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Abstract—Near duplicate data not only increase the cost for 

information processing, but also increase the time taken for a 

decision. Therefore, detecting and eliminating them is vital for 

business decisions. Shingling algorithm has been used in 

detecting near duplicates in large-scale text databases. The 

algorithm is based on the number of common tokens in two or 

more set of information. In other words, if there is a slight 

variation of the text, such as misspelling, in one of those 

documents, the performance of the algorithm decreases. 

Therefore, in this work, we proposed to embed a new phonetic 

approximate algorithm, namely DSound, to Shingling 

algorithm for improving the near duplicate data detection if 

there is a typographical error.  Based on the experiments on 

real dataset, this newly proposed framework improved the 

Shingling algorithm’s performance by 16 percent. 

Keywords-data cleansing; data quality; duplicate detection; 

DSound; Shingling 

I.  INTRODUCTION 

Now-a-days, duplicate document is a common problem 

in big database. Advanced duplicate detection techniques 

are required not only to process query, but also to filter the 

redundant (duplicate data) information in large scale 

document database to improve the search quality. To 

address this issue, duplicate document detection techniques 

are used to prevent the search results from including the 

multiple documents having the same or nearly same content.  

The search quality in a data is affected as a result of 

multiple copies being included in the search results. The 

process of indexing the data is done by scanning the content 

of each and every document. When two documents contain 

identical content, they are regarded as duplicates. There 

might be some documents with small dissimilarities and are 

not declared as being “exact duplicates” of each other but 

are identical to such an extent that they can be declared as 

near-duplicates [1]. Detecting near duplicates are utmost 

important to improve the search quality.  
Following are examples of near duplicate samples seen in 

documents [2]:  

• Documents containing a few different words - 

widespread form of near-duplicates. 

• Documents with the same content but different 

formatting – for instance, the documents may contain 

the same text, but dissimilar fonts, bold type, or 

italics. 

• Documents with the same content but with 

typographical errors (mistyped words) 

• Plagiarized documents and documents with different 

versions 

• Documents with the same content but different file 

type – for instance, Microsoft Word and PDF. 

• Documents providing identical information written 

by the same author being published in more than one 

domain. 

Relying only on the resemblance of the exact contents of 

the documents may yield to overlook near identical ones. 

Thus, this will eventually lead to miss the detection of 

duplicate documents. Although, all the listed examples are 

part of the near duplicate problem, in this work, we will 

particularly address the problems raised with typographical 

errors. Typographical errors are a spelling error that can be 

captured simply because it is mistyped or misspelled [3]. As 

the name suggests, these are invalid strings, properly 

identified and isolated as incorrect representations of a valid 

word [4]. Fat fingering places an important role in this type 

of misspelling. These errors are made assuming that the 

writer or typist knows how to spell the word, but may have 

typed the word hastily resulting in an error [5]. No matter 

how the word is misspelled, this results in decrease in 

quality of the document and yield to near identical 

documents. Therefore, in this paper, we introduce a hybrid 

approach to improve the widely known near duplicate 

detection algorithm, namely Shingling algorithm. 

Particularly we embed phonetic matching technique to 

Shingling algorithm to improve the outcome of near 

duplicate detection. 

In Section 2, we discuss related work about near duplicate 

detection. In Section 3, the newly proposed approach will be 

elaborated. In Sections 4 and 5, the test cases and 

experimental results will be discussed. At the end, the paper 

will be finalized with the conclusion section. 

II. RELATED WORK 

There are few techniques that have been developed to 

identify near duplicate documents [6]-[10], web page 
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duplicates [11]–[15], and duplicate database records [16]-

[17]. Brin et al. has proposed a Copy Protection System 

(COPS) system to protect important and intellectual 

property of digital documents [6]. As a part of the Stanford 

Digital Library project Kumar et al. developed Stand Copy 

Analysis Mechanism (SCAM) to identify similar documents 

in online library [7]. Author in [12] proposed shingling 

algorithm which keeps the sketch of shingles of each 

document to compute the resemblance of two documents. 

Any documents with at least one common shingle are 

examined and checked whether to see if it exceeds the 

threshold for resemblance. Broder’s shingling method is 

implemented in AltaVista search engine for duplicate 

document detection [12]. Lyon et al. investigated the 

theoretical background to automate plagiarism detection [8]. 

They observe that independently written texts have a 

comparatively low level of matching trigrams. The Ferret 

plagiarism system counts the matching trigrams of a pair of 

documents [8]-[9]. In [10], the authors offered a new 

filtering technique by exploiting the ordering information. 

With this way, they drastically reduced the candidate sizes 

and hence improved the efficiency of search.  

The authors in [11] proposed two approaches to compute 

near duplicates between all web documents simultaneously. 

Both of the approaches assume that two documents di and dj 

can be near duplicates only when document di and dj share 

more than ‘m’ fingerprints, where ‘m’ is a predefined 

threshold [11]. Das et al. proposed a Term Document 

Weight (TDW) matrix based algorithm with three phases, 

rendering, filtering, and verification, which receives an 

input web page and a threshold in its first phase, prefix 

filtering and positional filtering to reduce the size of record 

set in the second phase and returns an optimal set of near 

duplicate web pages in the verification phase by using 

Minimum Weight Overlapping (MWO) method [15]. In 

[18], the author showed that rounding algorithms for Linear 

Programming (LPs) and Semidefinite Programming (SDPs) 

used in the context of approximation algorithms can be 

viewed as locality sensitive hashing schemes. Simhash is a 

fingerprint technique that holds the property that the two 

documents are near duplicate only if the fingerprints of the 

documents are identical, since near-duplicates differ only in 

a small number of bit positions [13] and [18].  

As stated above and discussed in [19], most of the 

techniques are looking for the resemblance of the 

documents via the exact similarity level or use some form of 

approximation technique to detect the near similar 

documents. If the latter approach is used in the whole 

document the computation overhead will be high. If the first 

approach is used alone, then the misspelled or slightly 

incorrect representation will yield to decrease the accuracy 

rating. Therefore, there is a dire need to combine these two 

main approaches in a way that it will not only improve the 

accuracy rating, but also keeps the computational overhead 

in low levels. 

III. METHODOLOGY 

In this work, we propose to embed DSound Phonetic 

Approximate algorithm to Shingling algorithm for detecting 

near duplicates documents.  

Shingling algorithm is a well-known technique used for 

detecting the near duplicates. DSound is a newly designed 

phonetic based spelling correction algorithm which returns 

an equivalent word if there is a misspelling. Both of these 

methods are explained briefly in below sections. 

A. Shingling Algorithm 

Shingling algorithm is a well-known technique 

introduced by Broder to estimate the degree of similarity 

among pairs of documents [12]. The algorithm does not 

depend on any linguistic knowledge other than the ability to 

tokenize documents into a set of words based on the shingle 

size [12]. In shingling, the string is divided into words and 

all word sequences of adjacent words are extracted. If two 

documents contain the same set of shingles they are 

considered identical and if their sets of shingles appreciably 

overlap, they are accepted as exceedingly identical [12].  

In detail, shingling divides the text document into set of 

substrings of length k (called k-shingles). The shingling 

algorithm is implemented using sliding window method 

with the window size of k (shingle size of k)  over the input 

document character by character and placing the substrings 

into a set. For example, the string "abcabcac" can be 

represented by {"abc", "bca", "cab", “abc”, “bca”, "cac"} if 

the sliding window is chosen as 3-shingles. Since the 

algorithm eliminates the duplicate ones, only four shingles 

{"abc", "bca", "cab", "cac"}  will be in the final set. Another 

example for shingling algorithm is given below: 

Given a string S = {a rose is a rose is a rose} 
Using shingling algorithm (with window size set at 4) the 

string can be tokenized as {(a rose is a), (rose is a rose), (is a rose 

is), (rose is a rose), (a rose is a), (rose is a rose)}.  
Removing the duplicates will yield to the following shingles 

{ (a,rose,is,a), (rose,is,a,rose), (is,a,rose,is) } 

At the end, Jaccard similarity is used for expressing 

similarity of sets. For sets A and B, it is defined in (1). 

SIM (A, B):= |A ∩ B| / |A ∪ B|.  (1) 

The result ranges from 0 (no elements in common) to 1 

(identical). It is evident that duplicate documents have a 

higher similarity to the original than unrelated documents. 

B. DSound Phonetic Matching Algorithm 

Phonetic matching algorithms are relied and dependent 

on the phonetic structures of a language. In spite of this 

restriction, they are proved to be very effective when fixing 

ill-defined data in English language [20]. Moreover, 

computation wise, it can be faster than string matching 

algorithms because of the applied conversion rules can 

shrink the textual information to a small number of digit 
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coding. Because of the stated reasons, in this work, we have 

concentrated on phonetic matching algorithms. 

Although it is one of the early designed algorithms for 

phonetic matching, previously we have shown the 

effectiveness of Soundex algorithm [20]. The Soundex 

algorithm keeps the first letter in a string and converts the 

rest into numbers. All zeros (vowels and ‘h’, ‘w’ and ‘y’) 

are then removed and sequences of the same number are 

reduced to one only (e.g., ‘222’ is replaced with ‘2’). The 

final code is the original first letter and three numbers 

(longer codes are cut-off, and shorter codes are extended 

with zeros). As an example, the Soundex code for ‘Rodgers’ 

is ‘r326’, and ‘r262’ for ‘Rojers’.  

Although Soundex is a well-designed solution, a major 

problem with the algorithm is that it keeps the first letter, 

thus any error at the beginning of a name will result in a 

different Soundex code. This can cause to eliminate the 

valid candidates because of the error in the first letter. 

Another disadvantage of the algorithm is the lack of 

transformation rules for special conditions, such as a word 

containing –dge- letters consecutively, i.e., Rodgers. As 

shown in the above examples with ‘Rodgers’ and ‘Rojers’, 

although those two text information are very close to each 

other, the difference between the codings are large enough 

to not easily come to a conclusion that those text 

information can be same. Moreover, truncated the coding 

with only 3 digit and letter coding may yield to miss 

misspellings occurring late in a long word. Therefore, we 

have created DSound phonetic matching algorithm based on 

the deficiencies of the Soundex and created three steps to 

generate a phonetic coding for a given text information as 

shown in Table 1. 

TABLE I.  DSOUND TRANSFORMATION RULES 

Step Letters Code 

1 

kn-, gn- pn, ac-, wr- drop first letter 

x- change to "s" 

wh- change to "w" 

otherwise skip to step 2 

2 

d 
2 (if in –dge- or –dgi- ‘Rodgers’) – 

drop ‘g’ 

g 0 (if in –gh- ‘Houghton’) 

t 2 (if  in -tia- or -tio- ‘Attention’) 

otherwise skip to step 3 

3 

a e h i o u w y 0 

b f p v 1 

c g j k q s x z 2 

d t 3 

l 4 

m n 5 

r 6 

 

In detail, first the initial characters are parsed by the 

given rules. Second, special cases are handled based on the 

created conversion system. Third, as a last step, the final 

text information is converted to digits based on the given 

rules and only repeated digits are removed from the final 

coding. For instance, the DSound code for “Rodgers” and 

“Rogers” are same and will yield to a coding of ‘602062’ 

C. Proposed Approach 

The proposed approach is a combination of the shingling 

algorithm and DSound phonetic matching algorithm as 

shown in Figure 1. 

Specifically, two input files are preprocessed and 

inserted into the system to check if there are any 

inconsistencies (mistyped words) between those. If there is 

any, then the proposed approach utilizes the DSound 

phonetic matching algorithm for finding the closest match 

for the mistyped data with the help of dictionary, which 

holds the English words. If there is no perfect match 

(different DSound codings), then Edit Distance score [21] is 

calculated between the original data and suggestions. In 

order to eliminate irrelevant results from the suggestion list 

a threshold of 2 is set for the distance. Then the closest 

candidate is selected as the best possible replacement for the 

mistyped word and is replaced with the ill-defined one in 

the text document. After the mistyped words are modified 

according to the combined approach, Shingling algorithm is 

applied to see the degree of the closeness of the text files. 

The closeness is calculated by the number of common 

shingles divided by the total number of shingles in both 

files. The details of the algorithm are provided in the 

following pseudo code (Figure 2).  

 
Figure 1. Proposed Hybrid Approach 
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________________________________________________ 

Algorithm 

________________________________________________ 

1:   Original File = OF; 

2:   Reference File = RF; 

3:   Open OF and RF 

4:   Run Shingling Algorithm 

5:   Compare OF and RF 

6:   Run DSound Algorithm on not-matched results 

7:         IF: match found = 1 

8:                 write and replace the word in RF  

9:         ELSE  

10:              calculate edit distance 

11:              write and replace the word in RF with the 

                      (lowest score) closest one 

12:       END IF 

13:   Open OF and RF 

14:   Run shingling algorithm 
15:   Compare OF and RF 

Figure 2. Pseudo code of the Hybrid Approach 

IV. TEST CASE AND RESULTS 

The data sets used for testing the algorithm were open to 

public text files that were obtained from the internet. Two 

files were obtained for each data set. The first file contained 

the error-free version of the text, while the second one held 

the same content but with occasional typographical errors 

due to mistyping or OCR errors. Overall, two files were 

duplicates, but because of some mistyped words the degree 

of closeness was less. The length of the text varied between 

119 words to 1108 words. As a proof of concept we 

executed the proposed approach on the mistyped version of 

the Abraham Lincoln’s Gettysburg address [22]. First, the 

mistyped words were corrected using the DSound phonetic 

matching algorithm. Second, Shingling algorithm was 

applied to the updated data set to evaluate the algorithms’ 

performance (Table II). 

TABLE II.  FIRST TEST DATA RESULTS 

 Shingle 

size=3 

Shingle 

size=4 

Shingle 

size=5 

Common Shingles w/o 

Proposed Approach 

254 252 247 

Not Matching Shingles w/o 
Proposed Approach 

26 34 42 

Common Shingles with 

Proposed Approach 

265 263 262 

Not Matching Shingles with  
Proposed Approach 

7 11 12 

 

As shown in Table II, before applying the hybrid 

approach and given a shingle size of 3, the number of 

common shingles between the two input files was 254 and 

the number of un-matched shingles was 26, after duplicate 

shingles were removed. After we applied the hybrid 

approach to the Shingling algorithm, the number of 

common shingles increased to 265 and the number of un-

matched shingles dropped to 7 with the shingle size of 3, 

once again after duplicate shingles were removed. The 

difference between the total number of shingles produced 

before using the proposed approach and after using the 

proposed approach is because of the removal of duplicates 

from the final set of shingles. As reflected from the results, 

the hybrid approach improved the performance of shingling 

algorithm and increased the degree of closeness between the 

two input files with different shingle sizes.  

As a second task, we executed the same test on forty 

documents. Overall, 40 pairs of error free and mistyped 

versions of the documents were collected from the internet. 

The error free versions of the documents are used as a 

reference point and mistyped versions are compared with it. 

These files found in the internet were mostly because of 

Optical Character Recognition (OCR) problems caused by 

scanners [23]-[24]. As shown in Figure 3, the percentage of 

common shingles to all shingles was improved with an 

average of 16 percent with different shingle sizes of 3, 4 and 

5. Although the average common shingle sizes were 

increased all over the board, the highest percentage of the 

common shingles were always seen when the shingle size 

was selected as 3.  

 

 
Figure 3. Percentages of Common Shingles with Different Shingle Sizes 

 

The answer to which shingle size is better suited for 

detecting the near duplicates is vital while applying the 

Shingling algorithm. Based on the tests we conducted, our 

observations are reflected in Table III. Overall, the shingle 

size 3 provides the highest degree of closeness among two 

near identical documents and less overhead (total number of 

shingles) in all test data we experimented on. However, as 

expected if the all misspelled words are corrected, then the 

accuracy percentage would be same among different shingle 

sizes and the computation overhead would be very close to 

each other. Other shingle sizes, such as greater than 5 or less 

than 3 is omitted, since those window sizes yield to lower 

shingle scores or require extensive computation. 
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TABLE III.  SELECTION OF SHINGLE SIZE 

Scenario Suited shingle size 

When no misspelled words are corrected by 

Jaro. 

3 

When only some misspelled words are 

corrected by Jaro 

3 

When all misspelled words are corrected by 

Jaro. 

3, 4 or 5 

 

It is also important to note that correctly fixing one ill-

defined data with the hybrid approach in most cases yields to 

substantial decrease in the number of not matching shingles. 

The main reason is that most of the each fix yields to 

multiple matching shingles based on the selected window 

size. Specifically, if a mistyped word is fixed when the 

window size is 4, then this may result in increase of 4 

common shingles between the two documents, unless the 

mistyped word is not within the first or last three words of 

the document. 

Word similarity and document similarity have been 

widely studied by researchers. In these works each word or 

each document are expressed in a vector space, then the 

similarity in the vector space can be calculated. The major 

disadvantage of this method is the large space vector and the 

lack of considering relationship and order between terms. It 

is computationally inefficient due to the sparse sentence 

vector. Moreover, it doesn’t do any favoring if there is any 

slight spelling error in the compared text. However, our 

proposed approach is particularly designed to address the 

errors caused by misspellings. That is why, we rationale our 

technique based on the assumption that the misspelled 

information is close to each other and the context and 

weights associated with the text is not relevant. 

V. PHONETIC MATCHING ALGORITHMS 

In this work, we particularly created a new phonetic 

matching algorithm to increase the efficiency of the near 

duplicate detection. To prove that the DSound algorithm 

performs best as the phonetic matching algorithm of this 

newly proposed hybrid system, we compared its efficiency 

with other well-known phonetic matching algorithms, such 

as Soundex, Phonex, Phonix, and Double Metaphone. As 

mentioned earlier, Soundex is used to correct phonetic 

misspellings with mapping a string into a key consisting of 

its first letter followed by a sequence of digits [25]. The 

encoding algorithm is very fast in practice. However, a 

major problem with Soundex is that it keeps the first letter, 

thus any error at the beginning of a name will result in a 

different Soundex code. Phonex [25] tries to improve the 

encoding quality by pre-processing names according to their 

English pronunciation before the encoding. All trailing ‘s’ 

are removed and various rules are applied to the leading part 

of a name (for example ‘kn’ is replaced with ‘n’, and ‘wr’ 

with ‘r’). Like Soundex, the leading letter of the transformed 

name string is kept and the remainder is encoded with 

numbers (1 letter, 3 digits). Phonix algorithm is an 

improvement for the Phonex and applies more than one 

hundred transformation rules on groups of letters [26]. The 

Metaphone algorithm is also a system for transforming 

words into codes based on phonetic properties [25]. Unlike 

Soundex, which operates on a letter-by letter scheme, 

Metaphone analyzes both single consonants and groups of 

letters called diphthongs according to a set of rules for 

grouping consonants and then maps groups to metaphone 

codes. 

In order to reduce the overhead, information has to be 

better organized and should produce relevant results. Two 

major metrics commonly associated with Information 

Retrieval Systems are Precision and Recall [27].  

Precision can be defined as the number of relevant 

documents retrieved by a search divided by the total number 

of documents retrieved by that search as shown in (2). 

��������	 =  
��� ��������

��� �������������� ��������
 (2) 

Precision measures one aspect of information retrieval 

overhead for a user performing a particular search. If a 

search has 90% precision, then 10% of the user effort is the 

overhead reviewing non-relevant items. Please note that the 

definition of relevant documents is broadened that the 

suggestion algorithms provide the correct result as one of 

the possible candidate for the misspelled word. 

Recall is different than precision. Recall can be defined 

as the number of relevant documents retrieved by a search 

divided by the total number of existing relevant documents, 

or in other words Recall is the percentage of spelling 

correction rate. Recall gauges how well a system processing 

a particular query is able to retrieve the relevant items that 

the user is interested in seeing. The formula of the recall is 

shown in (3). 

������ =  
��� ��������

��� �������������� ��������
 (3) 

A measure that combines precision and recall is 

the harmonic mean of precision and recall, the traditional F-

measure or balanced F-score. F-score is calculated by (4). 

� − !���� =  2 ∗
��$����%∗&�$���

��$����%�&�$���
  (4) 

The discussed five algorithms are tested on the discussed 

forty data set as shown in Table IV. 

TABLE IV.  COMPARISON OF PHONETIC MATCHING ALGORITHMS 

Algorithm Precision Recall F-Score 

DSound 83.7% 61.8% 71.10% 

Soundex 78.3% 54.3% 64.13% 

Phonex 76.4% 51.8% 61.74% 

Phonix 79.6% 57.1% 66.50% 

Double Metaphone 79.8% 56.2% 65.95% 
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As an average, DSound phonetic matching algorithm 

achieved highest F-Score, Precision and Recall rates. This is 

the main rationale why DSound phonetic matching algorithm 

is selected as the part of the hybrid approach 

VI. CONCLUSION AND FUTURE WORK 

Shingling is an effective and efficient algorithm to detect 

and eliminate duplicates in large-scale short text databases.  

However, applying this technique to original data can result 

in poor ratings if the documents contain mistyped 

information. Therefore, in this work, a new phonetic 

matching algorithm, namely DSound, and Shingling 

algorithm are combined to detect the near duplicate 

documents. Experiments reflected that using the hybrid 

approach is an encouraging solution for large-scale short text 

duplicate detection and increased the performance of 

shingling algorithm. As a future work, the hybrid approach 

will be used in various domains, such as in health care data, 

to improve the detection of near duplicates. Moreover, we 

will focus on language identification on the text information 

so that we can create and apply language specific rules for 

the phonetic matching process.  
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