
Improving Near Duplicate Data Detection via DSound Phonetic Matching

Algorithm: A Solution to Address Typographical Problems

Cihan Varol and Sairam Hari

Department of Computer Science

Sam Houston State University

email: { cxv007@shsu.edu, sxh020@shsu.edu }

Abstract—Near duplicate data not only increase the cost for

information processing, but also increase the time taken for a

decision. Therefore, detecting and eliminating them is vital for

business decisions. Shingling algorithm has been used in

detecting near duplicates in large-scale text databases. The

algorithm is based on the number of common tokens in two or

more set of information. In other words, if there is a slight

variation of the text, such as misspelling, in one of those

documents, the performance of the algorithm decreases.

Therefore, in this work, we proposed to embed a new phonetic

approximate algorithm, namely DSound, to Shingling

algorithm for improving the near duplicate data detection if

there is a typographical error. Based on the experiments on

real dataset, this newly proposed framework improved the

Shingling algorithm’s performance by 16 percent.

Keywords-data cleansing; data quality; duplicate detection;

DSound; Shingling

I. INTRODUCTION

Now-a-days, duplicate document is a common problem

in big database. Advanced duplicate detection techniques

are required not only to process query, but also to filter the

redundant (duplicate data) information in large scale

document database to improve the search quality. To

address this issue, duplicate document detection techniques

are used to prevent the search results from including the

multiple documents having the same or nearly same content.

The search quality in a data is affected as a result of

multiple copies being included in the search results. The

process of indexing the data is done by scanning the content

of each and every document. When two documents contain

identical content, they are regarded as duplicates. There

might be some documents with small dissimilarities and are

not declared as being “exact duplicates” of each other but

are identical to such an extent that they can be declared as

near-duplicates [1]. Detecting near duplicates are utmost

important to improve the search quality.
Following are examples of near duplicate samples seen in

documents [2]:

• Documents containing a few different words -

widespread form of near-duplicates.

• Documents with the same content but different

formatting – for instance, the documents may contain

the same text, but dissimilar fonts, bold type, or

italics.

• Documents with the same content but with

typographical errors (mistyped words)

• Plagiarized documents and documents with different

versions

• Documents with the same content but different file

type – for instance, Microsoft Word and PDF.

• Documents providing identical information written

by the same author being published in more than one

domain.

Relying only on the resemblance of the exact contents of

the documents may yield to overlook near identical ones.

Thus, this will eventually lead to miss the detection of

duplicate documents. Although, all the listed examples are

part of the near duplicate problem, in this work, we will

particularly address the problems raised with typographical

errors. Typographical errors are a spelling error that can be

captured simply because it is mistyped or misspelled [3]. As

the name suggests, these are invalid strings, properly

identified and isolated as incorrect representations of a valid

word [4]. Fat fingering places an important role in this type

of misspelling. These errors are made assuming that the

writer or typist knows how to spell the word, but may have

typed the word hastily resulting in an error [5]. No matter

how the word is misspelled, this results in decrease in

quality of the document and yield to near identical

documents. Therefore, in this paper, we introduce a hybrid

approach to improve the widely known near duplicate

detection algorithm, namely Shingling algorithm.

Particularly we embed phonetic matching technique to

Shingling algorithm to improve the outcome of near

duplicate detection.

In Section 2, we discuss related work about near duplicate

detection. In Section 3, the newly proposed approach will be

elaborated. In Sections 4 and 5, the test cases and

experimental results will be discussed. At the end, the paper

will be finalized with the conclusion section.

II. RELATED WORK

There are few techniques that have been developed to

identify near duplicate documents [6]-[10], web page

9Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

duplicates [11]–[15], and duplicate database records [16]-

[17]. Brin et al. has proposed a Copy Protection System

(COPS) system to protect important and intellectual

property of digital documents [6]. As a part of the Stanford

Digital Library project Kumar et al. developed Stand Copy

Analysis Mechanism (SCAM) to identify similar documents

in online library [7]. Author in [12] proposed shingling

algorithm which keeps the sketch of shingles of each

document to compute the resemblance of two documents.

Any documents with at least one common shingle are

examined and checked whether to see if it exceeds the

threshold for resemblance. Broder’s shingling method is

implemented in AltaVista search engine for duplicate

document detection [12]. Lyon et al. investigated the

theoretical background to automate plagiarism detection [8].

They observe that independently written texts have a

comparatively low level of matching trigrams. The Ferret

plagiarism system counts the matching trigrams of a pair of

documents [8]-[9]. In [10], the authors offered a new

filtering technique by exploiting the ordering information.

With this way, they drastically reduced the candidate sizes

and hence improved the efficiency of search.

The authors in [11] proposed two approaches to compute

near duplicates between all web documents simultaneously.

Both of the approaches assume that two documents di and dj

can be near duplicates only when document di and dj share

more than ‘m’ fingerprints, where ‘m’ is a predefined

threshold [11]. Das et al. proposed a Term Document

Weight (TDW) matrix based algorithm with three phases,

rendering, filtering, and verification, which receives an

input web page and a threshold in its first phase, prefix

filtering and positional filtering to reduce the size of record

set in the second phase and returns an optimal set of near

duplicate web pages in the verification phase by using

Minimum Weight Overlapping (MWO) method [15]. In

[18], the author showed that rounding algorithms for Linear

Programming (LPs) and Semidefinite Programming (SDPs)

used in the context of approximation algorithms can be

viewed as locality sensitive hashing schemes. Simhash is a

fingerprint technique that holds the property that the two

documents are near duplicate only if the fingerprints of the

documents are identical, since near-duplicates differ only in

a small number of bit positions [13] and [18].

As stated above and discussed in [19], most of the

techniques are looking for the resemblance of the

documents via the exact similarity level or use some form of

approximation technique to detect the near similar

documents. If the latter approach is used in the whole

document the computation overhead will be high. If the first

approach is used alone, then the misspelled or slightly

incorrect representation will yield to decrease the accuracy

rating. Therefore, there is a dire need to combine these two

main approaches in a way that it will not only improve the

accuracy rating, but also keeps the computational overhead

in low levels.

III. METHODOLOGY

In this work, we propose to embed DSound Phonetic

Approximate algorithm to Shingling algorithm for detecting

near duplicates documents.

Shingling algorithm is a well-known technique used for

detecting the near duplicates. DSound is a newly designed

phonetic based spelling correction algorithm which returns

an equivalent word if there is a misspelling. Both of these

methods are explained briefly in below sections.

A. Shingling Algorithm

Shingling algorithm is a well-known technique

introduced by Broder to estimate the degree of similarity

among pairs of documents [12]. The algorithm does not

depend on any linguistic knowledge other than the ability to

tokenize documents into a set of words based on the shingle

size [12]. In shingling, the string is divided into words and

all word sequences of adjacent words are extracted. If two

documents contain the same set of shingles they are

considered identical and if their sets of shingles appreciably

overlap, they are accepted as exceedingly identical [12].

In detail, shingling divides the text document into set of

substrings of length k (called k-shingles). The shingling

algorithm is implemented using sliding window method

with the window size of k (shingle size of k) over the input

document character by character and placing the substrings

into a set. For example, the string "abcabcac" can be

represented by {"abc", "bca", "cab", “abc”, “bca”, "cac"} if

the sliding window is chosen as 3-shingles. Since the

algorithm eliminates the duplicate ones, only four shingles

{"abc", "bca", "cab", "cac"} will be in the final set. Another

example for shingling algorithm is given below:

Given a string S = {a rose is a rose is a rose}
Using shingling algorithm (with window size set at 4) the

string can be tokenized as {(a rose is a), (rose is a rose), (is a rose

is), (rose is a rose), (a rose is a), (rose is a rose)}.
Removing the duplicates will yield to the following shingles

{ (a,rose,is,a), (rose,is,a,rose), (is,a,rose,is) }

At the end, Jaccard similarity is used for expressing

similarity of sets. For sets A and B, it is defined in (1).

SIM (A, B):= |A ∩ B| / |A ∪ B|. (1)

The result ranges from 0 (no elements in common) to 1

(identical). It is evident that duplicate documents have a

higher similarity to the original than unrelated documents.

B. DSound Phonetic Matching Algorithm

Phonetic matching algorithms are relied and dependent

on the phonetic structures of a language. In spite of this

restriction, they are proved to be very effective when fixing

ill-defined data in English language [20]. Moreover,

computation wise, it can be faster than string matching

algorithms because of the applied conversion rules can

shrink the textual information to a small number of digit

10Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

coding. Because of the stated reasons, in this work, we have

concentrated on phonetic matching algorithms.

Although it is one of the early designed algorithms for

phonetic matching, previously we have shown the

effectiveness of Soundex algorithm [20]. The Soundex

algorithm keeps the first letter in a string and converts the

rest into numbers. All zeros (vowels and ‘h’, ‘w’ and ‘y’)

are then removed and sequences of the same number are

reduced to one only (e.g., ‘222’ is replaced with ‘2’). The

final code is the original first letter and three numbers

(longer codes are cut-off, and shorter codes are extended

with zeros). As an example, the Soundex code for ‘Rodgers’

is ‘r326’, and ‘r262’ for ‘Rojers’.

Although Soundex is a well-designed solution, a major

problem with the algorithm is that it keeps the first letter,

thus any error at the beginning of a name will result in a

different Soundex code. This can cause to eliminate the

valid candidates because of the error in the first letter.

Another disadvantage of the algorithm is the lack of

transformation rules for special conditions, such as a word

containing –dge- letters consecutively, i.e., Rodgers. As

shown in the above examples with ‘Rodgers’ and ‘Rojers’,

although those two text information are very close to each

other, the difference between the codings are large enough

to not easily come to a conclusion that those text

information can be same. Moreover, truncated the coding

with only 3 digit and letter coding may yield to miss

misspellings occurring late in a long word. Therefore, we

have created DSound phonetic matching algorithm based on

the deficiencies of the Soundex and created three steps to

generate a phonetic coding for a given text information as

shown in Table 1.

TABLE I. DSOUND TRANSFORMATION RULES

Step Letters Code

1

kn-, gn- pn, ac-, wr- drop first letter

x- change to "s"

wh- change to "w"

otherwise skip to step 2

2

d
2 (if in –dge- or –dgi- ‘Rodgers’) –

drop ‘g’

g 0 (if in –gh- ‘Houghton’)

t 2 (if in -tia- or -tio- ‘Attention’)

otherwise skip to step 3

3

a e h i o u w y 0

b f p v 1

c g j k q s x z 2

d t 3

l 4

m n 5

r 6

In detail, first the initial characters are parsed by the

given rules. Second, special cases are handled based on the

created conversion system. Third, as a last step, the final

text information is converted to digits based on the given

rules and only repeated digits are removed from the final

coding. For instance, the DSound code for “Rodgers” and

“Rogers” are same and will yield to a coding of ‘602062’

C. Proposed Approach

The proposed approach is a combination of the shingling

algorithm and DSound phonetic matching algorithm as

shown in Figure 1.

Specifically, two input files are preprocessed and

inserted into the system to check if there are any

inconsistencies (mistyped words) between those. If there is

any, then the proposed approach utilizes the DSound

phonetic matching algorithm for finding the closest match

for the mistyped data with the help of dictionary, which

holds the English words. If there is no perfect match

(different DSound codings), then Edit Distance score [21] is

calculated between the original data and suggestions. In

order to eliminate irrelevant results from the suggestion list

a threshold of 2 is set for the distance. Then the closest

candidate is selected as the best possible replacement for the

mistyped word and is replaced with the ill-defined one in

the text document. After the mistyped words are modified

according to the combined approach, Shingling algorithm is

applied to see the degree of the closeness of the text files.

The closeness is calculated by the number of common

shingles divided by the total number of shingles in both

files. The details of the algorithm are provided in the

following pseudo code (Figure 2).

Figure 1. Proposed Hybrid Approach

11Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

__

Algorithm

__

1: Original File = OF;

2: Reference File = RF;

3: Open OF and RF

4: Run Shingling Algorithm

5: Compare OF and RF

6: Run DSound Algorithm on not-matched results

7: IF: match found = 1

8: write and replace the word in RF

9: ELSE

10: calculate edit distance

11: write and replace the word in RF with the

 (lowest score) closest one

12: END IF

13: Open OF and RF

14: Run shingling algorithm
15: Compare OF and RF

Figure 2. Pseudo code of the Hybrid Approach

IV. TEST CASE AND RESULTS

The data sets used for testing the algorithm were open to

public text files that were obtained from the internet. Two

files were obtained for each data set. The first file contained

the error-free version of the text, while the second one held

the same content but with occasional typographical errors

due to mistyping or OCR errors. Overall, two files were

duplicates, but because of some mistyped words the degree

of closeness was less. The length of the text varied between

119 words to 1108 words. As a proof of concept we

executed the proposed approach on the mistyped version of

the Abraham Lincoln’s Gettysburg address [22]. First, the

mistyped words were corrected using the DSound phonetic

matching algorithm. Second, Shingling algorithm was

applied to the updated data set to evaluate the algorithms’

performance (Table II).

TABLE II. FIRST TEST DATA RESULTS

 Shingle

size=3

Shingle

size=4

Shingle

size=5

Common Shingles w/o

Proposed Approach

254 252 247

Not Matching Shingles w/o
Proposed Approach

26 34 42

Common Shingles with

Proposed Approach

265 263 262

Not Matching Shingles with
Proposed Approach

7 11 12

As shown in Table II, before applying the hybrid

approach and given a shingle size of 3, the number of

common shingles between the two input files was 254 and

the number of un-matched shingles was 26, after duplicate

shingles were removed. After we applied the hybrid

approach to the Shingling algorithm, the number of

common shingles increased to 265 and the number of un-

matched shingles dropped to 7 with the shingle size of 3,

once again after duplicate shingles were removed. The

difference between the total number of shingles produced

before using the proposed approach and after using the

proposed approach is because of the removal of duplicates

from the final set of shingles. As reflected from the results,

the hybrid approach improved the performance of shingling

algorithm and increased the degree of closeness between the

two input files with different shingle sizes.

As a second task, we executed the same test on forty

documents. Overall, 40 pairs of error free and mistyped

versions of the documents were collected from the internet.

The error free versions of the documents are used as a

reference point and mistyped versions are compared with it.

These files found in the internet were mostly because of

Optical Character Recognition (OCR) problems caused by

scanners [23]-[24]. As shown in Figure 3, the percentage of

common shingles to all shingles was improved with an

average of 16 percent with different shingle sizes of 3, 4 and

5. Although the average common shingle sizes were

increased all over the board, the highest percentage of the

common shingles were always seen when the shingle size

was selected as 3.

Figure 3. Percentages of Common Shingles with Different Shingle Sizes

The answer to which shingle size is better suited for

detecting the near duplicates is vital while applying the

Shingling algorithm. Based on the tests we conducted, our

observations are reflected in Table III. Overall, the shingle

size 3 provides the highest degree of closeness among two

near identical documents and less overhead (total number of

shingles) in all test data we experimented on. However, as

expected if the all misspelled words are corrected, then the

accuracy percentage would be same among different shingle

sizes and the computation overhead would be very close to

each other. Other shingle sizes, such as greater than 5 or less

than 3 is omitted, since those window sizes yield to lower

shingle scores or require extensive computation.

0

20

40

60

80

100

3 4 5

Common Shingle Percentages

Proposed Approach Original Shingling Algorithm

12Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

TABLE III. SELECTION OF SHINGLE SIZE

Scenario Suited shingle size

When no misspelled words are corrected by

Jaro.

3

When only some misspelled words are

corrected by Jaro

3

When all misspelled words are corrected by

Jaro.

3, 4 or 5

It is also important to note that correctly fixing one ill-

defined data with the hybrid approach in most cases yields to

substantial decrease in the number of not matching shingles.

The main reason is that most of the each fix yields to

multiple matching shingles based on the selected window

size. Specifically, if a mistyped word is fixed when the

window size is 4, then this may result in increase of 4

common shingles between the two documents, unless the

mistyped word is not within the first or last three words of

the document.

Word similarity and document similarity have been

widely studied by researchers. In these works each word or

each document are expressed in a vector space, then the

similarity in the vector space can be calculated. The major

disadvantage of this method is the large space vector and the

lack of considering relationship and order between terms. It

is computationally inefficient due to the sparse sentence

vector. Moreover, it doesn’t do any favoring if there is any

slight spelling error in the compared text. However, our

proposed approach is particularly designed to address the

errors caused by misspellings. That is why, we rationale our

technique based on the assumption that the misspelled

information is close to each other and the context and

weights associated with the text is not relevant.

V. PHONETIC MATCHING ALGORITHMS

In this work, we particularly created a new phonetic

matching algorithm to increase the efficiency of the near

duplicate detection. To prove that the DSound algorithm

performs best as the phonetic matching algorithm of this

newly proposed hybrid system, we compared its efficiency

with other well-known phonetic matching algorithms, such

as Soundex, Phonex, Phonix, and Double Metaphone. As

mentioned earlier, Soundex is used to correct phonetic

misspellings with mapping a string into a key consisting of

its first letter followed by a sequence of digits [25]. The

encoding algorithm is very fast in practice. However, a

major problem with Soundex is that it keeps the first letter,

thus any error at the beginning of a name will result in a

different Soundex code. Phonex [25] tries to improve the

encoding quality by pre-processing names according to their

English pronunciation before the encoding. All trailing ‘s’

are removed and various rules are applied to the leading part

of a name (for example ‘kn’ is replaced with ‘n’, and ‘wr’

with ‘r’). Like Soundex, the leading letter of the transformed

name string is kept and the remainder is encoded with

numbers (1 letter, 3 digits). Phonix algorithm is an

improvement for the Phonex and applies more than one

hundred transformation rules on groups of letters [26]. The

Metaphone algorithm is also a system for transforming

words into codes based on phonetic properties [25]. Unlike

Soundex, which operates on a letter-by letter scheme,

Metaphone analyzes both single consonants and groups of

letters called diphthongs according to a set of rules for

grouping consonants and then maps groups to metaphone

codes.

In order to reduce the overhead, information has to be

better organized and should produce relevant results. Two

major metrics commonly associated with Information

Retrieval Systems are Precision and Recall [27].

Precision can be defined as the number of relevant

documents retrieved by a search divided by the total number

of documents retrieved by that search as shown in (2).

��������	 =
��� ��������

��� �������������� ��������
 (2)

Precision measures one aspect of information retrieval

overhead for a user performing a particular search. If a

search has 90% precision, then 10% of the user effort is the

overhead reviewing non-relevant items. Please note that the

definition of relevant documents is broadened that the

suggestion algorithms provide the correct result as one of

the possible candidate for the misspelled word.

Recall is different than precision. Recall can be defined

as the number of relevant documents retrieved by a search

divided by the total number of existing relevant documents,

or in other words Recall is the percentage of spelling

correction rate. Recall gauges how well a system processing

a particular query is able to retrieve the relevant items that

the user is interested in seeing. The formula of the recall is

shown in (3).

������ =
��� ��������

��� �������������� ��������
 (3)

A measure that combines precision and recall is

the harmonic mean of precision and recall, the traditional F-

measure or balanced F-score. F-score is calculated by (4).

� − !���� = 2 ∗
��$����%∗&�$���

��$����%�&�$���
 (4)

The discussed five algorithms are tested on the discussed

forty data set as shown in Table IV.

TABLE IV. COMPARISON OF PHONETIC MATCHING ALGORITHMS

Algorithm Precision Recall F-Score

DSound 83.7% 61.8% 71.10%

Soundex 78.3% 54.3% 64.13%

Phonex 76.4% 51.8% 61.74%

Phonix 79.6% 57.1% 66.50%

Double Metaphone 79.8% 56.2% 65.95%

13Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

As an average, DSound phonetic matching algorithm

achieved highest F-Score, Precision and Recall rates. This is

the main rationale why DSound phonetic matching algorithm

is selected as the part of the hybrid approach

VI. CONCLUSION AND FUTURE WORK

Shingling is an effective and efficient algorithm to detect

and eliminate duplicates in large-scale short text databases.

However, applying this technique to original data can result

in poor ratings if the documents contain mistyped

information. Therefore, in this work, a new phonetic

matching algorithm, namely DSound, and Shingling

algorithm are combined to detect the near duplicate

documents. Experiments reflected that using the hybrid

approach is an encouraging solution for large-scale short text

duplicate detection and increased the performance of

shingling algorithm. As a future work, the hybrid approach

will be used in various domains, such as in health care data,

to improve the detection of near duplicates. Moreover, we

will focus on language identification on the text information

so that we can create and apply language specific rules for

the phonetic matching process.

REFERENCES

[1] K. J. Prasanna and P. Govindarajulu, “Duplicate and Near-
duplicate documents detection,” European Journal of
Scientific Research, Vol.32 No.4, 2009, pp. 514-527.

[2] T. Gupta and L. Banda, “A hybrid model for detection and
elimination of Near Duplicates based on Web Provenance for
Effective Web Search,” International Journal of Advances in
Engineering & Technology. Vol. 4, Issue 1, 2012, pp. 192-
205.

[3] Levenshtein Edit-Distance Algorithm,
http://www.nist.gov/dads/HTML/Levenshtein.html [retrieved:
March, 2015].

[4] C. Becchetti and L. P. Ricotti, “Speech Recognition: Theory
and C++ Implementation”. John Wiley & Sons, 1999.

[5] K. Kukich, “Techniques for Automatically Correcting Words
in Text”, ACM Computing Surveys, vol. 24, No. 4, 1992, pp.
377-439.

[6] S. Brin, J. Davis, and H. Garcia-Molina, “Copy detection
mechanisms for digital documents,” In: Proceedings of the
ACM SIGMOD Annual Conference, San Francisco, CA, May
1995, pp. 398-409.

[7] K. N. Shiva and H. Garcia-Molina, “SCAM: A copy detection
mechanism for digital document,”. In: Proceedings of 2nd
International Conference in Theory and Practice of Digital
Libraries, Austin, Texas, June 1995, pp. 1-13.

[8] C. Lyon, R. Barrett, and J. Malcolm, “A theoretical basis to
the automated detection of copying between texts, and its
practical implementation in the Ferret plagiarism and
collusion detector,” In: Plagiarism: Prevention, Practice and
Policies Conference, June 2004, pp. 1-7.

[9] C. Lyon, R. Barrett, and J. Malcolm, “Plagiarism is easy, but
also easy to detect,” Plagiary: Cross-Disciplinary Studies in
Plagiarism, Fabrication, and Falsification Vol.1, No.5, 2006,
pp. 1–10.

[10] C. Xiao, W. Wang, and X. Lin, “Efficient Similarity Joins for
Near-Duplicate Detection,” Proceeding of the 17th

International Conference on World Wide Web, April, 2008,
pp 131 – 140.

[11] K. N. Shiva and H. Garnia-Molina, “Finding near-replicas of
documents on the web,” In: Proceedings of Workshop on
Web Databases, Valencia, Spain, March 1998, pp 204-212.

[12] A. Broder, “Identifying and Filtering Near-Duplicate
Documents,” In: Proceedings of the 11th Annual Symposium
on Combinatorial Pattern Matching, Montreal, Canada, June,
2000, pp. 1-10.

[13] G. S. Manku, A. Jain, and A. D. Sarma, “Detecting near-
duplicates for web crawling,” In: Proceedings of the 16th
International World Wide Web Conference, Banff, Alberta,
Canada, May 2007, pp. 141-149.

[14] M. Henzinger, “Finding near-duplicate web pages: A large-
scale evaluation of algorithms,” In: Proceedings of the 29th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Seattle,
Washington, U.S.A, August 2006, pp.284-291.

[15] S. N. Das, M. Mathew, and P. K. Vijayaraghavan, “An
Approach for Optimal Feature Subset Selection using a New
Term Weighting Scheme and Mutual Information,”
Proceedings of the International Conference on Advanced
Science, Engineering and Information Technology, Malaysia,
January 2011, pp. 273-278.

[16] Z. P. Tian, H. J. Lu, and W.Y. Ji, “An n-gram-based approach
for detecting approximately duplicate database records,”
International Journal on Digital Libraries, Vol. 5 No. 3, 2001,
pp. 325-331.

[17] M. A. Hernandez and S. J. Stolfo, “The merge/purge problem
for large databases,” In: Proceedings of the 1995 ACM
SIGMOD International Conference on Management of Data,
San Jose, CA, 1995, pp. 127-138.

[18] M. Charikar, “Similarity estimation techniques from rounding
algorithms,” In: Proceedings of 34th Annual Symposium on
Theory of Computing, Montréal, Québec, Canada, May 2002,
pp. 380-388.

[19] J. P. Kumar and P. Govindarajulu, “Duplicate and near
duplicate documents detection: A review,” European Journal
of Scientific Research, 32, 2009, 514--527.

[20] C. Varol and C. Bayrak, "Personal Name-based Pattern and
Phonetic Matching Techniques: A Survey," ALAR
Conference on Applied Research in Information Technology,
February 13, 2009, Conway, Arkansas, USA..

[21] Levenshtein VI. “Binary codes capable of correcting
deletions, insertions and reversals”. Doklady Akademii Nauk
SSSR 163 : 845-848, 1965, also {1966) Soviet Physics
Doklady 10 : 707-710.

[22] “The Gettysburg Address”,
http://www2.cs.uregina.ca/~simeon2m/CS210/Assignments/te
stfile.txt [retrieved: March, 2015].

[23] “Electronic Text Center”,
http://courses.cs.vt.edu/csonline/AI/Lessons/VisualProcessing
/OCRscans.html [retrieved: March, 2015].

[24] “Error Report on ScarWox”,
http://www.columbia.edu/acis/cria/rosenberg/sample/
[retrieved: March, 2015].

[25] L. Philips, “Hanging on the metaphone,” Computer
Language, 7(12), 1990, pp. 39-43.

[26] T. Gagg, “PHONIX: The algorithm,” Program: automated
library and information systems, 24(4), 1990, pp. 363–366.

[27] J. Davis and M. Goadrich: “The relationship between
Precision-Recall and ROC curves.” ICML 2006: pp. 233-240.

14Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

