAMPLE INSTANCE.

Zipcode Gender Age Diagnosis
123-4567 F 45 A
123-5235 F 44 B
123-4567 F 44 C
378-2102 M 65 A
378-2102 M 62 B
378-2102 F 65 A

TABLE II. A RESULT OF QUERY (1).

Zipcode Age
123-4567 45
123-5235 44
123-4567 44

TABLE III. A RESULT OF QUERY (2).

Age Diagnosis
45 A
44 B
44 C

TABLE IV. A RESULT OF QUERIES (1) AND (2).

Zipcode Age Diagnosis
123-4567 45 A
123-5235 44 B
123-5235 44 C
123-4567 44 B
123-4567 44 C

setting) which cannot be distinguished from the real record for
x. A database is `-diverse if for every individual x, there are at
least ` different values of the sensitive information contained in
the records which cannot be distinguished from the real record
for x. Also, various methods are reported for transforming
a given database into a database satisfying k-anonymity or
`-diversity. However, these notions do not take the effect of
access control for queries into consideration.

The goal of this study is to introduce a notion of the
security against inference attack by extending `-diversity in
relational databases with access control for queries. More
specifically, we propose a new privacy notion called query-
based `-diversity. A database instance T is `-diverse with
respect to given authorized queries if an attacker cannot
narrow down the number of possible values of the sensitive
information for any individual to less than ` by inference based
on the result of the authorized queries on the instance T and
the queries themselves. We provide two approaches to deciding
the query-based `-diversity. In the first approach, a decision
algorithm is given by using relational operations, which can
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be directly implemented by a relational database management
system, e.g., SQL. The second approach transforms a given
input to a logical formula and decides the problem by model
counting using a #SAT solver. We discuss the effectiveness and
scalability of the two approaches based on the experimental
results.

A. Related Work

The anonymization technique enforces the preservation of
privacy of personal data or sensitive information. General-
ization of the data is one of the well-known techniques for
anonymizing information accordingly with the domain gener-
alization hierarchy from which the quasi-identifier value can be
generalized such as numeric values are generalized to intervals.
There are a few well-known notions for database privacy, k-
anonymity [11][13], `-diversity [8] and t-closeness [7]. These
notions assume the following basic concepts on relational
databases. The set of attributes are divided into sensitive
and nonsensitive attributes. Also, a subset of the nonsensitive
attributes, called the quasi-identifier, is assumed. The value of
the quasi-identifier is potentially used to identify the tuple of
a target individual by linking the disclosed information with
external data.
k-anonymity A database instance satisfies k-anonymity if for
any value of the quasi-identifier, there are k or more tuples
having that value of the quasi-identifier. A maximal subset of
tuples having same values of the quasi-identifier is called an
equivalence class. k-anonymity means that the cardinality of
each equivalence class is at least k. A transformation of a given
instance to another instance satisfying k-anonymity is called
a k-anonymization for the original instance. [13] proposed a
method for k-anonymization by hiding some information of
individuals by generalization and suppression. Generalization
replaces a value with less specific but semantically consistent
value. While suppression hides the data or does not release
the entire data. Various anonymization methods have been
reported using clustering, branch-and-bound search, and so
on [1][2]. k-anonymity is a simple notion and has been
frequently used. As discussed in [8], however, a k-anonymous
database may still have some issues because the database may
lack the diversity in the sensitive attributes. `-diversity has been
proposed by [8] to overcome the weakness of k-anonymity.
Though [8] proposes a general definition of `-diversity, we
just review a simple and frequently used one, called distinctive
non-recursive `-diversity.
`-diversity A database instance satisfies distinctive non-
recursive `-diversity (or simply, `-diversity) if for each equiva-
lence class, there are at least ` different values of the sensitive
attributes.

Example 2: As shown in Table I, all tuples have different
values of the quasi-identifier and hence this database instance
does not satisfy k-anonymity for any k ≥ 2. Assume that in
this database instance, the lower four digits of the values of
“Zipcode” are hidden, the values of “Gender” is hidden and the
values of “Age” are generalized to the intervals of ten years.
Then we obtain the database instance shown in Table V. This
instance consists of two equivalence classes and the number
of tuples in each class is three. Hence, this instance satisfies 3-
anonymity and the above transformation is a 3-anonymization
for the original instance. Also, the first class has three different
values of the sensitive attribute and the second class has two

TABLE V. A 3-ANONYMOUS AND 2-DIVERSE INSTANCE.

Zipcode Gender Age Diagnosis
123-**** - [40,49] A
123-**** - [40,49] B
123-**** - [40,49] C
378-**** - [60,69] A
378-**** - [60,69] B
378-**** - [60,69] A

different values. Hence, the transformed instance satisfies 2-
diversity but does not satisfy `-diversity for any ` ≥ 3.
k-secrecy A related but different quantitative notion on
database security is given in [5] based on access control on
queries. Assume that a database instance T of a schema R,
authorized queries q1, q2, . . . , qm and an unauthorized query
qU are given. An attacker knows R, q1, q2, . . . , qm, qU (the
meaning of the authorized and unauthorized queries) and
q1(T ), . . . , qm(T ) (the result of the authorized queries), but
he does not know T . The goal of the attacker is to obtain
qU (T ), which is the result of the unauthorized query qU on
T . For a positive integer k, a database instance T is k-secret
with respect to R, q1, . . . , qm, qU if the attacker cannot narrow
down the number of the candidates of qU (T ) to less than k.
T is ∞-secret if the candidates of qU (T ) are infinite. We
say that a database schema R is k-secret with respect to
q1, . . . , qm, qU if every database instance of R is k-secret.
[5] showed that k-secrecy is decidable for XML databases
where queries are given as tree transducers in a certain subclass
that can use relabeling and deletion. Also, [10] showed that
the problem for deciding whether a given XML schema is
k-secret is undecidable for any finite k while the problem
is decidable when k = ∞. Although [5] deals with XML
databases, the notion of k-secrecy is general enough for other
kinds of databases. More sophisticated notions have been also
proposed. For example, [3][9] proposed stronger notions where
the probability distribution of possible secrets does not change
after observing (authorized) information. The notion of query-
based `-diversity proposed in this paper is a combination of
k-secrecy and `-diversity in the relational database setting.

The organization of this paper is as follows. Section II
provides basic notions and notations on relational database that
will be used in the paper. We define the query-based `-diversity
in Section III. In Section IV, a decision algorithm based on
relational operations as the first approach is given. Section
V provides the second approach based on model counting.
Experimental results conducted on SQL for the first approach
and using a #SAT solver sharpCDCL for the second approach
are shown in Section VI. We conclude the paper in Section
VII.

II. MODELS

In this section, we introduce a simple relational database
model , which will be used in the rest of the paper. A relational
database instance (or simply a database) can be seen as a
table, of which columns are attributes. There are two types
of attributes, namely sensitive and nonsensitive attributes. The
values of sensitive attributes are considered as secret, that is,
the data owner keeps them confidentially and restrictively and
protects them from unauthorized accesses.

Definition 1: A relational database schema (or simply a
schema) is a finite set of attributes. Let R = {A1, . . . , An} be
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a schema. We assume that for each attribute Ai (1 ≤ i ≤ n), a
finite set of values, denoted by dom(Ai) is associated. A tuple
(or a record) over R is t = (d1, . . . , dn) where di ∈ dom(Ai)
for each 1 ≤ i ≤ n. Let t[Ai] = di, which is called the value of
attribute Ai in t. That is, t = (t[A1], . . . , t[An]). A relational
database instance (or simply an instance) of R is a finite set
of tuples over R. An instance is sometimes called a table. Let
I[R] denote the set of all instances of R.

Let R be a schema. We assume that R is divided into
two disjoint subsets, namely, Se and NSe, which are the set
of sensitive attributes and the set of nonsensitive attributes,
respectively. We furthermore assume that a subset Qi ⊆ NSe
of nonsensitive attributes is given as a quasi-identifier of
R. We intend that the values of the quasi-identifier can be
potentially used to identify the values of the sensitive attributes
by linking the attribute values of the quasi-identifier with
external data sets.

We define projection, selection and join in the usual
way. Let R be a schema. For a subset of attributes α =
{Aj1 , . . . , Ajm} ⊆ R and a tuple t over R, let πα(t) denote
the tuple (t[Aj1 ], . . . , t[Ajm ]), which is called the projection of
t on α. Also, for an instance T ∈ I[R], let πα(T ) = {πα(t) |
t ∈ T}. Let T1 ∈ I(R1) and T2 ∈ I(R2). For a filtering
condition F , and an instance T , let σF (T ) denote the set of
tuples in T that satisfy F . The natural join of T1 and T2 is the
instance obtained by “linking” every possible pair of tuples in
T1 and T2:

T1 ./ T2 = {t over R1 ∪R2 | for some u ∈ T1,

w ∈ T2, t[U ] = u and t[W ] = w}. (1)

Since the natural join operator is associative and commutative,
we sometimes view the natural join as a polyadic operator and
write T1 ./ .... ./ Tm.

III. PROPOSED FRAMEWORK

In order to provide the definitions, we need to introduce the
candidate set of instances of which results of queries are the
same as those of the real instance. For a given instance T and
queries q1, ..., qm, let cand(q1, ..., qm, T ) be the set consisting
of all instances that give the same result as T with respect to
all queries q1, ..., qm:

cand(R, q1, ..., qm, T ) = {T ′ ∈ I(R) | ∀i(1 ≤ i ≤ m) ·
qi(T ) = qi(T

′)}. (2)

Each T ′ ∈ cand(R, q1, ..., qm, T ) is called a candidate in-
stance.

Let T be a database instance over schema R. T is query-
based `-diverse if for each maximal subset of a candidate
instance of which tuples have the same quasi-identifier, there
are ` or more different values of the sensitive attributes.

Suppose that the following information is available to
public: a database schema R, authorized queries q1, ..., qm,
quasi-identifier Qi, sensitive attributes Se and a threshold `
(a positive integer). Let T be an instance of R. An attacker
infers sensitive information by taking the natural join of the
results of the authorized queries q1, ..., qm on the instance T
to obtain the candidate set of sensitive information. We now
show three options for the definition of query-based `-diversity
as follows.

Definition 2: An instance T ∈ I(R) is l-diverse (with
respect to R, Qi, Se, q1, ..., qm, T )

(Option 1) if for every t ∈ πQi(T ),

|{πSe(t′) | ∃T ′ ∈ cand(q1, ..., qm, T ) ·
(πQi(t

′) = t ∧ t′ ∈ T ′)}| ≥ l, (3)

(Option 2) if for every t ∈ πQi(T ), there is an instance
T ′ ∈ cand(q1, ..., qm, T ) such that

|{πSe(t′) | (πQi(t′) = t ∧ t′ ∈ T ′)}| ≥ l, (4)

(Option 3) if there is T ′ ∈ cand(q1, ..., qm, T ) such that
for every t ∈ πQi(T ),

|{πSe(t′) | (πQi(t′) = t ∧ t′ ∈ T ′)}| ≥ l. (5)

By definition, (5) implies (4), and (4) implies (3).
A conjunctive query consists of projection, selection and

join. In our proposed framework, we assume self-join free
conjunctive queries.

Definition 3: A query q on R is monotonic if for any
T1, T2 ∈ I(R), T1 ⊆ T2 implies q(T1) ⊆ q(T2).

Lemma 1: Every conjunctive query is monotonic.
If we restrict the class of queries to self-join free con-

junctive queries, all the three definitions of `-diversity become
equivalent as stated in the next theorem.

Theorem 1: If we assume self-join free conjunctive
queries, then the three options in definitions 2 become equiv-
alent.

Proof: By the following properties 1 and 2.
Property 1: For any instances T1, T2 and a self-join free

conjunctive query q,

q(T1 ∪ T2) = q(T1) ∪ q(T2).

Proof: Let T1, T2 be instances and q be a self-join free
conjunctive query. By Lemma 1, q is monotonic and hence
q(T1 ∪ T2) ⊇ q(T1) ∪ q(T2) holds. Since q does not contain
self-join, q(T1 ∪ T2) ⊆ q(T1) ∪ q(T2) also holds.

Property 2: Let T be an instance and q1, . . . , qm be self-
join free conjunctive queries. The largest candidate set in
cand(q1, ..., qm, T ) (with respect to set inclusion) is the union
of all instances in cand(q1, ..., qm, T ).

Proof: Let Tc =
⋃
T ′∈cand(q1,...,qm,T ) T

′. By Property 1,

qi(Tc) =
⋃

T ′∈cand(q1,...,qm,T )

qi(T
′)

=
⋃

T ′∈cand(q1,...,qm,T )

qi(T )

= qi(T ) (1 ≤ i ≤ m).

Hence, Tc ∈ cand(q1, ..., qm, T ). Apparently, Tc is the largest
set in cand(q1, ..., qm, T ).

We define the query-based `-diversity problem as follows:

Input : A schema R, an instance T ∈ I(R), authorized
queries q1, ..., qm, quasi-identifier Qi ⊆ R, sensi-
tive attributes Se ⊆ R, and a threshold ` ≥ 1.

Output : T is query-based `-diverse or not with respect
to R, Qi, Se, q1, ..., qm.
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IV. VERIFICATION BY RELATIONAL ALGEBRA

In this section, we describe our verification algorithm that
solves the query-based `-diversity problem. For simplicity,
we only focus on projection queries. The algorithm can be
extended to deal with join without self-join. However, selection
cannot be allowed. Also, we assume that the set of sensitive
attributes is not empty.

We assume that an attacker knows the domain of each
attribute in R, specially the domains of the sensitive attributes,
so that he can infer a candidate instance by adding values of
the sensitive attributes chosen from the domain even if (some
of) the sensitive attributes are missing in the result of queries
q1, ..., qm.

Our algorithm consists of four steps as follows:

1) Obtain the candidate set of tuples T ′ by taking the
natural join of all results q1(T ), ..., qm(T ) as follows.

T ′ = q1(T ) ./ ... ./ qm(T ).

2) Let Qi′ (⊆ Qi) be the set of quasi-identifier that
exist in T ′. Compute the subset Tc of T ′ consisting
of tuples whose quasi-identifier value belongs to the
original instance T .

Tc = T ′ ./ πQi′(T ).

3) Divide Tc into subsets (equivalence classes)
g1, . . . , gh such that

a) πQi′(t) = πQi′(t
′) for any t, t′ ∈ gi (1 ≤

i ≤ h) and
b) πQi′(t) 6= πQi′(t

′) for any t ∈ gi (1 ≤ i ≤
h) and t′ ∈ gj (1 ≤ j ≤ h) with i 6= j.

4) Let mis Se be the set of sensitive attributes that
does not exist in T ′. With mis Se and the threshold
`, decide whether T is `-diverse by examining the
following necessary and sufficient condition for `-
diversity:
∀gi (1 ≤ i ≤ h),

|gi| ×
∏

a∈mis Se

| dom(a) | ≥ `. (6)

In the last step, the number of different sensitive values in
each equivalence class gi (1 ≤ i ≤ h) is computed by using
the domains of the missing sensitive attributes mis Se. If for
every equivalence class gi (1 ≤ i ≤ h), the left-hand side of
(6) is greater than or equal to the threshold `, the algorithm
answers that the given input is `-diverse. If there is at least
one equivalence class gi such that the left-hand side of (6) is
less than `, the algorithm answers that the given input is not
`-diverse.

V. VERIFICATION BY MODEL COUNTING

In this section, we provide another method for deciding the
query-based `-diversity. The method transforms a given input
of the problem to a logical formula, and decides the problem
by model counting using a #SAT solver. The advantage of this
method is that it can handle self-join free conjunctive queries,
consisting of projection, selection and join without self-join.
Henceforth, we assume queries in the class.

Before we explain our method, we give some definitions.
For a formula Ψ, let #models(Ψ) denote the number of

different models (assignments to variables that make Ψ true).
If a formula Ψ contains only variables in Σ, we call Ψ a Σ-
formula. For a Σ-formula Ψ and ∆ ⊆ Σ, let Ψ|∆ denote the
strongest ∆-formula implied by Ψ when considered as a Σ-
formula where A is stronger than B if and only if A ⇒ B
holds. We say that Ψ|∆ is the projection of Ψ onto ∆.

Assume that a schema R where n = |R|, an instance
T ∈ I(R), queries q1, . . . , qm on R, quasi-identifies Qi ⊆ R,
sensitive attributes Se ⊆ R, and a threshold l are given.
For simplicity, suppose that Qi = {A1, . . . , Ak} ⊆ R, and
Se = {Ak+1, . . . , Am} ⊆ R where 1 ≤ k < m < n. The
summary of the method is as follows.

1) Construct a logical formula Φ(x1, . . . , xn) such that
Φ(c1, . . . , cn) is satisfiable

if and only if (c1, . . . , cn) ∈ Tc (∗)
Note that φ(x1, . . . , xn) has free variables other than
x1, . . . , xn in general.

2) Decide if for all tuple (c1, . . . , ck) ∈ πQi(T ),

#models(Φp(xk+1, . . . , xn)|Xs) ≥ l.

where Xs = {xk+1, . . . , xm} and

Φp(xk+1, . . . , xn) = Φ(c1, . . . , ck, xk+1, . . . , xn).

1) Constructing Constraint: Let n = |R| and ni = |Ri|
where Ri is the output schema of qi (1 ≤ i ≤ m). To construct
a formula Φ(x1, . . . , xn) satisfying (∗), we first construct
subformulas φqi and Oqi for 1 ≤ i ≤ m.

(1-i) For 1 ≤ i ≤ m, φqi represents the input-output relation
of the query qi. The formula φqi contains free variables
x1, . . . , xn, y1, . . . , yni

and satisfies:

for any t = (c1, . . . , cn) and t′i = (d1, . . . , dni
),

φqi(c1, . . . , cn, d1, . . . , dni
) is satisfiable if and only

if qi({t}) ⊆ {t′}.

(Construction)
If q = T then

φq(x1, . . . , xn, y1, . . . , yn) =

n∧
i=1

(xi = yi).

projection: If q = πα(q′) where α = {Aj1 , . . . , Ajn′},

φq(x1, . . . , xnI
, z1, . . . , zn′)

= φq′(x1, . . . , xnI
, y1, . . . , ynO

) ∧
n′∧
i=1

(yji = zi).

selection: If q = σF (q′),

φq(x1, . . . , xnI
, z1, . . . , znO

)

= φq′(x1, . . . , xnI
, y1, . . . , ynO

)

∧

(
PF (y1, . . . , ynO

)⇒
nO∧
i=1

(yi = zi)

)
.

where PF (y1, . . . , ynO
) is a formula representing the filtering

condition F of σF .
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cross product: If q = q′ ∗ q′′,

φq(x1, . . . , xn′
I
, x′1, . . . , x

′
n′′
I
, z1, . . . , zn′

O
+n′′

O
)

= φq′(x1, . . . , xn′
I
, y1, . . . , yn′

O
)

∧ φq′′(x′1, . . . , x′n′
I
, y′1, . . . , y

′
n′′
O

)

∧
n′
O∧

i=1

(yi = zi) ∧
n′′
O∧

i=1

(y′i = zn′
O

+i).

(1-ii) Oqi is defined as

Oqi(y1, . . . , yni
)

=
∨

(d1,...,dni
)∈qi(T )

((y1 = d1) ∧ · · · ∧ (yni
= dni

)).

(1-iii) Finally, Φ is defined as

Φ(x1, . . . , xn)

=

m∧
i=1

(φqi(x1, . . . , xn, yi,1, . . . , yi,ni
) ∧Oqi(yi,1, . . . , yi,ni

)).

Remember that in the algorithm of the previous sec-
tion, we introduce the subsets g1, . . . , gh, each of which
shares same values of the quasi-identifier. For gj (1 ≤
j ≤ h), let (cj1, . . . , c

j
k) be the values of the quasi-

identifier shared by tuples in gj . Let Φjp(xk+1, . . . , xn) =

Φ(cj1, . . . , c
j
k, xk+1, . . . , xn). By (∗), Φjp(ck+1, . . . , cn) is sat-

isfiable if and only if (cj1, . . . , c
j
k, ck+1, . . . , cn) ∈ gj . Fur-

thermore, Φjp(xk+1, . . . , xn)|Xs is the strongest Xs-formula
implied by Φjp(xk+1, . . . , xn). Hence, the number of assign-
ments to variables in Xs that make Φjp(xk+1, . . . , xn)|Xs true
coincides with the number of different values of Se appearing
in tuples that belong to gj . Hence, we obtain the following
lemma.

Lemma 2: Let R be a schema, Qi, Se ⊆ R be the quasi-
quantifier and sensitive attributes, respectively, q1, . . . , qm be
self-join free conjunctive queries on R and T ∈ I(R) be an
instance. Let g1, . . . , gh be the subsets of Tc, each of which
shares same values for the quasi-identifier. For each j (1 ≤
j ≤ h), the number of different values of sensitive attributes
in gj is

#models(Φjp(xk+1, . . . , xn)|Xs).

2) Counting Candidates: To count the different values of
sensitive attributes for each gj (1 ≤ j ≤ h), we transform
Φjp(xk+1, . . . , xn) to an equivalent propositional formula Φjcnf
in conjunctive normal form (CNF) by using Sugar [12]. Next,
for each t′ = (c1, . . . , ck) ∈ πQi(T ), we construct a CNF
formula ψt′ that represents x1 = c1 ∧ · · · ∧ xk = ck, and
then count #models(Φjcnf ∧ ψt′)|P (Xs), where P (Xs) is the
set of the propositional variables in Φjcnf corresponding to
Xs in Φjp(xk+1, . . . , xn). We use sharpCDCL [6], which is a
#SAT solver (an automatic tool for counting the models of
a given propositional formula). Among other #SAT solvers
that can count models, the advantage of sharpCDCL is that
it can automatically count #models(Ψ|∆) only by giving a
formula Ψ and a subset ∆ of propositional variables. If some
t′ ∈ πQi(T ) such that #models(Φjcnf ∧ ψt′)|P (Xs) < ` is
found, we say that T is not `-diverse. Otherwise, T is `-diverse.

VI. EXPERIMENTS

A. Experimental Result of Relational Algebra
The purpose of the experiment was to investigate the

scalability of our approach.
1) Setup: Experiment were performed on a 3.33 GHz

Intel(R) Core(TM) i7 CPU with 6GB of RAM. The op-
erating system was Microsoft Windows 8.1 Enterprise, and
implementation was built and run in MySQL Workbench,
version 6.1. We used available dataset, Employees Sam-
ple Database [14], Copyright (C) 2007, 2008, MySQL AB,
version 1.0.6. The database contains about 300,000 tu-
ples with 2.8 million salary entries. In our experiment,
the schema consists of ten attributes, where five attributes
{Gender, DeptName, BirthDate, HireDate, FromDa-
te} were designated as the quasi-identifier and the sensitive
attribute is {Salary}.

2) Datasets and Queries: The proposed algorithm was
implemented in MySQL and was performed on three instances
(datasets) with n = 37, 500, 75, 000, 150, 000, 300, 000 tuples.
Also, we prepared three queries, each of which is the projection
onto the following attributes:

q1 : {EmpNo,LastName,Gender}.
q2 : {EmpNo, Salary,HireDate}.
q3 : {DeptName}.

In the experiment, we used three sets of queries, namely,
QA = {q1, q2}, QB = {q3}, and QC = {q1, q2, q3}. For
example, for QA, the verification algorithm took the natural
join of the results of q1 and q2 on each of the datasets in
Step 1. In Step 3, the algorithm constructed the table from the
candidate set Tc obtained in Step 2 by grouping tuples that
have same values of the quasi-identifier. Lastly, in Step 4, the
algorithm tested `-diversity (` = 2 in the experiment).

TABLE VI. TOTAL TIME OF VERIFYING 2-DIVERSITY.

Dataset Cases Total time
q1, q2 7sec

37, 500 q3 4sec
q1, q2, q3 11sec
q1, q2 19sec

75, 000 q3 8sec
q1, q2, q3 31sec
q1, q2 1min 7sec

150, 000 q3 14sec
q1, q2, q3 1min 47sec
q1, q2 4min 8sec

300, 000 q3 26sec
q1, q2, q3 8min 48sec

Table VI shows the total running time of our algorithm.
For example, for QA and the dataset n = 37, 500, the total
running time is 7sec. Also the running time of each set
of queries, QA,QB and QC on the datasets of size n =
37, 500, 75, 000, 150, 000 and 300, 000. We can observe that
the decision algorithm is efficient, in general, and also the
computation time depends on the size of the datasets.

B. Experimental Result of Model Counting
1) Setup: Experiment were performed on a 3.10 GHz

Intel(R) Core(TM) i5 CPU with 8GB of RAM. The operating
system was Ubantu 14.04. We performed the experiment on a
dataset, having 50,000 tuples.
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2) Datasets and Queries: In the experiment, we used
two instances T1 and T2, having ten and eleven attributes,
respectively. Both of T1 and T2 have 5, 000 tuples. Actually,
T1 was obtained from T2 by projecting out one of the eleven
attributes. We conducted the experiment on the following two
settings:

D1: a query σstate=Iwate(T1),
Qi = {ID, state} and Se = {Name}.

D2: two queries ΠBirthY ear,BirthMonth(T2),
ΠBirthY ear,BirthMonth(σCarrier=SoftBank(T2)),
Qi = {ID,BirthMonth,Carrier}
and Se = {BirthY ear}.

The experimental results for these settings are shown in
Table VII where clauses and variables are those in the
transformed CNF formula, projected variables are the
variables corresponding to sensitive attributes, min count is
the minimum number of different values of sensitive attributes
among g1, . . . , gh. That is, D1 is `-diverse if and only if
` ≤ 50 and D2 is `-diverse if and only if ` ≤ 42. Next, we

TABLE VII. PERFORMANCE OF MODEL COUNTING METHOD.

Projected
Clauses Variables variables Min count Time

D1 34, 271 14, 916 4, 961 50 6min 15sec
D2 22, 941 11, 121 96 42 2min 1sec

increased the number of tuples in T2 to 10, 000, 30, 000 and
50, 000 and examined the scalability of the proposed method
by using the setting D2. The result is shown in Table VIII.
In sharpCDCL, an upperbound U of the model counting
can be specified. That is, when sharpCDCL detects that the
current number of models reaches U , sharpCDCL terminates.
The computation times in Table VIII are those when this
upperbound is specified as U = 20. The transformation to a

TABLE VIII. SCALABILITY OF MODEL COUNTING METHOD.

Projected
Tuples Clauses Variables variables Time
5, 000 22, 941 11, 121 96 1min 58sec
10, 000 42, 334 20, 877 96 10min 2sec
30, 000 117, 557 58, 541 106 2hrs 28min 30sec
50, 000 187, 820 93, 633 106 8hrs 56min 8sec

CNF formula takes less than one second, and model counting
dominates the running time.

VII. CONCLUSION

We have introduced query-based `-diversity as a privacy
notion for a realistic database system that assumes access con-
trol for queries. This new notion inherits from `-diversity of [8]
the quantitative notion for the diversity of sensitive attributes.
Also, the notion utilizes k-secrecy of [5] by taking attacker’s
inference on the authorized information into consideration.

We proposed two approaches to deciding whether a given
database instance satisfies query-based `-diversity with respect
to given queries. The first approach is based on relational
algebra computation that counts the candidate values of the
sensitive attributes. The second approach transforms a given
input to a logical formula and then decide the problem by
counting models of a formula by a #SAT solver. The first
approach can directly be implemented by an existing relational

database system such as SQL, and the experimental results
show that this approach is fairly efficient. The weakness is that
it cannot deal with selection queries. The second approach, on
the other hand, can deal with selection queries. However, the
model counting in a #SAT solver is generally time consuming
and we have not yet customized the solver to our problem and
hence, the performance is not good compared with the first
approach.

Applying the proposed approach to other kind of databases
such as object-oriented or XML databases is left as a future
study.
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