
Achieving High Availability in D-Bobox

Miroslav Cermak, Filip Zavoral
Faculty of Mathematics and Physics

Charles University in Prague, Czech Republic
{cermak, zavoral}@ksi.mff.cuni.cz

Abstract—Using a distributed environment for data stream pro-
cessing brings many challenges, especially when requiring an
exact result from processing of big data. A distributed system
is more vulnerable to failures as hardware crashes, software
errors, or network malfunctions. Loss of node current state
and loss of intermediate results due to node failure results in
the restart of the computation, which increases the time of the
computation and its cost and this is therefore unacceptable.
Achieving high availability (HA) of such system brings some
challenges. In this paper, we introduce our framework for parallel
and distributed processing, D-Bobox, and its requirements on
high availability implementation. We also describe the main high
availability methods used today and discuss their applicability
in our framework. Finally, we propose a solution how to obtain
high availability in D-Bobox.

Keywords–high availability; D-Bobox; stream computing; dis-
tributed computing;

I. INTRODUCTION

A new class of applications - stream processing systems
(SPS) - is given a lot of attention in the last years [1], [2], [3].
These applications have to process high amount of low latency
data streams, i.e., financial data processing, patients monitoring
using various sensors, traffic analysis, etc. Stream processing
seems to be effective not only in processing continuous data
streams, but also in processing big static data as for example
semantic databases [4]. Distributing sources and processing of
big data at multiple nodes allows better scaling of computation
performance in terms of data size. Stream processing system
that uses advantages of the distributed environment are called
distributed SPS (DSPS).

A typical approach to increase the performance of a dis-
tributed system is adding more computational nodes. However,
this also increases the risk of a failure, which has a negative
effect on the performance and dependability of a distributed
system. Faults introduce errors into computation so we get
wrong or incomplete results. However, many applications re-
quire that the system provides exact and same results each time
running on the same input data. One of such systems can be
a database system that also requires performance effectiveness
and good performance/value ratio. Therefore, the presence of
a high availability (HA) unit that handles recovery fast and
correctly with minimal impact on failure-free processing is
necessary for DSPSs.

To achieve HA in distributed stream processing systems,
following tasks must be addressed:

1) periodic and incremental backup (or replication) of
computing node state

2) error detection

3) choosing a failover node
4) lost state recovery after failure
5) manage network partition

In this work, we deal with the recovery from a node failure,
so we pay our attention mainly to tasks (1), (3) and (4) as
they have the biggest impact on the behavior and characteristic
of each of the HA methods. Since error detection is mostly
independent from the actual HA (recovery) method and the
management of network splitting and partitioning is a specific
type of failure concerning multiple nodes, we do not address
these issues in this paper.

The paper is structured as follows: in Section II, we define
recovery types according to [5]. In Section III we present
contemporary HA methods that are discussed on the selected
HA problems. The D-Bobox system is introduced in Section
IV; in Section V we propose solutions for the integration of
HA into D-Bobox.

II. RECOVERY TYPES

The ability to mask failure so it cannot be observed from
final data stream is considered the fundamental requirement
on HA algorithms. Consider a node U, that contains a set
of n input data streams (I1, .., In) and produce the output
stream O. Computation e consists of processes like consuming,
processing and producing data tuples. The data stream Oe is
the result of the computation e at the node U. According
to their handling of the Of+O’=O equality, where Of is
computation result before failure, O’ is output after recovery
and O is failure free computation output, recovery types can be
named as gap recovery, rollback recovery and precise recovery.

1) Gap recovery: is the simplest and least demanding
recovery type. It manages node replacement after node fail-
ure detection. However, input and output preservation is not
guaranteed and data loss is expected. Its main advantage is
fast recovery time and almost no slowdown of failure free
execution.

2) Rollback recovery: ensures that no information is lost
during failure. According to operators used, the rollback re-
covery can be further divided into following subtypes:

• repeatable when exactly the same tuples are generated
during recovery.

• convergent when different tuples from the same data
are generated, and these tuples converge to the original
tuples.

• divergent when different tuples from the same data
are generated, and these tuples never converge to the

92Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

TABLE I. OUTPUTS PRODUCED BY EACH TYPE OF RECOVERY

Recovery type Before failure After failure

Precise t1 t2 t3 t4 t5 t6 t7 . . .

Gap recovery t1 t2 t3 t6 t7 . . .

Rollback
- repeatable t1 t2 t3 t2 t3 t4 t5 . . .
- convergent t1 t2 t3 t′4 t′5 t6 t7 . . .
- divergent t1 t2 t3 t′4 t′5 t′6 t′7 . . .

original ones. This is typical for non-deterministic
operators.

3) Precise recovery: guarantees the strongest recovery by
completely masking failures, so the output after failure is same
as the output without failure.

Table I shows output streams of the mentioned recovery
types. Each stream consists of the sequence of tuples ti before
and after the failure. As we can see, precise recovery contains
a sequence that is identical to a sequence without failures.
In case of gap recovery, there are some tuples missing; they
create undesirable gaps in the data stream. The output of the
repeatable rollback recovery contains identical tuples as in
the regular output, but some of the tuples are duplicated. On
the other hand, the outputs of the convergent and divergent
rollback recoveries contain different tuples t′j after failure.
In case of the convergent recovery, different tuples became
identical to regular tuples over time.

A. Operators Classification

We distinguish four operator types according to recovery
semantics: arbitrary, deterministic, convergent-capable and
repeatable. Recovery plan type is determined by the most
common operator in it.

An operator is deterministic if it produces the same output
stream every time it starts from the same initial state and re-
ceives the same sequence of tuples on each input stream. There
are three possible causes of non-determinism in operators:
dependence on the time, dependence on the arrival order of
tuples on different input streams, and use of non-determinism
in processing (e.g., randomization).

A deterministic operator is (called) convergent-capable if
it yields a convergent recovery when it restarts from an empty
initial internal state and re-processes the same input streams,
starting from an arbitrary earlier point in time.

A convergent-capable operator is repeatable if it capable
of a repeating recovery when it restarts from an empty initial
internal state and re-processes the same input streams, start-
ing from an arbitrary earlier point in time and the operator
produces identical tuples.

III. HIGH AVAILABILITY PROTOCOLS

There are three basic approaches for achieving high avail-
ability in distributes systems: process-pairs, logging and check-
pointing. In the following section, we introduce some of the
current algorithms based on these approaches. Even when not
all of them accomplish precise recovery, they can be extended
to such level. Such extension includes for example duplicity

removal and protection from data loss. Data loss protection is
mostly done by logging messages in output buffers until they
are processed or stored by downstream (nodes further in the
data flow) nodes. In case of failure, these stored messages
are resend. Duplicity removal is protocol specific, so it is
mentioned separately with each method.

A. Passive standby

Passive standby [6], [5] method is based on the process-
pairs approach. There is a secondary node assigned to each
primary node that receives state updates (checkpoints) from
the primary node in regular intervals. In case of failure,
the secondary node takes over computation from the last
checkpoint. To achieve precise recovery, it is necessary to
resend the data sent by upstream nodes, to recreate failed
node state on the new node and ask the downstream nodes
for delivered tuples, so they are not send for the second time.

The main advantage of this method is short recovery time
consisting of reprocessing tuples received since last checkpoint
and discovering tuples that were already send by the crashed
node. However, the computing power of the regular compu-
tation is degraded, because (at least) half of the nodes are
allocated as secondary nodes and communication is increased
by sending regular checkpoints. Another possible slowdown
is introduced when using synchronous backup (primary node
does not send data until checkpoint is confirmed on secondary).
When using asynchronous backup, data loss and inconsistent
state can happen until logging of output buffers is introduced.

B. Active standby

Active standby is another version of the process-pairs
approach [6], [5], [7]. Similarly to passive standby, each
processing node has a dedicated secondary node. But unlike
passive standby a secondary node does actively obtain and
process same tuples as a primary node. Secondary node
output is then logged out instead of send further downstream.
Preventing duplicate messages by identifying the messages
received by downstream nodes before sending the same mes-
sages computed by the secondary node is necessary to achieve
precise recovery. Also, in case of non-deterministic operators,
their decisions made on primary nodes have to be logged and
sent to the secondary node, so it produces exactly the same
results.

Minimal recovery time is the main advantage of the active
standby over passive standby. That is because there is no
need to reprocess data after failure, however at the cost of
significantly higher communication, because all data must be
sent also to secondary nodes. Another extra communication
may introduce a queue trimming protocol, and sending of the
decision logs in case of non-deterministic operators.

C. Upstream backup

Large run-time overhead is the main drawback of the
process-pair approach (where at least half of the nodes are
designated as backup nodes, thus not actively participating in
computation). Upstream backup [6], [5] is designed for better
use of distributed character of a stream computation. Upstream
nodes (nodes against data flow) serve as backups for their
downstream nodes by logging their output tuples. In case of

93Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

failure, a new node with empty state takes over computation
and reprocesses stored tuples to get the same internal state as
the failed node had.

Output buffers that backup tuples can grow in size equiva-
lent to the size of tuples passing through that can be very space-
demanding. To solve this inefficiency, the queue trimming
protocol is introduced. It is based on the finding a minimal
set of stored tuples that is necessary to restore a crashed node
state. The delivery confirmation protocol is used to inform
upstream nodes about tuples that were delivered. Delivery of
each tuple is confirmed using 0-level confirmation to the sender
of the tuple. After receiving 0-level confirmation, the node
will know that the given tuple and all the proceeding tuples
were delivered by recipient that send the confirmation. Once
a tuple is confirmed by all recipients, the node determines last
input tuple that was used to compute confirmed one, but it is
not used to generate newer tuples anymore. If such tuple is
found, it is confirmed to its sender using 1-level confirmation.
Output buffers can be trimmed at the position of a tuple that
received 1-level confirmation from all its recipients. Higher
confirmation levels (by iteratively repeating confirmations) can
be used to achieve better protection against multiple faults,
however at the cost of less trimming efficiency, thus higher
data space requirements.

Low extra bandwidth that is necessary for small confir-
mations and data transfers only during recovery is the main
advantage of this method. However, this is at the cost of re-
computation of many tuples during recovery. Also fail-free
computation is slowed down when computing higher level
confirmations that can be non-trivial.

D. Cooperative passive standby

Cooperative passive standby [8] is based on the checkpoint
approach and on advantages of distributed computing (i.e.,
expandability, improved performance, etc.). Each computation
is composed of computational units that are connected by
data streams. Computational units are assigned to available
hardware nodes to execute them. Traditional checkpointing of
a more complex, or data intensive units is time demanding. To
achieve better performance, this method splits computational
units on each node into smaller parts called HA units. HA units
are captured independently and then backed up on different
nodes. This splitting divides the backup load of one node
among multiple nodes.

Backing up each HA separately introduces finer granularity
of the backup task; therefore, it can better fit into the spare time
during computation (for example when pending for data) and
increase overall system performance. Backup of each HA unit
is done in two steps - capture and paste. During the capture, the
update of the HA unit state is recorded and sent to the assigned
backup node. During the paste, the node takes a received state
updates for HA units backed up on it and apply delta updates
into its copy of HA unit image. After paste, the initial node is
notified, so it can schedule the HA unit for another checkpoint.

When a failure occurs, the backup nodes take over compu-
tations of the crashed node. During the takeover, the paste
operations of unprocessed update messages take place and
data are redirected to the backup nodes. Also to reflect the
changes that occurred between backup and crash, the tuples

not included in the backups are resend from output buffers,
so they can be reprocessed. Computation of HA units now
continues on backup nodes.

This method has fast recovery time and the expected
increase of workload on backup nodes is sufficiently small
to preserve efficiency. If the crashed node becomes available
again, it is added as a new empty node. HA units or their
backups can be assigned to empty nodes or nodes with low
workload as part of load balancing. HA units can be created
and distributed between nodes automatically, so it can reflect
actual situation and load balance.

IV. D-BOBOX

The Bobox [9], [3] is a parallel framework, which was
designed to support development of data-intensive parallel
computations. The main idea behind Bobox is to create a
system that connects a large number of relatively simple
computational components into a nonlinear pipeline while
preserving transparency of the distribution logic to the authors
of computational components. The pipeline is then executed
in parallel, but the interface used by the computational com-
ponents is designed in such way, that their developers do not
need to be concerned with the parallel execution issues such
as scheduling, synchronization and race conditions.

Figure 1. D-Bobox architecture. There is a single Master node that is
responsible for task preparation and its distribution to slave nodes. The remote
communication at the Master node is done via its Distribution Manager. Slave
nodes contains Daemon parts that is responsible for the remote communication
and tasks. The Distribution Manager and the Deamon are extended to provide
HA. The Backend part on the Master node is optional.

D-Bobox [10] is an extension of the Bobox framework
that adds support for distributed environment. This allows the
framework to be used for tasks where local parallelism is not
enough to achieve effectively fast computation. To preserve
versatility of the framework, it is designed to run not only on
specialized computational clusters, but on a common hardware
too.

Base schema of the D-Bobox is described in Figure 1. The
master node is responsible for creating an execution plan of
the task and communication with the user that enters the task
and monitors its computation. The master node also decides
which other nodes will be participating in computation as
work (slave) nodes and (typically) collects results. D-Bobox
uses Bobox computation logic at each slave node and wraps it
with remote communication and other necessary functionality
needed for distributed environment. A remote communication

94Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

Node 1

Box 1 Split

Box 3

Box 2

Merge

Box 1 Split Border Box

Node 2

Border Box Box 2 Border Box

Node 3

Border Box Box 3 Border Box

Node 4

Border Box Box 4

a)

b)

Figure 2. Sample of an execution extended into distributed environment using boundary boxes. a) Bobox plan for single node execution. b) D-Bobox plan
utilizing four nodes. Original plan is split and extended by adding boundary boxes that manage remote communication (dashed).

is the most important extension during execution. It is imple-
mented in the special boxes - border boxes that are added into
the execution plan before slave nodes are initialized. Adding
and configuring of border boxes is done primarily by the
distribution control logic at the master node, according to
the actual configuration and availability of nodes in cluster.
Border boxes on a slave node are configured on request of
the master node when necessary. Example extended execution
plan is depicted at Figure 2.

V. HA AND D-BOBOX

A. Basic algorithms and D-Bobox

Each of the algorithms mentioned in Section III is applica-
ble to D-Bobox system with different impacts to transparency,
computation boxes requirements and changes to the framework
itself. In the following discussion, we are focusing only on
deterministic operators. Implementation of non-deterministic
boxes breaks transparency requirement for each method, as
they are required to log non-deterministic decisions and pro-
vide backup logic to achieve precise recovery.

Upstream backup represents a least blocking approach with
minimum extra communication during fault-free computation.
However, space requirements for storing output queues, recov-
ery time and computation needed after the failure are typically
quite high. Implementation of queue trimming protocols re-
duces these disadvantages at cost of higher communication and
some computation slowdown during building and searching
mappings between input and output tuples. When users are
creating a new box, they have to implement these sometimes
non-trivial mappings. That negatively impacts the transparency
requirement and reliability of the framework. Reliability of the
framework that depends on correct user implementation of the
mappings is not suitable for our framework.

The active standby approach represents maximum trans-
parency. It can be reflected by the computation plan used
in D-Bobox by duplicating appropriate plan fragments and
redirecting each of their outputs to the special communication
box, located on the downstream node, so it is not affected

by the failure of the primary or the secondary node. This
communication box receives tuples produced by the primary
and secondary node; and forwards only tuples from primary
node and stores tuples from the secondary node not yet
produced by the primary node.

When a node failure occurs, the secondary node then
becomes primary and continues in the computation. Then new
secondary node is chosen and initialized by the new primary
node current state. Computation speed at the primary node
can differ from the secondary node, so after a failure, the
communication box must correctly manage the data stream
to preserve data consistency. When the primary node was
ahead of the secondary, then the communication box must drop
duplicate tuples produced by the secondary to prevent duplicate
data. At the opposite situation, when the primary node was
slower than the secondary node, then the communication box
must send stored tuples to prevent gap in the data stream.

Effective computation power of active standby is halved
since half of the nodes are reserved as backup nodes. There-
fore, this approach is appropriate for problems, where very fast
recovery time is more critical aspect than overall computation
time. Since D-Bobox is oriented to be computation efficient,
this approach is not appropriate to provide base HA function-
ality. However, it can be easily introduced for specific tasks
that require very fast recovery instead of fast processing.

Passive standby approach also suffers from the same cut-
ting of the effective computation performance as the active
standby and is slower in recovery and during regular computa-
tion. Therefore, it is less practical than active standby. Another
transparent approach is Cooperative passive standby that com-
bines checkpointing and splitting backup to multiple smaller
tasks and then distribute it between distinct nodes. Distribution
of the smaller tasks increases backup performance, reduces
recovery time and reduces work increase on backup nodes.
Thanks to its distribution character and potential efficiency, we
decided to use it as the base method for recovery from node
failure to achieve HA in D-Bobox system. In the following
subsection, we describe its integration in more detail.

95Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

B. Integration of the High availability into D-Bobox

High Availability support that will handle node failures in
D-Bobox is based on the cooperative passive standby method
and it is located in new execution units called HA managers.
HA managers are divided according to their specialization and
location in the system to:

• global HA manager located at the primary node,

• local HA managers located at secondary (worker)
nodes.

Each manager type handles different tasks: local HA managers
perform local tasks that include local computation and backups
stored on local node. The global HA manager is a global
coordinator that assigns backup nodes for local HA units and
handles recovery after failure detection.

1) HA manager at the primary node: is also called global
HA manager. Its primary focus is to handle global tasks such
as failure handling, assigning backup nodes to HA units and
cooperation with the load balancing unit. An example of the
distribution of backups of HA units to other nodes, as assigned
by the global HA manager, is depicted in Figure 3.

Handling a node failure at the primary node is described in
the Algorithm 1. Global HA unit notifies backup nodes to take
over crashed node computation, reroute data and choose new
backup nodes for restored HA units. After notifying upstream
HA units, they resend data from output buffers to recreate the
lost state not reflected in the last checkpoint. The increase of
workload at a backup node after takeover is expected to be in
acceptable boundaries because of the distribution of the work
among multiple physically independent nodes.

A crashed node joins the set of nodes after recovery as an
empty node and it can be dynamically assigned to backups
or tasks during load balancing or after crash of another node.
Global HA manager should support load balancing to achieve
better performance of the computation and backups. When the
system is highly unbalanced, then heavily loaded nodes cannot
backup efficiently. They do not have spare time to backup, so
they increase backup intervals that make backup more difficult
and more costly, or they block computation often. On the other
hand, idle nodes produce backups that can further slowdown
loaded nodes. Dynamic load balancing increases the chance
of evenly scheduling backups into idle CPU cycles when the
computation is waiting (i.e., to receive new tuples). Moreover,
processing backups more frequently reduces the amount of
containing tuples in the backup, and less tuples have to be
stored in the output buffers and recomputed during recovery.

2) HA manager at the secondary node: represents local
manager that manage HA tasks of the current node as for
example:

• monitoring neighbors availability (both upstream and
downstream),

• administration of local HA units (for example split-
ting, merging),

• planning and performing of HA units backup (repre-
sented by the operation capture),

Algorithm 1 Processing a node crash on the primary node
for all HAunit in crashedNode do

backupNode← getBackupNode(HAunit)
backupNode.takeOver(HAunit)
for all edge in HAunit.io do

if isRemote and isInput then
set edge target to backup
resend cached tuples

else if isRemote and isOutput then
set edge source to backup

else if isLocal and isInput then
add new remote edge

end if
end for

end for
for all backup in CrashedNodeBackups do

find and set new backup node
end for

• planning and performing of merge of the received
updates from remote HA units into their local backups
(represented by the operation paste).

Availability of neighbors is monitored by each node. Re-
quests sent in regular intervals to test the availability are used
when there is no communication among nodes at the time. If
the node stops to respond, then after a defined amount of time
(according to a preset time limit) is declared as crashed. The
global HA manager is notified that node failure occurs and left
to take care of the situation.

Capture and paste operations are two main operations
providing backup functionality. During capture operation, the
difference in HA unit state is captured and sent to the backup
node. Paste operation on the backup node processes the re-
ceived update messages by applying them to the local copy of
HA unit state. Capture and paste operations of each HA unit
are performed independently of each other, according to the
used scheduling algorithm. Scheduling is performed locally on
each node by the local scheduler that can implement different
strategies to balance backup performance and computation
performance.

Local HA managers support splitting and joining local
HA units to balance granularity. Splitting is possible only
if a HA unit consists of more than one computation box.
Typically splitting a more complex HA unit results in dividing
the backup overhead into a few smaller units that are easier
to backup. Smaller HA units also pose smaller increase of
the workload on the backup node, when it takes over the
computation after recovery. On the other hand, a join operation
is used to group multiple simple operations where an increase
in the backup cost is smaller than the reduction of backup
communication. For example, few HA units, each consisting
of a simple box connected together into a pipeline, are good
candidates to merge. In this case, we can suppose that the
increase of backup complexity of the joined HA unit will be
smaller (simple boxes, locality of the data) than the backup
overhead of multiple HA units alone.

These changes of HA units size granularity have to be
coordinated with the global HA manager. It must assign new

96Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

Node 1

H11 H12 H13

Box Box Box

Backups

H41

Node 2

H21 H22 H23

Box Box Box

Backups

H42

Node 3

H31 H32

Box Box

Backups

H43

Node 4

H41 H42 H43

Box Box Box

Backups

Figure 3. Example of the distribution of HA units demonstrated on the Node 4. Execution plan of the Node 4 is split into three HA units H41,..,H43 that are
backed up to the nodes 1-3 (backups are represented as boxes H41,..,H43 in backup part of nodes 1 to 3).

backup nodes to each new HA unit that was created by the
split operation or revoke backup role from nodes in case of
joining of HA units.

A secondary node also contains a specific local com-
munication manager that is part of special boundary boxes.
Boundary boxes are special system boxes that represent end-
points for the remote communication to hide it from users
developing regular computation boxes. Communication HA
manager extends them by adding message logging and du-
plicity elimination. Outgoing messages are logged until the
confirmation of their backup from HA units arrive. This is
necessary to restore the computation state by computing these
messages again after recovery from the last backup to reflect
lost changes. Input border boxes have to be able to eliminate
duplicity tuples that may be produced during recovery (crashed
node may or may not produce some tuples that are not reflected
in backup).

Extending D-Bobox with proposed managers provides high
availability support to the framework. By using Cooperative
passive standby as a core method that splits the node tasks
into separate HA units distributed to different nodes, we
get efficient recovery after a possible node failure. Another
fine tuning of the HA units granularity according to actual
computation states further improves the overall system per-
formance. Smaller HA unit backups also pose acceptable
increase of workload of the backup nodes after the recovery.
The proposed approach also preserves transparency; the users
creating applications should not be concerned with recovery
methods.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced our distributed framework D-
Bobox that is targeted on processing BigData (i.e., semantic
databases). We presented a node failure problem in distributed
data stream processing systems. Then we defined recovery
types and summarized the main contemporary approaches to
achieve high availability in such systems. We analyzed these
approaches for their applicability in D-Bobox; we proposed
an implementation of HA support in the framework. Using
such HA support, the framework became capable of creating
failure-resistant applications for data intensive computations
in the distributed environment on a commodity hardware.
The framework also preserves high level of transparency;

the users do not have to solve technical details concerning
parallelism, distributed processing or high availability logic.
In our future work, recovery support can be further extended
by adding support of nondeterministic operators or adding new
scheduling or by load balancing strategies.

ACKNOWLEDGMENT

The authors would like to thank the GAUK project
no. 472313 and SVV-2014-260100 and GACR project no.
P103/13/08195S, which supported this paper.

REFERENCES

[1] M. Balazinska et al., “The design of the borealis stream processing
engine,” in Second Biennial Conference on Innovative Data Systems
Research (CIDR 2005). CIDR, 2005, pp. 277–289.

[2] D. Abadi et al., “Aurora: a data stream management system,” in
Proceedings of the 2003 ACM SIGMOD international conference on
Management of data. ACM, 2003, pp. 666–666.

[3] D. Bednarek, J. Dokulil, J. Yaghob, and F. Zavoral, “Bobox: Paral-
lelization Framework for Data Processing,” in Advances in Information
Technology and Applied Computing, 2012, pp. 189–194.

[4] Z. Falt, J. Dokulil, M. Cermak, and F. Zavoral, “Parallel sparql
query processing using bobox,” International Journal On Advances in
Intelligent Systems, vol. 5, no. 3, pp. 302–314, 2012.

[5] J.-H. Hwang et al., “High-availability algorithms for distributed stream
processing,” in Data Engineering, 2005. ICDE 2005. Proceedings. 21st
International Conference on, 2005, pp. 779–790.

[6] J.-H. Hwang, M. Balazinska et al., “A comparison of stream-oriented
high-availability algorithms,” Brown CS, Tech. Rep., 2003.

[7] M. A. Shah, J. M. Hellerstein, and E. Brewer, “Highly available,
fault-tolerant, parallel dataflows,” in Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, ser.
SIGMOD ’04. New York, NY, USA: ACM, 2004, pp. 827–838.
[Online]. Available: http://doi.acm.org/10.1145/1007568.1007662

[8] J.-H. Hwang, Y. Xing, U. Cetintemel, and S. Zdonik, “A cooperative,
self-configuring high-availability solution for stream processing,” in
Data Engineering, 2007. ICDE 2007. IEEE 23rd International Con-
ference on. IEEE, 2007, pp. 176–185.

[9] D. Bednrek, J. Dokulil, J. Yaghob, and F. Zavoral, “Data-flow awareness
in parallel data processing,” in Intelligent Distributed Computing VI,
ser. Studies in Computational Intelligence, G. Fortino, C. Badica,
M. Malgeri, and R. Unland, Eds. Springer Berlin Heidelberg, 2013,
vol. 446, pp. 149–154.

[10] M. Cermak, Z. Falt, and F. Zavoral, “D-bobox: O distribuovatelnosti
boboxu,” in Informacne Technologie - Aplikacie a Teoria. PONT s. r.
o., 2012, pp. 41–46.

97Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

