
Feasibility of the Implementation of a UML to
XML Evolution Architecture Using Eclipse as

Technological Ecosystem

Beatriz Pérez, Ángel Luis Rubio, Gloria Yanguas
Departamento de Matemáticas y Computación

Universidad de La Rioja
La Rioja, Spain

beatriz.perez@unirioja.es, arubio@unirioja.es, gloria.yanguas@alum.unirioja.es

Abstract—Unified Modeling Language (UML) and eXtensible
Markup Language (XML) are two of the most commonly used
languages in software engineering processes. One of the most
critical of these processes is that of model evolution and
maintenance. More specifically, when an XML schema is
modified, the changes should be propagated to the
corresponding XML documents, which must conform to the
new, modified schema. A current trend in this context consists
of propagating the changes from the conceptual level (UML in
our case) to the other levels (XML Schemas and documents).
This paper is devoted to the study of the feasibility of the
implementation of a UML to XML evolution architectu re using
the Eclipse framework, by means of UML2 and XSD plug-ins.
A conclusion drawn from our study is that the chosen plug-ins
lack of technological capabilities to implement this
architecture.

Keywords-evolution architecture; UML class model; XML;
Eclipse plug-ins

I. INTRODUCTION

The modification of existing systems and models, in
order to be adapted to requirement changes or technical
advances, while maintaining the consistency between the
generated artifacts, is one of the most important challenges in
model-based software engineering processes nowadays
[1][2].

From its origins, eXtensible Markup Language (XML)
has constituted one of the most commonly used forms of
representation of information covering data and metadata
processing, management and retrieval. Additionally, in this
context, Unified Modeling Language (UML) is widely used
in the early phases (analysis, design) of development process
[3][4], while the design of XML schemas are a consequence
of the decisions made in those stages [5]. Different works
have highlighted the importance of minimizing the effort of
updating an XML document conforming to modified XML
schemas [1][6]. For this reason, several authors propose to
propagate the changes from the conceptual level (UML in
our case) to the others levels (XML Schemas and
documents) [2][5][7][8]. This approach freed analyst to
make low-level implementation decisions.

In order to provide with a solution in this context, our
research group undertook the search for an automated tool
out of specific technological requirements. Particularly, this
solution has been tackled in two different steps. Firstly, a
generic architecture, named Generic Evolution Architecture
(GEA), has been defined for managing those tasks when a
model-driven development is followed [5]. Particularly, we
focused on the transformation of UML class models to XML
schema (due to the great majority of the papers that deal with
this kind of transformation [9]) and provided an evolution
framework by means of which the XML schema and
documents are updated conforming to the changes in the
UML class model.

Secondly, we need a specific implementation of such
architecture in order to obtain, as a long-term goal for our
approach, the development of a software tool which
implements GEA. In this line, a laboratory prototype as a
proof-of-concept was already developed; implementing a
subset of the evolution transformations with a textual user
interface, but such prototype is far away from being a
complete solution. Due to the complexity of our architecture,
it makes no sense to consider developing it from scratch.
Particularly, we need to carry out a first task exploring
partial solutions currently available in order to find one
which allows us to implement our architecture. One of these
possible solutions consists of using Eclipse as technological
space, since it is considered to be the most versatile, plural
and configurable open source Integrated Development
Environment (IDE) tool.

Taking this into account, the paper aims at presenting the
results obtained from the study and analysis of several
existing Eclipse plug-ins used within the model-based
development context, for the implementation of GEA. More
specifically, a conclusion drawn from such study is that the
chosen plug-ins lack of technological capabilities to
implement our architecture. This fact has made us to
consider new lines of research to follow-up, considering
more complex tools within the own Eclipse ecosystem,
which are explored in this paper.

The rest of the paper is structured as follows. The main
features of GEA are presented in the following section.
Section 3 is devoted to describe briefly the Eclipse plug-ins

231Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

that have been used (UML2 and XSD). In Section 4, the
proofs performed using the plug-ins, geared towards the
development of GEA are explained in detail. Finally,
conclusions and further work are presented in Section 5.

II. GENERIC EVOLUTION ARCHITECTURE

GEA, standing for Generic Evolution Architecture, is a
generalization of a metamodel-based database evolution
architecture called MeDEA and presented in [10]. As
reflected in [5] “GEA keeps the characteristics of MeDEA
stated in [10] and at the same time fits into a wider
application context”.

The main features of GEA, all of them deeply explained
in [5], are enumerated in the remainder of this section.

(1) It follows the Model Driven Architecture (MDA)

approach.
As it can be seen in Figure 1, GEA is structured
around two dimensions. Vertically the different
artifacts are divided into three abstraction levels
which correspond with the M0, M1 and M2 layers of
the 4-layer metamodel architecture pattern.
Horizontally, the artifacts are identified with the
developments phases established by MDA [11]. For
the case of UML-XML, three specific metamodels
(the Stereotyped UML Class metamodel, the UML-
to-XML Transformation metamodel and the XML
Schema metamodel) were proposed in [5] showing
its graphical representation.

(2) The transformation component stores the links
between the different elements of the platform
independent component and the related elements of
the platform specific component. It ensures the
traceability of the transformation process.

(3) The extension to the Physical Component,
propagating the evolution process from the platform
specific model to the instances is another feature.
Within the XML context, the XML documents are
modified conforming to the evolved XML schema.

(4) Evolution is supported by the previous three features.

Transformation and evolution process always start at
the Platform Independent Component.

III. ECLIPSE

Eclipse [12] is an open source software project, which
provides a highly integrated tool platform. One of the main
characteristics of Eclipse is its extensibility, since it allows
the user to develop plug–ins which are integrated into the
core, defining a particular IDE. Eclipse has been described as
“an IDE for anything, and nothing in particular [13].”

As described previously, the goal of this paper is to study
the feasibility of using different plug-ins to implement the
architecture explained in the previous section. Taking this
into account, we have based on one of the top level projects,
the Modeling Project [14], which mainly focuses on the
evolution and promotion of model-based development
technologies within the Eclipse community by providing a
unified set of modeling frameworks, tooling, and standards
implementations. More specifically, we have based on two
of its subprojects: Eclipse Modeling Framework (EMF) and
Model Development Tools (MDT).

On the one hand, the EMF project [15][16] is presented
as a modeling framework and code generation facility for
building tools and other applications based on a structured
data model. EMF allows the user to define a model in any of
three forms, Java Interfaces, UML diagrams or XML
Schema, and later, generate the other forms from it,
including even the corresponding implementation classes.

The purpose of the MDT project [17], on the other hand,
is to provide an implementation of industry standard
metamodels as well as tools for developing models based on
those metamodels. For its interest in our work, two
subprojects within this project have been considered: UML2
and XSD. UML2 [18] is an EMF-based implementation of
the UML 2.x metamodel for the Eclipse platform. Besides
providing a usable implementation of the UML metamodel,
it also includes a common XMI schema to facilitate
interchange of models, test cases and validation rules. XSD
[19] is a library that provides an Application Programming

Figure 1. GEA: Generic Evolution Architecture (taken from [5]).

232Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Interface (API) for creating and manipulating W3C XML
Schema and XML documents as well as an API for keeping
documents conforming to their schemas as these are
modified.

IV. TOWARDS AN IMPLEMENTATION OF GENERIC

EVOLUTION ARCHITECTURE

This section is devoted to describe the most relevant
aspects of the technological approach that have been
undertaken to implement GEA. First, Eclipse Indigo (v
3.7.1) and the plug-ins UML2 Extender SDK (v 3.2.1) and
XSD - XML Schema Definition SDK (v 2.7.1) have been
installed in order to perform this implementation. Besides,
the examples followed in [16] and commonly used in papers
that deal with UML and XML [7][20] have been used as a
benchmark (for instance, Simple Purchase Order, the Primer
Purchase Order –PPO- and Extended Purchase Order –
ExtendedPO-).

Before going into detail on the parallelism between these
proofs and the architecture shown in Section 2, let us define
some concepts related to EMF. “An EMF model is
essentially the Class Diagram subset of UML [16].” “The
model used to represent models in EMF is called Ecore.
Ecore is itself an EMF model, and thus is its own metamodel
[16].” Due to lack of space the graphical representation of
the metamodels used in this section are not showed.
Anyway, a comprehensive explanation on the Ecore
metamodel can be found in [16], and it is stored in the file
Ecore.ecore (in turn, contained in the file
org.eclipse.emf.ecore_2.7.0.v20120127-1122.jar).
Essentially, the Ecore metamodel defines four types of
objects:

EClass is used to represent a modeled class. It is
identified by name and can have a number of attributes and
references. A class can refer to a number of other classes as
its supertypes.

EAttribute models attributes. It is identified by name and
has a type.

EDataType models the type of an attribute. It is used to
represent simple types whose details are not modeled as
classes.

EReference is used to represent one end of an association
between classes. It has a name, a boolean flag to indicate if it
represents containment, a lower and upper bounds to specify
multiplicity and a reference (target) type, which is an EClass.
Besides, related classes and data types are grouped in
EPackage, which is the root element of a serialized Ecore
model.

In our implementation, both the platform independent
metamodel and the platform specific metamodel are Ecore
models. The first (uml.ecore) is included in the UML2 plug-
in (org.eclipse.uml2.uml_3.2.100.v201108110105.jar). It
consists of an EPackage, 247 EClass, 13 EEnum (which is
a subclass of EDataType and it is used to model enumerated
types) and 4 primitive types. On the other hand, the models
generated into the Platform Specific Component will be
conformed to the metamodel xsd.ecore provided in the XSD
plug-in, within org.eclipse.xsd_2.7.1.v20120130-0943.jar. It

is simpler than the previous metamodel, and it consists of an
EPackage, 57 EClass, 20 EEnum and 5 primitive types.

The UML class model is transformed to an EMF model
and afterwards the EMF model is transformed to an XML
schema. The Eclipse framework defines and has total control
of these transformations. In particular, the UML2 project
defines a mapping from UML 2.0 to Ecore. A similar
mapping, except subtle details, is described for UML version
1.4 in [16]. This mapping only concerns with the constructs
of UML classes. Broadly speaking, a Package maps to an
EPackage; a class is mapped to an EClass, EEnum, or an
EDataType, depending on the class’s stereotype; an attribute
maps to an EAttribute and an operation maps to an
EOperation, which models the behavioral features of an
EClass. It is worth noting that an UML association maps to
two EReferences and each of them has the other as its
eOpposite. Taking these results into account, we have
demonstrated that is not possible to map an association class.
Furthermore, we have also proved that the UML model and
its EMF counterpart are not automatically synchronized.

Detailed information about how the second
transformation, from EMF model to XML schema, is
performed can be obtained from [16]. At a high level, the
mapping is as follows: an EPackage maps to a schema, an
Eclass maps to a complex type, an EDataType maps to a
simple type, an EAttribute and an EReference map to an
attribute or element declaration.

With respect to the instance layer, the XSD plug-in
provides the tools for creating XML documents from an
XML schema and for validating them if the XML schema
changes.

Taking this into account, we can conclude that the
analysis and tests carried out on these tools confirm us that
their expected capacities seem to be far away from those
really supported, at least regarding models synchronization.
Regarding evolution, although intuition points out to get
similar results, we plan to follow a source-like approach, that
is, propagating the changes from the UML class model (so
this work must be considered ‘in progress’).

V. CONCLUSION AND FUTURE WORK

In this paper, the possibility of implementing a UML to
XML Evolution Architecture by means of three of the plug-
ins that seem to be the most appropriate ones (EMF, UML2
and XSD) have been studied.

These plug-ins have been tested founding several
difficulties described below. To transform a UML class
model to XML Schema is required an intermediate
transformation to an EMF model. Besides, to update the
EMF model conforming to the changes in the UML model is
a very complex task for which it is necessary to be a
specialized expert in adapters and notifiers.

It is worth noting that EMF only concerns itself with a
small subset of UML. For instance, a UML class model that
contains a class association cannot be mapped to an EMF
model. Therefore, this process is valid only for specific UML
class models. Finally, we want to note that all the

233Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

transformations are automatically carried out; to create and
manage our own transformation rules is not possible.

For all these reasons, in despite of these plug-ins provide
us with a lot of structures and procedures, we conclude that
the development of our evolution architecture using only and
directly these plug-ins is an exceedingly complex task, and it
may not even be feasible.

There exist several possibilities for follow-up this
implementation:

(1) To use the Ecore metamodel as the Platform

Independent Metamodel. In this case, we give up
the richness of UML since Ecore is a small subset
of UML. We would like to advance that we have
already obtained some preliminary results in this
line, which lead us to think that our impressions
about using this metamodel to implement our GEA
architecture are justified.

(2) To create our own transformations by means of

Atlas Transformation Language (ATL) and
MofScript, both of them subprojects of the Eclipse
Modeling Project. Thereby we would have under
control the transformations of each element.
Regarding this line of work, we have experience in
using both tools (ATL and Mofscript) for the
particular case of implementing a framework that
automatically generates decision support systems
for clinical guidelines [21]. This experience makes
us to think that they are feasible solutions for our
implementation problem, but we are aware that it is
required a conceptual task to align our
transformation approach with these tools.

(3) To explore the Hypermodel plug-in [22], in order to

know if it could be used to implement our
architecture. Hypermodel was designed and
implemented by David Carlson and it is stated that
generates XML schemas from any UML model.
This fact leads us to think that this plug-in could be
a good reference among other existing tools.

ACKNOWLEDGMENT

This work has been partially supported by Spanish
Ministry of Science and Innovation project TIN2009-13584
and University of La Rioja, project API12/12.

The authors would like to thank the others authors of [5]
for their contributions: Eladio Domínguez, Jorge Lloret,
Áurea Rodríguez, María A. Zapata.

REFERENCES
[1] G. Guerrini, M. Mesiti and D. Rossi, "Impact of xml schema

evolution on valid documents", in: WIDM '05: Proceedings of the 7th
annual ACM international workshop on Web information and data
management, ACM, NY, USA, 2005, pp. 39-44.
http://doi.acm.org/10.1145/1097047.1097056.

[2] M. Klettke, "Conceptual XML schema evolution - The CoDEX
approach for design and redesign", in M. Jarke, T. Seidl, C. Quix, D.

Kensche, S. Conrad, E. Rahm, R. Klamma, H. Kosch, M. Granitzer,
S. Apel, M. Rosenmüller, G. Saake, O. Spinczyk (Eds.), Workshop
Proceedings Datenbanksysteme in Business, Technologie und Web
(BTW 2007), Aachen, Germany, 2007, pp. 53-63.

[3] T. Krumbein and T. Kudrass, "Rule-based generation of XML
schemas from UML class diagrams", in: Proceedings of the XML
Days at Berlin, Workshop on Web Databases (WebDB), 2003, pp.
213-227.

[4] I. Kurtev, K. V. Berg and M. Aksit, "UML to XML-schema
transformation: a case study in managing alternative model
transformations in MDA", in: Proceedings of the Forum on
specification and Design Languages (FDL'03), European Electronic
Chips & Systems Design Initiative, Frankfurt, Germany, 2003.

[5] E. Domínguez, J. Lloret, B. Pérez, Á. Rodríguez, Á. L. Rubio and M.
A. Zapata, "Evolution of XML schemas and documents from
stereotyped UML class models: A traceable approach", Information
and Software Technology. Vol. 53, no. 1, pp. 34-50, 2011.

[6] D. K. Kramer, “XEM: XML evolution management”, Ph.D. thesis,
Worcester Polytechnic Institute (2001).

[7] N. Routledge, L. Bird and A. Goodchild, "UML and XML schema",
in: X. Zhou (Ed.), Thirteenth Australasian Database Conference
(ADC2002), ACS, Melbourne, Australia, 2002.

[8] R. Elmasri, Q. Li, J. Fu, Y.-C. Wu, B. Hojabri and S. Ande,
"Conceptual modeling for customized XML schemas", Data Knowl.
Eng. 54 (1) (2005) 57-76.

[9] E. Domínguez, J. Lloret, B. Pérez, A. Rodríguez, A. L. Rubio and M.
A. Zapata, "A survey of UML models to XML schemas
transformations", in: Proceedings of the Web Information Systems
Engineering (WISE) Conference, Vol. 4831 of Lecture Notes in
Computer Science, Springer, 2007, pp. 184-195.

[10] E. Domínguez, J. Lloret, A. L. Rubio and M. A. Zapata, "MEDEA: A
database evolution architecture with traceability", Data and
Knowledge Engineering 65 (3) (2008) 419-441.
doi:10.1016/j.datak.2007.12.001.

[11] J. Mukerji and J. Miller, "MDA guide version 1.0.1", available at
http://www.omg.org/cgi-bin/doc?omg/03-06-01/ 19.11.2012 (June
2003).

[12] The Eclipse Foundation, "Eclipse - The Eclipse foundation open
source community website", available at http://www.eclipse.org
19.11.2012

[13] Object Technology International, Inc., "Eclipse platform technical
overview", available at http://www.eclipse.org/whitepapers/eclipse-
overview.pdf 19.11.2012 (February 2003).

[14] The Eclipse Foundation, "Eclipse modeling project", available at
http://www.eclipse.org/modeling/ 19.11.2012

[15] The Eclipse Foundation, "EMF", available at
http://www.eclipse.org/projects/project.php?id=modeling.emf.emf
19.11.2012

[16] D. Steinberg, F. Budinsky, M. Paternostro and E. Merks, EMF:
Eclipse modeling framework, Addison-Wesley, 2008.

[17] The Eclipse Foundation, "Eclipse modeling - MDT", available at
http://www.eclipse.org/modeling/mdt/ 19.11.2012

[18] The Eclipse Foundation, "MDT-UML2", available at
http://www.eclipse.org/modeling/mdt/?project=uml2 19.11.2012

[19] The Eclipse Foundation, "MDT-XSD", available at
http://www.eclipse.org/projects/project.php?id=modeling.mdt.xsd
19.11.2012

[20] W3C, "W3C XML schema definition language XSD", available at
http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/
19.11.2012 (April 2012).

[21] E. Domínguez, B. Perez and MA Zapata. Towards a traceable clinical
guidelines application. Methods Inf Med 2010; 49: 571–580.

[22] D. A. Carlson, "hyperModel|XMLmodeling.com", Available at
http://xmlmodeling.com/hypermodel 19.11.2012 (2012).

234Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

