
An Industry Experience on Dynamic Handling of Multiple Database Types

for Data Integration Tool

Badrul Affandy Bin Ahmad Latfi, Anbarasan Kodandaraman, Lee Chee Kiam, and Thong Tong Khin

Software Development Lab

MIMOS Bhd

Kuala Lumpur, Malaysia

e-mails: {badrul.affandy, anbarasan.raman, ck.lee, thong.tkin}@mimos.my

Abstract— This paper presents the industry experience of im-

plementing a Structured Query Language (SQL) Query Build-

er component and its interface supporting multiple database

types in web-based Data Integration Tool (DIT), which per-

forms Extract-Transform-Load (ETL) and Data Cleansing.

Due to the dynamic nature of database connectivity for differ-

ent types of source and target tables, the usage of direct SQL

statement is preferred over Object Relationship Management

(ORM). The common problem while handling multiple differ-

ent databases is that it requires database specific queries for

SQL functions, like create table, insert data or query specific

range of rows for each type of database. Hence, we developed

the SQL Query Builder (QB), which generates specific SQL

statements for specific syntax. By standardizing the usage of

delimited identifier with American National Standards Insti-

tute (ANSI) mode, and schema hierarchy, the QB’s common

interface will enable to dynamically handle multiple types of

databases. With the QB, we created ETL and data cleansing
applications compatible with multiple database types.

Keywords-Data integration; SQL; multiple database type.

I. INTRODUCTION

A metadata-intensive application, such as data integration

that performs Extract-Transform-Load (ETL) and data

cleansing works on low level Application Programming

Interface (API) to produce actions on source and target data-

base. Logical data mapping needs to be done at early stage of

ETL to ensure ETL produce quality data [1]. ETL operation

could be done through effective usage of SQL to map and

transform data [2]. Manual tables mapping with the help of

user interface is a slow process [3]; thus, we use the auto-

mated mapping of source and target tables with additional

supports of multiple database types. The data integration tool

that we developed is based on server centric solution, which

can be deployed on powerful servers.
We developed a SQL Query Builder component, also re-

ferred as Query Builder (QB) in this document, for support-

ing multiple database connections, providing services to

source and target database, and the system resource itself.

QB has three benefits: (1) creates SQL based on

source/target tables, (2) eases of applying system identifica-

tion to manage source and target tables, and (3) enforces

delimited identifiers that are generic for all database types.

The output of QB is SQL statement produced specifically for

source or target table based on database type. QB is the main

component of Data Integration Tool (DIT). Since the DIT is

a web-based solution, whereby table entities classes are

loaded during system startup, it is essential for the DIT to

execute SQL query to multiple database types dynamically,

which cannot be performed by traditional solution, such as

Object Relational Management (ORM).

Section II elaborates problems encountered and solutions.
Section III covers the QB architecture and design. Section IV

presents the results, and finally, Section V concludes QB

benefit and future enhancement.

II. PROBLEMS ENCOUNTERED AND SOLUTIONS

A. Database Mapping

Systems or platforms that require accessing multiple da-

tabase types had been presences many years back. These

systems connect database and access its tables through Java

connector with configured object mappings via ORM pro-

gramming tool. ORM is a powerful tool that allows Java
objects interacts with relational database. The ob-

ject/relational metadata are configured prior to Java object

instantiations. The object instantiation for all mappings

normally happens during application startup, after that ap-

plication could perform standard operations like create,

update, delete and read. If the XML configuration of the

ORM is not correct, exceptions occur and the application

loading is aborted. Open-source tools, such as Hibernate [4],

MyBatis [5], provide object relational mapping with data-

base tables.

For ETL, the source and target databases could be of dif-
ferent database types. The source and target databases are

configured via a configuration screen. User may add or

remove the configuration as required. User may link up

source and target databases to perform ETL process. Once

tables are connected, ETL processes extract, transform and

then load data into data warehouse. The data warehouse is

the primary environment of ETL process. ORM is not fitting

the requirement due to the tool need to dynamically connect

to multiple data sources (with any number of columns of

different type) and data structure during runtime. We use

database specific SQL over ORM. Each ETL process would

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

require a set of dynamic SQL scripts to be generated during

runtime for its operations (table creation, alteration and

selection).

B. Data Integration Tools

There are a few open source data integration tools avail-

able in the IT industry, such as Pentaho Data Integration

(Kettle) [6] and Talend Open Studio for Data Integration

(TOS) [7]. These tools run job flow on client desktop or on

remote server through deployment. The job flow typically

bounds specific database tables, so that each ETL job is

unique. In our application, an ETL process runs on generic

ETL job. A new ETL process with database configurations
could be added without application redeployment. Kettle

and TOS jobs perform stream-based process, which is per

record basis. Our application could not make use these open

source tool platforms because it is required to runs multi-

threaded jobs with bulk data stored in multiple database

types. It is also required to connect with Graphic Processing

Unit (GPU) system for data cleansing operation [8]. Our

application also has other proprietary data cleansing fea-

tures, which runs in web-based application.

C. Database syntax

There are many commercial RDBMS in the market
where we use three types, namely, Oracle, MySQL and
PostgreSQL. We use SQL language to connect with these
database types be it at data processing level or user interface
level. Problems encountered by the development team of
DIT are listed below. Other problems, such as built-in func-
tion and dialect, are not considered as they are out of scope.

• Quoted Identifier. Many sources recommended
avoiding quoted identifier, as it destroys portability
of the code and invites poorly constructed names [9].
However, this may not be true if we were to extract
data from multiple database types. Using quoted
identifier with ANSI [10] setting would improve
code maintainability across different database ven-
dors [11][12][13].

• Schema hierarchy. The schema name is always
supplied in order to avoid confusion especially in
PostgreSQL. This problem is re-solved using quoted
identifier for schema, so that it works across multiple
database types.

• Record number and limit. Record limit built-in
function normally receive two arguments, namely,
start number and number of records. According to
MYSQL manual, the LIMIT command in MYSQL
limits the return row [14]. For PostgreSQL, the off-
set value specifies the number of row to skip. For
Oracle, it has top N-query processing with
ROWNUM [15]. The query has inline view of the
target table with full query. The returned records are
bigger than start number but less than record num-
ber. The next batch of records will be received by
incrementing the start and record numbers.

• Upsert. Upsert is a function to update and insert data
(if data not found in target table). There is no stand-

ard command of upsert among multiple database
types. Therefore, we develop small SQL functions to
build an upsert command for each type of database.

• Type casting for Numeric Type. Usually, the data
types are same across database types. But, in Post-
greSQL, NUMERIC type can save float or integer,
this data type has to be considered carefully during
data conversion, otherwise SQL exception will oc-
cur. Casting numeric data type to float re-solves the
issue.

• Auto increment. Creation of auto increment con-
straint in Oracle is not straight forward as in MySQL
(AUTO INCREMENT) and PostgreSQL
(BIGSERIAL). We have to create a new sequence
with id and other details like start and increment val-
ue. A trigger with unique id is also created and the
“NEXTVAL” of sequence is called on the column
where the value has to be incremented.

• Connection pooling on dynamic connections. In
an ETL application, it is essential to connect to mul-
tiple databases and tables in a dynamic way. Since
connection pooling is used, pooled connections have
to be reused for connecting to the same data source.
As we are using DBCP of Apache [16], the pooled
connections for the dynamically created BasicData-
Source have to be reused to avoid connection leak or
to open too many connections. Hence, we need to
pool the Apache's DBCP connections into a map.
We can make sure that only one connection pool is
created for one data source and is pooled in our map.
When requested for an existing connection, the map
holding the object of the current data source is re-
turned.

• Auto generates column value in Oracle. There
might be several instances where the auto generated
id upon inserting a row into table is required. The
prepared statement or statement has the facility to re-
trieve the generated value. After setting the values,
the statement is executed and the result set hold the
generated values. For Oracle, since the auto generat-
ed values are achieved by using sequence and trig-
ger, the column which holds the auto-generated key
is not considered as generated column and hence, it
is not returned. It holds the ROWID of the inserted
row. This ROWID is used to retrieve the generated
key by a separate call, as shown in Figure 1.

Figure 1. Auto generate key for Oracle

StringBuilder que = new StringBuild-
er();
tempStat= conn.createStatement();
que.append("SELECT generatedColumn-
Name FROM "+ tablename+("

WHERE rowid ='"+rowValue+"'");

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 1 illustrates way of creating a SQL query

string to get the auto generate key for Oracle. Exe-

cuting the SQL query string with Oracle database

generated a result set and from the result set, the

generated key value is obtained.

III. ARCHITECTURE

A. Component architecture

The component architecture for DIT is displayed in Fig-
ure 2.

Figure 2. DIT Component Architecture

The application establishes connection with source and

target tables through connection pool. For source and target
tables, the database connection pool is used for each type of
database. The lookup cache for connection pool will provide
available connection to the connecting database type. The
QB formats SQL syntax according to connecting database
types. The business logic in the form of general query argu-
ments is passed to QB to form a valid SQL syntax. The QB
component output are read data list and new database struc-
ture, such as system columns, system tables and systems
data. The bulk data process is a component to process data
through multithreaded process whereby its SQLs are also
supplied by QB. The applications are also connected to ex-
ternal processes via an interface.

B. Query Builder interface

The source and target tables operations rely on the gener-

ated SQL statement. Figure 3 shows the QB’s interface for
Create table and Select query statement.

Figure 3. Query Builder interface

For creating a table, the respective data type semantic
(e.g., STRING, INTEGER) are translated into correct syntax

(e.g., VARCHAR2 or VARCHAR, NUMBER or INT). Sim-

ilarly, we have separate interfaces to generate queries for

Insert, Update, Delete and Alter with their respective inputs.

These are the interfaces for consuming QB component ser-

vices. The QB’s role is to produce the following outputs in

relation to source or target tables (based on database type),

namely, (1) read statement for paging, (2) create new system

tables, (3) create new index and trigger, (4) append new

columns, and (5) populate system values.

IV. RESULTS

By implementing the above design and architecture, we

are able to create an ETL and data cleansing applications

that compatible with MySQL, PostgreSQL and Oracle

RDBMS. All SQL issues specific to databases are handled

in QB. It is easy to use for user without in depth knowledge

of SQL. The DIT’s user only needs to configure the function

and the target database’s table; QB will generate all the SQL

statement specified to the target database type. The QB

project is loosely coupled it can be easily scaled to more

databases without any code change in the main project.
Some of the problems below and their solutions are han-

dled by the QB: (1) the quoted identifier is implemented in

QB for all databases without requiring database administra-

tor to configure any database system settings. (2) The sche-

ma hierarchy is implemented in QB for all database types as

it is mandatory for specific database, i.e., PostgreSQL. (3)
QB also handles specific queries that use SQL built-in func-

tions. Specific queries are built when database type is

known and its respective built-in functions are included in

the queries. (4) The UPSERT command also varies for dif-

ferent database types, which is handled in QB. (5) The auto

increment is a standard feature in MySQL and PostgreSQL,

but not in Oracle; this is handled in QB by issuing set of

dependent queries for different database types.

Connection Pool

Bulk Data Process

DIT Applications
(ETL,Data Cleansing etc)

Query Builder

DB
Type 1

DB
Type 2

DB
Type 3

DB
Type 4

//create a table

ICreate ic= new ICreate(databaseType);

ic.table(‘edu.address_xd’).columns((‘NA

ME’,’string’,20),(‘ADDRESS’,’string’,20

0));

String query= ic.buildQuery();

//select

ISelect is= new ISelect(databaseType);

is.table(‘edu.address’,’*’).limit(1000,

2000).where(‘_group_id’,’001’);

String query= is.buildQuery();

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

For application wide problems, the issues and solutions

are also being identified: (1) PostgreSQL database has a

specific data type called NUMERIC, which can hold deci-

mal and integer, hence, decimal and integer data should be

type casted to float type. (2) While using connection pooling

on multiple databases, pooled connection instances should
be created only once and maintained in a map. This has to

be reused to avoid connection leak. (3) Specific JDBC driv-

er like Oracle JDBC doesn’t return the auto generated col-

umn values by using the function “getGeneratedKeys()”.

This problem can be overcome by reading the ROWID col-

umn to get the generated value.

The DIT has been successfully deployed in User Integra-

tion Test (UAT) environment and currently supporting

ORACLE, MySQL and PostgreSQL databases.

V. CONCLUSION AND FUTURE WORK

This industry experience gives a glimpse of the best prac-

tices and the issues faced while using multiple type of data-

base dynamically in a DIT web-based application. The ma-

jor problems are namely, dynamic database mapping of

source and target database, maintaining database connec-

tions in application and validation of query syntax for each

database types. These problems are difficult for ORM

framework as discussed in this paper. Hence, the usage of

direct SQL statement is preferred.

The QB is able to generate specific SQL statement for

multiple database types. This is an independent component

which can be scaled to more databases and plugged to any

applications.

A lesson learned during working with the DIT application

is that a complex housekeeping is needed when user cancels

a job. User could terminate a running job, but as a result,

specific SQL commands need to be executed; for example,

to drop supporting tables and remove system columns of the

target table.
The DIT can work with other RDBMS in future with

minimum changes, and the changes are structured and only
happen in QB. In future, QB will support version specific

SQL queries. Moreover, this service can be extended as web

service, which can be consumed by external parties.

REFERENCES

[1] R. Kimball and J. Caserta, The Data Warehouse ETL Toolkit,

Indianapolis: Wiley Publishing, 2004.

[2] B. Walek and C. Klimes, "Expert System for data migration between
different database management systems," Advances in Data

Networks, Communications, Computers and Materials, 2012, pp.
167-172.

[3] N. Vijayendra and M. Lu, "A Web-based ETL Tool for Data

Integration," in The 6th International Conference on Human System
Interaction (HSI), IEEE Explore, Sopot, Poland, 2013, pp. 434-438.

[4] RedHat, "Hibernate ORM," [Online]. Available:

http://hibernate.org/orm/. [retrieved: May, 2015].

[5] Clinton. Begin, "MyBatis," [Online]. Available:
http://blog.mybatis.org/. [retrieved: May, 2015].

[6] Pentaho, "Data Integration - Kettle" [Online]. Available:

http://community.pentaho.com/projects/data-integration/ [retrieved:
May, 2015].

[7] Talend, "Talend Product - Data Integration" [Online]. Available:
https://www.talend.com/products/data-integration [retrieved: May,

2015].

[8] E. K. Karuppiah, Y. K. Kok and K. Singh, "A Middleware
Framework for Programmable Multi-GPU-Based Big Data

Applications" Springer Link, 2015, pp. 187-206.

[9] J. Celko, "Joe Celko's SQL Programming Style," Morgan Kaufmann,
2005.

[10] ANSI X3.135-1992, American National Standard for Information

Systems — Database Language — SQL, November, 1992.

[11] PostgreSQL, "Lexical Structure," [Online]. Available:
http://www.postgresql.org/docs/9.3/static/sql-syntax-lexical.html.

[retrieved: May, 2015].

[12] Oracle, "Schema Object Names," [Online]. Available:
http://dev.mysql.com/doc/refman/5.6/en/identifiers.html. [retrieved:

May, 2015].

[13] Oracle, "Schema Object Names and Qualifiers," [Online]. Available:

http://docs.oracle.com/cd/B28359_01/server.111/b28286/sql_element
s008.htm#SQLRF51109. [retrieved: May, 2015].

[14] Oracle, "MySQL SELECT," [Online]. Available:

http://dev.mysql.com/doc/refman/5.0/en/select.html. [retrieved: May,
2015].

[15] Oracle, "Ask Tom ROWNUM," [Online]. Available:

http://www.oracle.com/technetwork/issue-archive/2006/06-
sep/o56asktom-086197.html. [retrieved: May, 2015].

[16] Apache, "The DBCP Component," Apache, 12 July 2014. [Online].

Available: http://commons.apache.org/proper/commons-dbcp/
[retrieved: May, 2015].

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-408-4

DBKDA 2015 : The Seventh International Conference on Advances in Databases, Knowledge, and Data Applications

