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Abstract— This paper presents a Hierarchical Piecewise Linear 

Approximation (HPLA) for the representation of time series 

data in which the time series is treated as a curve in the time-

amplitude image space. The curve is partitioned into segments 

by choosing perceptually important points as break points. 

Each segment between adjacent break points is recursively 

partitioned into two segments at the best point or midpoint 

until the error between the approximating line and the original 

curve becomes less than a pre-specified threshold. The HPLA 

achieves dimensionality reduction while preserving prominent 

local features and general shape of the time series.  The HPLA 

permits coarse-fine processing, allows flexible definition of 

similarity between two time series based on mathematical 

measures or general time series shape, and supports query by 

content, clustering and classification based on whole or 
subsequence similarity.   

Keywords-Data Mining; Dimensionality Reduction; 

Piecewise Linear Representation; Time Series Representation. 

I.  INTRODUCTION 

Many areas of science, engineering, and business are 
generating, archiving and processing vast amounts of data. 
Because of the sheer volume, the data science community is 
challenged to develop new methodologies for the modeling, 
representation, retrieval, processing, understanding, and 
visualization of “Big Data”. Big data is a collection of larger 
and complex data sets, difficult to manage and process using 
traditional data management and processing techniques. One 
type of data that has received a lot of attention in recent years 
in diverse areas including medicine, astronomy, geology, 
atmospheric and space science, engineering, and financial 
markets is time series data. Mathematically, a time series T = 
{x1, x2, … , xn} is a sequence of n real numbers in the 
increasing order of time, where each value has a time stamp. 
The time spacing between adjacent samples xi and xi+1 may 
remain constant or vary over the duration of the time series. 

The main processing tasks or operations associated with 
time series data are query by content, clustering, 
classification, prediction, anomaly detection, motif 
discovery, and rule discovery [1]. These are well known 
problems in pattern recognition and data mining areas for 
many years. However, the proven pattern recognition and 
data mining methods are not suitable for processing time 
series data, mainly because of three reasons. First, the 

dimensionality of time series is very high, could be as high 
as tens of thousands. Secondly, the corresponding elements 
of two time series may not align due to difference in length, 
scale, translation, shift or non-uniform spacing between 
adjacent elements. Finally, the notion of similarity in the 
context of time series is very different from the one used in 
pattern recognition. Unlike in pattern recognition, where all 
elements of pattern vectors are used to determine similarity 
between two patterns, only subsets of elements of the two 
time series may be used to determine their similarity. Two 
time series may be considered similar if they contain similar 
subsequences of sufficient length or several similar patterns 
in the same time order. 

An obvious solution to the above problem is to use 
compact representations of time series that are capable of 
achieving a significant reduction in dimensionality without 
losing important features present in the original data. During 
the past two decades several piecewise linear, symbolic, 
transform and model based representations have been 
developed [2]-[5]. Each representation has its own 
advantages and disadvantages. For example, transform based 
representations being global representations do not provide 
local information about subsequences [6]. The symbolic 
representations, such as SAX loose most of the shape 
information due to two levels of approximation [4]. The 
Singular Value Decomposition (SVD) [3] and Hidden 
Markov Model (HMM) [5] representations are 
computationally very expensive. To the best of our 
knowledge, as of now, characteristics of an ideal (good) time 
series representation based on the needs of time series data 
mining applications are not explicitly identified. 

This paper makes three contributions. First, in Section II, 
requirements an ideal time series representation should 
satisfy are identified. Secondly, in Section III, widely used 
piecewise linear representations are analyzed to determine 
their strengths and weaknesses by using the requirements 
identified in Section II as metrics. Thirdly, in Section IV, a 
new representation called Hierarchical Piecewise Linear 
Approximation (HPLA), which is closer to the ideal 
representation than existing representations, is described. 
The advantages of the HPLA representation are described in 
Section V. By using the compression ratio and representation 
accuracy as metrics, a comparison of the HPLA with 
Piecewise Aggregation Approximation (PAA) and Piecewise 
Linear Approximation (PLA) is given in Section VI. 
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Conclusions and recommendation for future research are 
given in Section VII. 

II. CHARACTERISTICS OF AN IDEAL TIME SERIES DATA 

REPRESENTATION 

In this section, characteristics for an ideal time series data 
representation are identified based on the needs of the 
important time series data mining applications. 

In query by content, the objective is to retrieve time 
series from the database that are similar in information 
content to the given query time series Q [1]. The similarity 
between Q and time series T in the database may be 
determined by matching Q and T, or sub-sequences of Q and 
T. Though the content is almost always specified by a query 
sequence, it is desirable to have flexibility on how the 
content is specified. For example, general shape of time 
series, sequence of events, and similar subsequences are 
valid specifications of content in many applications. 
Therefore, to support query by content, the representation 
should support broad specification of content, and should 
have a distance measure satisfying lower bound criterion. 

In clustering, given a set of N unlabeled time series T1, 
T2, T3, …., TN, the goal is to partition the set into K groups 
based on a meaningful similarity measure, such that 
members belonging to a group are similar to one another, 
and members belonging to different groups differ 
significantly from one another [1]. The feature-based 
methods compute a small number of features to represent 
each time series, and then use clustering algorithms, such as 
k-means algorithms to cluster feature vectors.  The model-
based methods extract a set of parameters for each time 
series, and then find clusters by clustering parameters. The 
raw-data-based methods are rarely used due to high 
dimensionality. Today, clustering algorithms are set in a 
mathematical framework, which use feature vectors or model 
parameters. A syntactic clustering approach using broad 
similarity as perceived by humans is needed for clustering 
time series data. Therefore, the representation should 
preserve salient attributes of the time series to support the 
development of mathematical and syntactic clustering 
algorithms.  

Classification is the process of assigning an input time 
series to one of the several known classes or categories [1]. 
Bayesian classifiers are not practical for use with raw time 
series as the computation of probability density functions for 
such high dimensionality time series is not feasible. The 
linear classifiers (perceptron, least mean square methods, 
support vector machines, etc.), and non-linear artificial 
neural networks require large number of samples, at least 
two times the dimensionality of time series. Even if the 
required training samples are available, training classifiers 
with large number of high dimensional vectors is not 
practical. Thus, classification based on features appears to be 
the only practical solution. Therefore, the representation 
should preserve salient attributes of the time series, and 
allow the computation of geometric and mathematical 
features needed for training classifiers. 

Given a time series T = {x1, x2, , , , , xn}, prediction is the 
task of determining likely values of xi  for i > n. The future 

values are predicted based on the current evolution trend 
observed or mathematical models such as Hidden Markov 
Model developed from historic data similar to the current 
time series [1]. Usually, the model is based on prominent 
features of time series. Therefore, the representation should 
preserve local features and evolution trends of time series as 
accurately as possible. 

Motif detection is the process of identifying an 
approximately repeating subsequence representing 
meaningful pattern in a time series or a group of time series 
[1]. Motifs have been widely used for rule-discovery, 
clustering and classification of time series data. Therefore, 
the time series representation must facilitate the 
identification of motifs of varying lengths by preserving 
perceptually important points and local trends. 

Rule discovery learns temporal rules that are hidden or 
not obvious in time series data [1].  One approach is to 
transform time series to a sequence of symbols and use 
association rule mining algorithms to discover rules.  
Another approach is to transform time series to a sequence of 
events, and use classification trees to discover temporal 
rules. Therefore, it should be possible to obtain from the 
representation a meaningful sequence of symbols and events 
as defined by the user.  

In addition to the application specific requirements 
identified above, a few general requirements are also listed 
below. 

1) The representation should be as compact as possible 
to achieve maximum dimensionality reduction, and at the 
same time should allow the reconstruction of the original 
time series with little error. 

2) The representation should allow matching two time 
series using full sequences or subsequences even if the two 
time series differ in length, scale, amplitude, and translation. 

3) The representation should retain salient attributes and 
local evolution trends. 

4) The representation should allow the computation of 
geometric and mathematical features, and model parameters 
to support feature and model based processing. 

5) To support query by content, the representation 
should support broad and flexible specification of content. 

6) The computation for building the representation itself 
should be reasonable, should not require prior knowledge of 
the type of motifs or general shape of the time series. 

7) The representation should have a distance measure 
satisfying lower bound criterion. 

III. RELATED WORK  

The time series representations can be broadly classified 
into four categories, namely, piecewise linear 
representations, transform based representations, symbolic 
representations, and model based representations. As the 
HPLA representation proposed in this paper is a piecewise 
linear approximation, only the piecewise linear 
representations are briefly described and analyzed. 

A. Piecewise Aggregation Approximation (PAA) 

Let X = {x1,x2,…,xn} be a time series of length n. The 
PAA representation of X is obtained by partitioning X into N 
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segments of equal length n/N, where N << n, and then 
representing each segment by the mean of elements 
belonging to the segment [2].   

B. Piecewise Linear Approximation (PLA) 

The PLA is the most frequently used representation in 
which a time series X of length n is partitioned into N << n 
sections and each section is represented by a straight line. 
Keogh and Pazzani refer to the process of generating PLA 
representation as segmentation of the time series [7]. 
Uniform segmentation produces segments of equal length l = 
n/N. Non-uniform segmentation partitions the time series 
into segments of unequal length to best fit the shape of the 
time series. Linear interpolation approximates the segment 
X[a:b] by the line joining xa and xb. Linear regression fits the 
best possible line to X[a:b] in the least square sense. As 
linear interpolation requires constant time, it is the most 
widely used method. 

Several variations of PLA representations have been 
developed in recent years. Yan et al. and Pratt et al. segment 
the time series at important maxima and minima, and 
represent the time series by a polyline joining adjacent local 
maximum and minimum [8][9]. Park et al. partition the time 
series into monotonically increasing or decreasing segments, 
and characterize each segment by a six dimensional feature 
vector [10]. Zhou et al. suggest building a PLA 
representation (Slope Threshold Change) by using points at 
which slope changes significantly as break points [11]. In 
Piecewise Linear Aggregate Approximation (PLAA), 
Nguyen Quoc et al. divide the time series into N segments of 
equal length, and represent each segment by the mean and 
slope of the best fitting straight line [3]. 

C. Adaptive Piecewise Constant Approximation (APCA) 

The APCA representation of a time series is obtained by 
segmenting the time series into N segments of unequal length 
based on data. Long segments are used to represent data 
regions of low activity, and short segments are used to 
represent regions of high activity. Each segment is 
represented by its mean value and the index of the right end 
point. Therefore, the time series X = {x1,x2,…,xn} is 
represented as {〈xv1, xr1〉, . . . ,〈xvN, xrN〉}, where xvi is the 
mean of all values in the ith segment, and xri is the index of 
the right most element of the i

th segment.  
An evaluation of PLR representations based on 

requirements identified in Section II is given below. 
1) The compression ratio, reconstruction accuracy and 

shape complexity of time series are related. The only way of 
achieving high reconstruction accuracy is by partitioning the 
time series into a large number of segments, which limits 
the extent to which the dimensionality is reduced. The 
APCA and the PLA representations achieve higher 
compression than PAA as they limit the number of 
segments by placing long segments in regions, where values 
are fairly constant or linear, respectively. For a given 
compression ratio PLA achieves higher reconstruction 
accuracy than PAA and APCA [14]. 

2) The orders of computation for PAA, PLA and APCA 
representations are O(n), O(nL), and O(nlog2n), respectively 
[2][7][14]. 

3) The PAA and APCA representations do not provide 
any information regarding the shape of the time series 
within segments. Therefore, there may not be sufficient 
information to detect shapes and trends spanning one or 
more segments, and the computation of many features 
needed for feature based data mining applications may not 
be possible. The PLA is better than PAA and APCA in 
approximating the shape of the time series, especially if 
perceptually important points are used as break points 
during segmentation. 

4) The PAA and APCA representations do not use 
perceptually important points like local maxima and minima 
as break points. As a result, matching two time series which 
differ in length, scale, or translation is not easy or even 
possible. These representations are not suitable for 
establishing similarity between two time series based on 
their subsequences. It may be possible to deal with 
differences in length, scale, amplitude, translation, and 
subsequence matching using PLA representation if time 
series are segmented at perceptually important points. 

5) For query by content application, the PAA and 
APCA have distance measures that satisfy minimum 
bounding criterion. However, specification of content based 
on shape and subsequences is not possible. In general, PLA 
does not have distance measure that satisfies minimum 
bounding criterion. Broad specification for content is 
possible only if time series are segmented appropriately. 

The findings are summarized in Table I. “Yes”, “No”, 
and “May be” are used to indicate that the requirement is 
well satisfied, not satisfied, or partially satisfied, 
respectively. The PLA representation, if break points include 

TABLE I.  EVALUATION OF REPRESENTATION BASED ON 

REQUIREMENTS OF AN IDEAL REPRESENTATION 

Requirement PAA PLA APCA 
1 No Yes No 
2 No Yes No 
3 No Yes No 
4 No Yes No 
5 No Yes No 
6 O(n) O(n) O(nlog2n) 
7 Yes Yes Yes 

 
perceptually important maxima and minima, is expected to 
achieve higher reconstruction accuracy than other 
representations. This is supported by experimental results 
given in Section VI, and simulation study reported by other 
researchers [2].  Because of high reconstruction accuracy, the 
PLA retains local patterns and evolution trends better than 
other representations. In summary, a properly obtained PLA 
representation along with segment features has the potential 
to satisfy 6 out of 7 requirements identified in Section II. 
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IV. THE HIERARCHICALPIECEWISE LINEAR 

REPRESENTATION 

The HPLA is a multi-level representation of time series 
data which facilitates the development of effective and 
efficient algorithms for coarse-fine processing and mining of 
time series data. The representation is developed to permit 
the determination of similarity between two time series when 
they share similar subsequences, patterns, or time ordered 
sequence of patterns. It is effective in handling differences in 
length, translation, time and amplitude scales, minor warp, 
and even some missing data.  It is also possible to determine 
similarity between two time series using mathematical 
distance measures (quantitative) or general shape 
(subjective). The approach, by treating time series as a curve 
in the time-amplitude binary image, takes advantage of the 
well-established chaincode based curve smoothing and 
segmentation methods in the area of image processing [12], 
[13]. A step-by-step description of obtaining the HPLA 
representation of a time series is given below. 

Step 1: Normalize the time series. 
The time series X = {x1,x2,…,xn} is normalized by 

replacing amplitude xi by (xi – m)/σ, , for 1 ≤  i  ≤  n, where m 
and σ are the mean and standard deviation of all amplitude 
values of the time series. 

Step 2:  Digitize the normalized time series and obtain 
the chaincode representation of the resulting curve. 

In digital image processing, a curve is often represented 
compactly by its chaincode [12].  The chaincode of a curve is 
simply a sequence of directional codes, where the ith element 
of the chaincode specifies the direction of the ith pixel (point) 
relative to the (i-1) th pixel along the curve. A 3-bit binary 
code is used to encode the 8 possible directions.  

The time series X may be considered as an open curve in 
the time-amplitude image space. As time increases 
monotonically, if X is represented as a digital curve by 
digitizing its values, from any pixel on the curve the next 
pixel can be reached by moving one unit in one of the five 
possible directions shown in Fig. 2.  The algorithm for 
obtaining the chaincode of the time series X without actually 
transforming X to a digital image is given below. 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The above algorithm digitizes the time series, and the 
generates the chaincode in one pass in linear time (O(n)). 
The digital curve shown in Fig. 1 is obtained by digitizing 
the normalized amplitude values of a time series of length 77 
with a bin size of 0.1. The chaincode of the curve is 
{243322334334334334223222011011111321210010100110 
1343434443444344434344334334433433231133100010010 
00100100010010001011221011212}. Note, the length of the 
chaincode is greater than the length of the time series due to 
filling. As the chaincode is computed using sliding window 
approach and discarded after the computation of feature 
vector, space is not a major issue. 

 

 
Figure 1.  Digitized time series with break points. 

 
Figure 2.  Directional codes. 

Step 3: Determine perceptually important maxima and 
minima of the curve. 

Nabors has defined four types of curves - type 1, type 2, 
type 3, and type 4 [12]. The slope along a type 1 curve is 
between negative infinity and -1, and is represented by a 
sequence of direction codes 0 and 1.  The slope along a type 
2 curve is between -1 and 0, and is represented by a sequence 
of direction codes 1 and 2.  The slope along a type 3 curve is 
between 0 and 1, and is represented by a sequence of 
direction codes 2 and 3. Finally, the slope along a type 4 
curve is between 1 and infinity, and is represented by a 
sequence of direction codes 3 and 4. 

The chaincode of the curve is partitioned into non-
overlapping subsequences, where each subsequence 
represents one of the four curve types. Points at which type 1 
or type 2 curves meet type 3 or type 4 curves are local 
maxima or minima. For a local minimum (maximum), a type 
1 or type 2 (type 3 or type 4) curve is followed by a type 3 or 
type 4 (type 1 or type 2) curve. Instead of selecting all, only 
the prominent local maxima and minima are selected as 
break points. A local maximum is taken as a prominent 
maximum if its raise from the immediately preceding 

Generate_Chaincode (X, n, b) 
     // X:  input time series of length n 
     // b: amplitude resolution for quantizing elements of X 
    Chaincode � empty list 
    p = int(x1/b + 0.5);  i = 2; 
   while (i ≤ n) 

   q = int(xi/b + 0.5); 
   if (q = p) 
       Append 2 to Chaincode; 
   else if (q > p) 
       Append 3 followed by (q-p-1) 4s to Chaincode 
  else  
       Append 1 followed by (q-p-1) 0s to Chaincode 
   p = q;  i++; 

return Chaincode 
 

135Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications



minimum is greater than the average of raises of all maxima. 
The algorithm is given below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
The function FindMaxMin finds all local maxima and 

minima, and stores their values and indices in MaxMin and 
MaxMinIndex, respectively. The average raise and fall in 
value between adjacent maximum and minimum are 
computed by FindAverageRaise&Fall. Each local maximum 
with a raise from its immediately preceding minimum 
greater than average raise becomes an initial prominent 
maximum. The initial prominent minima are selected, 
similarly.  The initial list of prominent maxima and minima 
is refined such that maxima and minima appear alternately in 
the final list. The algorithm identifies two local maxima and 
three minima (including two end points) as break points for 
the curve in Fig. 1. These break points are labeled A, B, C, 
D, and E. 

Step 4: Smooth the curve segments between adjacent 
break points. 

The curve segment connecting adjacent break points is 
smoothed by directly modifying the chaincode. A smoothing 
algorithm similar to the algorithm given by Kim is used for 
this purpose [13]. Unlike Kim’s algorithm which first 
requires the identification of distorted sections of the curve, 
the new algorithm operates on the entire chaincode and 
selectively modifies elements likely responsible for 
distortion. It has been shown that the chaincode based 
algorithm keeps most of the points in their original positions 
as it smoothes the curve. The smoothing suppresses minor 
fluctuation due to noise, and is usually reduces the number of 
partitions into which the segment is partitioned in Step 5.  

Step 5: Recursively partition each curve segment. 
Each smoothed curve segment between adjacent break 

points is partitioned into two sub-segments, and each sub-

segment is represented by the line joining its endpoints. If 
the mean square error or representation error (average of the 
square of the vertical distances between the approximating 
line and points on the curve) between a sub-segment and its 
approximating line is greater than a pre-specified tolerance ε 
then the sub-segment is partitioned again into two parts.  
Otherwise, it is not partitioned further. This recursive process 
continues until representation error becomes less than ε for 
all sub-segments. A curve segment may be partitioned at its 
midpoint or best point.  The best point is defined as the point 
that minimizes the sum of the representation errors of the 
two sub-segments. The resulting HPLA of each segment is 
represented by a binary tree. The HPLA partitioning of the 
time series in Fig. 1 is shown in Fig. 3. It is obtained by 
recursively partitioning curve segments at midpoint until the 
mean square error between the curve and the approximating 
line becomes less than 0.5. 

Step 6: Compute feature vectors. 
In the HPLA representation, curve segment between 

adjacent break points is represented by a binary tree. Each 
non-leaf node of the binary tree represents a part of the curve 
segment, and its child nodes represent its two partitions. Let, 
length-l and slope-l denote the length and slope of the line 
approximating the left partition, and error-l denote the root 
mean square error of the left partition. Similarly, length, 
slope and error of right partition are length-r, slope-r, and 
error-r.  In this paper, the features used are length-l/length-r, 
slope-l/slope-r and error-l/error-r. Other features describing 
relative shape of the two curve segments and proximity of 
each curve segment to its approximating line may be used. 
The feature vector of a leaf-node specifies the segment’s 
endpoints. 

 

 
Figure 3.  Segmentation of time series in figure 1. 

 

 
Figure 4.  The HPLA representation of segment BC of the time series. 

For the purpose of illustrating the computation of feature 
vectors, consider the binary tree of the segment BC in Fig. 4.  
The root node represents BC, and its child nodes represent 

DetermineProminent_MaxMin(ChainCode) 
(MaxMin, MaxMinIndex) = FindMax&Min(ChainCode);  
(avgRaise, avgFall) = 
FindAverageRaise&Fall(MaxMin); 
 
for i=0 to length(MaxMin)-1 
 if MaxMin(i) > avgRaise OR MaxMin(i) < avgFall 
   Prominent_MaxMin_I.add(MaxMin(i)); 
   
Prominent_MaxMin_Index_I.add(MaxMinIndex(i)); 
i=0 ; 
while i < length(Prominent_MaxMin _I - 1) 
 if Prominent_MaxMin_I(i) > 0 
  Add index of the global maximum between  

Prominent_MaxMin_Index_I(i) and 
Prominent_MaxMin_Index_I(i+1)  

     (both inclusive) to Prominent_MaxMin_Index_F; 
 
 if Prominent_MaxMin_I(i)  < 0    
  Add index of the global minimum between  

Prominent_MaxMin_Index_I(i) and  
Prominent_MaxMin_Index_I(i+1)  

      (both inclusive) to Prominent_MaxMin_Index_F; 
 i++; 
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BX and XC, where X is the mid-point of the chaincode of 
BC. The length and slope of line BX are 14.21 and -0.82, 
respectively.  The root mean square error between curve BX 
and line BX is 0.56. Similarly, the length and slope of line 
XC are 13.41 and -2.0, respectively.  The root mean square 
error between curve XC and line XC is 0.47. Therefore, the 
3X1 feature vector of the root node is [1.07 0.41 1.91].  It is 
also possible to compute features invariant to amplitude 
scale, amplitude shift, and time scale. The 4X1 feature vector 
of the leaf-node representing curve XC is [31 12 38 1]. 

V. ADVANTAGES OF HPLA REPRESENTATION 

Many benefits of the HPLA representation are explained 
with the help of an example. Consider the task of 
determining the similarity between two time series T and Q. 
In the simplest case, T and Q are of same length, and there is 
one-to-one correspondence between their elements. Then 
almost all representations are able to compute a meaningful 
measure of similarity between T and Q in the representation 
space. This is not true if T and Q are unequal in length and 
their elements do not align. Now, assume that T and Q differ 
in length and their elements do not align due to translation or 
difference in temporal scale. The goal is to find T[a: b] and 
Q[c: d], the largest subsequences of T and Q that are similar 
to each other.  Larger the length of the subsequences greater 
is the similarity between the two time series. When the non-
alignment is only due to translation, Ta+i aligns with Qc+i. If 
the temporal scales of T and Q are different then T[a: b] and 
Q[c: d] are similar in shape. However, establishing one-to-
one correspondence between elements of T and Q is not 
possible. 

The HPLA representation preserves prominent local 
maxima and minima as break-points, and represents the 
subsequence between adjacent break-points by a binary tree. 
The feature vectors of the non-leaf nodes of the binary tree 
can be invariant to time/amplitude translation and scale. 
Therefore, it is possible to determine possible 
correspondence between break-points in T and Q. Then a 
binary tree matching algorithm may be used for the 
identification of the longest sequence of binary trees in the 
HPLA representation of T that matches a sequence of binary 
trees in the HPLA representation of Q. 

The HPLA representation permits the user to choose 
coarse or fine approximation depending on the level of 
accuracy needed, and is natural for coarse-fine processing of 
time series data. The ability to determine similarity by 
matching individual sections allows flexibility in defining 
similarity, and supports the development of section based 
clustering, classification and indexing methods. 

VI. EXPERIMANTAL RESULTS 

Eleven different data sets (7 data sets from UCR archive 
[15], one from UC Irvine KDD archive, and 3 stock market 
data sets) are used in the comparative study. From each data 
set, 10 time series are selected randomly, and the 
reconstruction error for the HPLA representation is 
computed for each of them as described below. 

1) The time series is normalized to have zero mean and 
unit standard deviation. 

2) The normalized time series is transformed into a 
digital curve by digitizing the amplitude values with a bin-
size of 0.01. 

3) The curve is partitioned into segments by choosing 
perceptually prominent maxima and minima as break points. 

4) The HPLA representation is obtained by recursively 
partitioning each segment at the best point (ε = 5 in pixels or 
0.05 in original values). 

5) Using the information in root nodes of segments, an 
approximation of the time series is reconstructed. The 
compression ratio (percent) and the mean square error 
between the original time series and the approximation are 
calculated. 

6) An approximation better than the one in 5 is 
constructed by using the information in root nodes and their 
non-leaf child nodes.  The compression ratio and 
reconstruction error for this case are also calculated. 

TABLE II.  EXPERIMENTAL RESULTS 

Data Set 
Compression 

Ratio 

Reconstruction Error 

HPLA PAA PLA 

Mallat 

 

95.4 

92.6 

0.01557 

0.01331 

0.13176 

0.06130 

0.06825 

0.02255 

Pseudo 

Periodic 

Synthetic 

97.2 

94.6 

0.02205 

0.00051 

0.08922 

0.03560 

0.04603 

0.00962 

OliveOil 
93.8 

90.2 

0.01401 

0.00251 

0.11397 

0.05550 

0.08470 

0.03365 

Adiac 
88.5 

84.7 

0.00359 

0.00339 

0.03193 

0.00894 

0.01131 

0.00465 

Yoga 
91.3 

87.7 

0.00451 

0.00132 

0.01836 

0.00748 

0.00646 

0.00184 

Fish 
93.9 

90.1 

0.00413 

0.00235 

0.09535 

0.08044 

0.05453 

0.00402 

Swedish 

Leaf 

86.8 

80.3 

0.02613 

0.02235 

0.13432 

0.03474 

0.06100 

0.02465 

OSU Leaf 
92.5 

88.3 

0.02119 

0.00893 

0.07163 

0.04130 

0.03406 

0.01648 

Amazon  
90.7 

86.4 

0.01898 

0.00321 

0.08219 

0.03154 

0.02832 

0.00552 

IBM 
87.4 

80.8 

0.03515 

0.02199 

0.12166 

0.09529 

0.05139 

0.03357 

Microsoft 
83.5 

79.6 

0.03185 

0.01811 

0.10156 

0.06188 

0.03763 

0.02157 

 
The average compression ratio and reconstruction 

accuracy for each set given in Table II. For each set there 
are two entries. The first entry is coarse (step 5), and the 
second entry is relatively finer than the first entry (step 6).  
The PAA and PLA representations of each time series are 
obtained by partitioning time series into equal length 
segments.  Each PLA segment is fitted with the best line 
using linear regression. The number of segments is adjusted 
for each representation to achieve the same level of 
compression as the corresponding HPLA representation. As 
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expected, the HPLA representation achieved significantly 
higher reconstruction accuracy for all data sets.  

VII.   CONCLUSION AND FUTURE WORK 

This paper has made two primary contributions.  First, 
seven requirements, a good time series representation 
should satisfy are explicitly identified by analyzing the 
needs of time series data mining applications.  Secondly, a 
new time series representation (HPLA), which satisfies six 
of the seven requirements better than PAA, APCA and PLA 
representations, is proposed. The distance measure that 
satisfies the lower bound criterion is not known for the 
HPLA representation.   

The experimental results illustrate, for a given 
compression ratio, the HPLA represents the time series 
more accurately than the PAA and uniformly segmented 
PLA representations. A time series can have many PLA 
representations based on how it is segmented. The 
representation accuracy, usefulness, and effectiveness for 
mining time series is determined by the number of break 
points, and how well the break points are selected during 
segmentation.   The strength of the HPLA representation 
comes from the novel two-stage segmentation approach, 
which identifies the perceptually important local maxima 
and minima as primary break points.  These break points 
provide a broad perception of the shape. They also identify 
trend changes. Additional break points are placed between 
primary breakpoints to achieve the desired degree of 
accuracy. 

The HPLA being a multi-level representation, permits 
coarse-fine processing of time series. Most time series 
representations do not (effectively) support the finding the 
longest subsequence of one time series that has a matching 
(similar) subsequence in the other time series. The problem 
becomes even more challenging if the two time series do not 
have the same time and amplitude scale. The HPLA 
facilitates aligning corresponding segments of the two time 
series by using perceptually important primary break points 
as anchor points.  The feature vector, which specifies the 
relative values of slope, length and error of the two 
partitions of each segment, is invariant to time and 
amplitude scale. These two features make the HPLA more 
suitable than other piecewise linear or constant 
representations for time series matching. 

The clustering, classification, and query by content 
require a representation that facilitates the development of 
efficient and effective algorithms to determine the similarity 
between time series. The preliminary research and limited 
simulation results suggest that the HPLA representation is 
highly suitable for almost all time series data mining 
applications including clustering, classification and query by 
content. Therefore, future research should focus on the 
development of the HPLA based algorithms for aligning 
two time series, matching time series, and clustering and 
classification of time series based on piecewise matching. 
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