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Abstract—This paper discusses typing XPath subexpressions
with respect to an XML schema, which is a new static
analysis problem of XPath expressions. More formally, the
typing problem is to decide whether there exists an XML
document conforming to a given XML schema such that the
nodes of the document matching to given subexpressions of
a given XPath expression are of the given types. Deciding
this problem is useful for query rewriting induced by schema
evolution or integration. The contribution of this paper includes
a decision algorithm for the typing problem, provided that
XPath expressions include no path union operator. Moreover,
it is shown that the typing problem is reducible to the XPath
satisfiability problem in the presence of DTDs, for which many
tractability results are known.
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I. INTRODUCTION

Static analysis of XPath expressions is one of the major
theoretical topics in the field of XML databases. XPath
is a query language for XML documents, where an XML
document is often regarded as an unranked labeled ordered
tree. An XPath expression specifies a pattern of (possibly
branching) paths from the root of a given XML document.
The answer to an XPath expression for an XML document
t is a set of nodes v of t such that the specified path pattern
matches the path from the root to v.

The most popular subtopic of static analysis may be XPath
satisfiability, where a given XPath expression p is satisfiable
under a given XML schema S if there is an XML document
t conforming to S such that the answer to p for t is a
nonempty set. Many tractable combinations of XPath classes
and XML schema classes have been investigated so far [1],
[2], [3]. Another popular one is XPath containment [4], [5],
[6]. Moreover, XPath validity, which is a dual of XPath
satisfiability, is investigated recently [7], [8].

This paper discusses a new problem of static analysis:
typing XPath subexpressions with respect to an XML schema.
We explain it by an example first.

Example 1: Consider the following fragment of an XML
schema:

Te → teachers(M∗
t ),

Mt → member(N Ti),
N → name(· · ·),
Ti → title(· · ·),

S → students(M∗
s ),

Ms → member(N Ge Gr),
Ge → gender(· · ·),
Gr → grade(· · ·).

Te, Mt, etc. are types defined in this XML schema, while
teachers, member, etc. are tag names or labels. Note that
the type of member is not unique in this schema.

Now, consider the following two XPath expressions:

p1 =↓∗:: member/ ↓:: name, p2 =↓∗:: member/ ↓:: gender.

The types of the subexpression ↓∗:: member of p1 are Mt

and Ms, because in both cases member has name as its child.
On the other hand, the type of ↓∗:: member of p2 is only
Ms, because member of type Mt has no gender as its child.

More formally, the typing problem is to decide whether
for a given XML schema S, an XPath expression p, and a
sequence (α1, X1), . . . , (αk, Xk) of pairs of positions of p
and types of S, there exists an XML document t conforming
to S such that the node of t matching to the subexpression
of p at αi is of type Xi for each i (1 ≤ i ≤ k).

The typing problem can be viewed as a natural extension
of the XPath satisfiability problem, and is useful especially
for query rewriting and optimization induced by schema
evolution or integration. For example, consider again the
fragment of the schema in Example 1. Suppose that Mt →
member(NTi) has evolved into Mt → t member(NTi). In
order to keep the behavior of queries unchanged, p1 must
be rewritten to (↓∗:: member∪ ↓∗:: t member)/ ↓:: name
while p2 is not necessarily rewritten. As another exam-
ple, suppose that Mt → member(NTi) has evolved into
Mt → member(NTiGe). Then, the associated types of
the subexpression ↓∗:: member of p2 have been changed
(i.e., the types are now both Mt and Ms). In this case, p2
must be rewritten to an expression, say ↓∗:: students/ ↓::
member/ ↓:: gender, so that the subexpression ↓∗:: member
is associated with only Ms.

Under the assumption that XPath expressions include no
path union operator, this paper adopts two approaches to
developing decision algorithms for the typing problem. The
first one is a direct approach. In this approach, a given XML
schema and a given XPath expression are translated into
finite tree automata, and the associated types are analyzed
by computing their intersection automaton. The second
one is a reduction-based approach. In this approach, it is
shown that the typing problem is reducible to the XPath
satisfiability problem in the presence of DTDs, for which
many tractability results are known. Moreover, a part of this
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result is extended so that all the possible combinations of
types of subexpressions can be efficiently enumerated.

The rest of this paper is organized as follows. In Sec-
tion II several preliminary definitions are provided. Sec-
tions III and IV present the direct and the reduction-based
approaches, respectively. Section V summarizes the paper.

II. DEFINITIONS

A. Trees and XML documents

An XML document is represented by an unranked labeled
ordered tree t = (Vt, λt), where

• Vt is a prefix-closed, finite set of sequences of positive
integers such that if v ·i ∈ Vt and i > 1 then v ·(i−1) ∈
Vt; and

• λt is a mapping from Vt to a set Σ of labels.
Each element in Vt is called a node of t. The empty
sequence ε ∈ Vt is called the root of t. The parent-child
relation and sibling relation between nodes are defined in
an ordinary way. We extend λt to a function on sequences,
i.e., for a sequence v1 · · · vn of nodes, let λt(v1 · · · vn) =
λt(v1) · · ·λt(vn). Attributes are not handled in this paper.

For any tree structure t (which is not necessarily repre-
senting an XML document) and its node v, let t|v denote the
subtree of t rooted at v. For any trees t1,. . . , tn with the same
node set V and v ∈ V , let (t1 · · · tn)|v denote t1|v · · · tn|v.
Also, for any mapping f which returns a tree structure, let
f |v denote a mapping such that f |v(x) = f(x)|v.

B. Regular expressions

A regular expression over an alphabet Σ consists of
constants ε (empty sequence) and the symbols in Σ, and op-
erators · (concatenation), ∗ (repetition), and | (disjunction).
We exclude ∅ (empty set) because we are interested in only
nonempty regular languages. The concatenation operator is
often omitted as usual. The string language represented by
a regular expression e is denoted by L(e). The size of a
regular expression is the number of constants and operators
appearing in the regular expression.

C. Finite tree automata and XML schemas

A finite tree automaton TA is a quadruple (N,Σ, B, P ),
where

• N is a finite set of states,
• Σ is a finite set of labels,
• B ∈ N is the initial state, and
• P is a finite set of transition rules in the form of X →

a(e) or X → Y , where X,Y ∈ N , a ∈ Σ, and e is a
regular expression over N called content model.

A finite tree automaton TA = (N,Σ, B, P ) is local if for
any pair of rules X → a(e) and X ′ → a′(e′) in P , a 6= a′

whenever X 6= X ′.
An interpretation ITA

t of a tree t for a finite tree automa-
ton TA = (N,Σ, B, P ) is a mapping from Vt to the set of
finite sequences over N satisfying the following conditions:

• first(ITA
t (ε)) = B (note that ε is the root of t), where

first(x) denotes the first element of sequence x; and
• for any node v with n children (n ≥ 0), there are

transition rules X1 → X2, X2 → X3,. . . , Xk → a(e)
in P such that

– ITA
t (v) = X1X2 · · ·Xk,

– λt(v) = a, and
– first(ITA

t (v · 1)) · · ·first(ITA
t (v ·n)) ∈ L(e) (note

that v · i is the i-th child of v).
A tree t is accepted by a finite tree automaton TA if there
is an interpretation of t for TA. Let TL(TA) denote the set
of trees accepted by TA.

An XML schema S is a finite tree automaton such that
• S has no rule in the form of X → Y , and
• S has no pair of rules X → a1(e1) and X → a2(e2)

where a1 6= a2.
A DTD is an XML schema which is also local. In a DTD
there is a one-to-one correspondence between N and Σ, so
we often use a triple (N,B, P ) to mean a DTD. A tree t
conforms to an XML schema S if t is accepted by S. In this
paper, we assume that every XML schema S = (N,Σ, B, P )
contains no useless states. That is, for each X ∈ N , there
are a tree t ∈ TL(S) and its interpretation ISt such that
ISt (v) = X for some node v of t. Each state in an XML
schema is referred to as a type. The size |S| of an XML
schema S is the sum of the size of all content models.

D. XPath expressions

The syntax of an XPath expression p is defined as follows:

p ::= χ :: l | p/p | p ∪ p | p[p],
χ ::= ↓ | ↑ | ↓∗ | ↑∗ | →+ | ←+,

where l ∈ Σ. Each χ ∈ {↓, ↑, ↓∗, ↑∗,→+,←+} is called an
axis. A subexpression in the form of χ :: l is said to be
atomic. The size |p| of an XPath expression p is defined as
the number of atomic subexpressions in p.

A position of an XPath expression p is a finite sequence
of positive integers representing a node of a parse tree of p.
Precisely, the subexpression p|α of p at position α is defined
as follows:

• p|ε = p.
• If p|α = p1/p2, then p|α·1 = p1 and p|α·2 = p2.
• If p|α = p1 ∪ p2, then p|α·1 = p1 and p|α·2 = p2.
• If p|α = p1[p2], then p|α·1 = p1 and p|α·2 = p2.
Next, we define the satisfaction relation of an XPath

expression p by a tree t with a witness mapping w, which
is a partial mapping from the set of positions of p to the set
of pairs of nodes of t. Intuitively, w(α) is a pair of nodes
that satisfies p|α. Note that w(α)|1 and w(α)|2 are the first
and the second components of w(α), respectively:

• t |= (↓:: l)(w(α)) if w(α)|2 is a child of w(α)|1 and
λt(w(α)|2) = l.
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• t |= (↑:: l)(w(α)) if w(α)|2 is the parent of w(α)|1
and λt(w(α)|2) = l.

• t |= (↓∗:: l)(w(α)) if w(α)|2 is w(α)|1 or a descendant
of w(α)|1, and λt(w(α)|2) = l.

• t |= (↑∗:: l)(w(α)) if w(α)|2 is w(α)|1 or an ancestor
of w(α)|1, and λt(w(α)|2) = l.

• t |= (→+:: l)(w(α)) if w(α)|2 is a following sibling
of w(α)|1 and λt(w(α)|2) = l.

• t |= (←+:: l)(w(α)) if w(α)|2 is a preceding sibling
of w(α)|1 and λt(w(α)|2) = l.

• t |= (p1/p2)(w(α)) if t |= p1(w(α · 1)), t |=
p2(w(α · 2)), w(α · 1)|2 = w(α · 2)|1, and w(α) =
(w(α · 1)|1, w(α · 2)|2).

• t |= (p1 ∪ p2)(w(α)) if t |= pi(w(α · i)) and w(α) =
w(α · i) for some i ∈ {1, 2}. Moreover, if j ∈ {1, 2}
does not satisfy t |= pj(w(α · j)), then for any position
α′ whose prefix is α · j, w(α′) is undefined.

• t |= (p1[p2])(w(α)) if t |= p1(w(α · 1)), t |= p2(w(α ·
2)), w(α · 1)|2 = w(α · 2)|1, and w(α) = w(α · 1).

If t |= p(w(ε)), we say that t satisfies p with witness w and
write (t, w) |= p. Note that if (t, w) |= p and p does not
include path union operator ∪, then w is a total mapping.

E. Typing problem

Suppose that an XML schema S, an XPath expres-
sion p without path union operator ∪, and a sequence
(α1, X1), . . . , (αk, Xk) of pairs of positions of p and types
of S are given. The typing problem is to decide whether
there exist t ∈ TL(S), an interpretation ISt of t for S, and
a mapping w such that

• w(ε)|1 = ε (i.e., the root node of t),
• (t, w) |= p, and
• ISt (w(αi)|2) = Xi for each i (1 ≤ i ≤ k).

III. A DIRECT APPROACH

This section provides an algorithm which directly decides
the typing problem. First, the algorithm translates a given
XPath expression p into a finite tree automaton TAp, main-
taining the information on the structure of p as the states
of TAp. Then, the algorithm analyzes the correspondence
between subexpressions of p and the types of a given schema
S, by taking the intersection of TAp and S.

A. Translating XPath expressions into finite tree automata

For a given XPath expression p without path union ∪, we
construct a finite tree automaton TAp with two distinguished
sets NC p and NDp of states. Roughly speaking, TAp

accepts an arbitrary tree t satisfying p. States in NC p and
NDp are associated with the “start” and “goal” nodes of t
matching p.

First, we provide the definitions of TAp = (Np,Σ, Bp,
Pp,NC p,NDp) for p = χ :: l, where Bp = B, NC p =
{C}, and NDp = {D}.

• If p = ↓:: l, then Pp consists of

– A→ σ(A∗) for each σ ∈ Σ,
– B → σ(A∗BA∗) for each σ ∈ Σ,
– B → C,
– C → σ(A∗DA∗) for each σ ∈ Σ, and
– D → l(A∗).

• If p =↓∗:: l, then Pp consists of
– A→ σ(A∗) for each σ ∈ Σ,
– B → σ(A∗BA∗) for each σ ∈ Σ,
– B → C,
– B′ → σ(A∗B′A∗) for each σ ∈ Σ,
– B′ → D,
– C → σ(A∗B′A∗) for each σ ∈ Σ,
– C → D, and
– D → l(A∗).

• If p =→+:: l, then Pp consists of
– A→ σ(A∗) for each σ ∈ Σ,
– B → σ(A∗BA∗) for each σ ∈ Σ,
– B → B′,
– B′ → σ(A∗CA∗DA∗) for each σ ∈ Σ,
– C → σ(A∗) for each σ ∈ Σ, and
– D → l(A∗).

For axes ↑, ↑∗, and ←+, the tree automata are defined by
swapping states C and D (and their associated labels) for
the ones of ↓, ↓∗, and →+, respectively.

Consider TAp = (Np,Σ, Bp, Pp,NC p,NDp) where p =
p1/p2. TAp is defined as the intersection [9] of TAp1 and
TAp2 , except that the states in NDp1 overlaps only the states
in NC p2 , and vice versa. More precisely,

Np = (NDp1 ×NC p2)∪ ((Np1 −NDp1)× (Np2 −NC p2)).

Moreover, Bp = (Bp1 , Bp2), NC p = NC p1 × Np2 , and
NDp = Np1×NDp2 . TAp for p = p1[p2] can be constructed
in a similar way.

Lemma 1: TAp satisfies Properties 1 and 2 below. Note
that each state of TAp has the same tree structure as p:

Property 1: For each mapping w such that (t, w) |= p,
there is an interpretation I

TAp

t of t for TAp such that for
each position α of p, I

TAp

t (w(α)|1)|α contains a state in
NC p|α and I

TAp

t (w(α)|2)|α contains a state in NDp|α .
Property 2: Conversely, for each interpretation I

TAp

t of
t for TAp, there is a mapping w such that (t, w) |= p and
for each position α of p, ITAp

t (w(α)|1)|α contains a state
in NC p|α and I

TAp

t (w(α)|2)|α contains a state in NDp|α .
Proof: The lemma is shown by the induction on the

structure of p. The case where p = χ :: l is easy: If (t, w) |=
p, then there is an interpretation I

TAp

t of t for TAp such that
I
TAp

t (w(ε)|1) = C and I
TAp

t (w(ε)|2) = D. Conversely,
if I

TAp

t is an interpretation of t for TAp, then there are
unique nodes v and v′ of t such that I

TAp

t (v) = C and
I
TAp

t (v′) = D. By letting w(ε) = (v, v′), we have (t, w) |=
p, ITAp

t (w(ε)|1) = C, and I
TAp

t (w(ε)|2) = D.
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Consider the case where p = p1/p2. Suppose that TAp1

and TAp2 satisfy the two properties and (t, w) |= p1/p2.
Then, by the definition of |=, we have t |= p1(w(1)), t |=
p2(w(2)), w(1)|2 = w(2)|1, and w(ε) = (w(1)|1, w(2)|2).
Let ITAp1

t and I
TAp2
t be interpretations of t for TAp1 and

TAp2 , respectively, that satisfy Property 1. Define I(v) =

(I
TAp1
t (v), I

TAp2
t (v)) for any node v of t. Then, by the

definition of TAp, I is an interpretation of t for TAp and
satisfies Property 1. Conversely, suppose that I

TAp

t is an
interpretation of t for TAp. Then, by the definition of TAp,
I
TAp

t |1 and I
TAp

t |2 are interpretations of t for TAp1 and
TAp2 , respectively. Let w1 and w2 be the mappings deter-
mined by I

TAp

t |1 and I
TAp

t |2, respectively, which satisfy
Property 2. Define w(1 · α) = w1(α), w(2 · α) = w2(α),
and w(ε) = (w1(ε)|1, w2(ε)|2). Then (t, w) |= p1/p2 and
Property 2 is satisfied.

The case where p = p1[p2] can be shown similarly.

B. Analyzing correspondence between XPath expressions
and schemas

Let TAS∩p be an intersection automaton of an XML
schema S and TAp, except that the states in NC p overlaps
only the initial state of S, and vice versa. TAS∩p accepts t
if and only if t satisfies p at its root node and t conforms to
S. Moreover, for each interpretation I

TAS∩p

t of t for TAS∩p,
I
TAS∩p

t |1 is an interpretation of t for S and I
TAS∩p

t |2 is an
interpretation of t for TAp. Since TAp satisfies Property 2, it
holds in turn that there is a mapping w such that (t, w) |= p

and for each position α of p, ITAS∩p

t |2(w(α)|2)|α contains
a state in NDp|α . Conversely, by Property 1, if (t, w) |= p,
then there is an interpretation I

TAp

t of t for TAp such that
for each position α of p, ITAp

t (w(α)|2)|α contains a state
in NDp|α . It holds in turn that for any interpretation ISt of
t for S , mapping I defined as I(v) = (ISt (v), I

TAp

t (v)) is
an interpretation of t for TAS∩p.

This observation naturally induces the following algo-
rithm for deciding the typing problem. Suppose that an
XML schema S, an XPath expression p, and a sequence
(α1, X1), . . . , (αk, Xk) of pairs of positions of p and types
of S are given. For each i (1 ≤ i ≤ k), eliminate all the states
(X,Y ) (and associated rules) of TAS∩p such that X 6= Xi

and Y |αi ∈ NDp|αi
. Then decide the emptiness of the tree

language accepted by the resultant finite tree automaton. The
answer of the typing problem is “yes” if and only if the tree
language is not empty.

C. Discussion

It is easy to see that in the worst case, this algorithm runs
at least in exponential time in the size of p because of the
intersection operation on finite tree automata. However, this
algorithm is expected to run reasonably fast in many cases.
Indeed, finite tree automata can be translated into formulas
in a variant of µ-calculus [10], and then the typing problem

can be solved by fast decision procedures for µ-calculus
formulas. An experimental analysis is left as future work.

IV. A REDUCTION-BASED APPROACH

In this section, it is shown that the typing problem is
reducible to XPath satisfiability in the presence of DTDs.
Then, using this result, we provide a condition where all the
possible combinations of types of atomic subexpressions can
be efficiently enumerated.

Let p be an XPath expression without path union ∪.
Then, for each subexpression p|α of p, there is an atomic
subexpression p|α′ of p such that for any t and w such that
(t, w) |= p, we have w(α)|2 = w(α′)|2. Therefore, in the
rest of this section, we assume without loss of generality
that all the given subexpressions of the typing problem are
atomic.

A. Reduction to XPath satisfiability in the presence of DTDs

Let S = (N,Σ, B, P ) be an XML schema. Define a
mapping ϕ as follows:

ϕ(S) = (N,N × Σ, B, ϕ(P )),

ϕ(P ) = {X → (X, a)(e) | X → a(e) ∈ P}.

It is easy to show that ϕ(S) is local.
For any t ∈ TL(S) with an interpretation ISt , let ϕ(t, ISt )

be a tree such that Vϕ(t,IS
t ) = Vt and λϕ(t,IS

t )(v) = (ISt (v),

λt(v)). It is easy to see that ϕ(t, ISt ) ∈ TL(ϕ(S)). On the
other hand, for any t′ ∈ TL(ϕ(S)), let ϕ−1(t′) denote the
tree such that Vϕ−1(t′) = Vt′ and λϕ−1(t′) = λt′ |2. It is also
easy to see that ϕ−1(t′) ∈ TL(S) with interpretation λt′ |1.

Lemma 2: Let p be an XPath expression without path
union ∪. Also, let p′ be an XPath expression obtained by
replacing each atomic subexpression χα :: lα of p at α with
χα :: (Xα, lα) for some Xα ∈ N .

• Suppose that t ∈ TL(S) with interpretation ISt and
(t, w) |= p. Also suppose that for each position α of
p such that p|α is atomic, ISt (w(α)|2) = Xα. Then,
(ϕ(t, ISt ), w) |= p′.

• Conversely, suppose that t′ ∈ TL(ϕ(S)) and (t′, w′) |=
p′. Then, (ϕ−1(t′), w′) |= p, and interpretation λt′ |1 of
t for S satisfies that for each position α of p such that
p|α is atomic, λt′ |1(w′(α)|2) = Xα.
Proof: The lemma is shown by induction on the struc-

ture of p. Consider the case where p = χε :: lε. Suppose
that t ∈ TL(S) with an interpretation ISt , (t, w) |= p,
and ISt (w(ε)|2) = Xε. Since p′ = χε :: (Xε, lε), we have
ϕ(t, ISt ) |= p′(w(ε)). Hence, the first condition holds. It is
obvious that the second condition holds.

Consider the case where p = p1/p2. Suppose that t ∈
TL(S) with an interpretation ISt and (t, w) |= p1/p2. Also
suppose that for each position α of p such that p|α is atomic,
ISt (w(α)|2) = Xα. Define two mappings w1 and w2 so that
w1(α) = w(1 ·α) and w2(α) = w(2 ·α). Then, (t, w1) |= p1
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and (t, w2) |= p2. By inductive hypothesis, (ϕ(t), w1) |= p′1
and (ϕ(t), w2) |= p′2, where p′ = p′1/p

′
2. Hence (ϕ(t), w) |=

p′. Conversely, suppose that t′ ∈ TL(ϕ(S)) and (t′, w′) |=
p′1/p

′
2. Define two mappings w′

1 and w′
2 so that w′

1(α) =
w′(1 · α) and w′

2(α) = w′(2 · α). Then, (t′, w′
1) |= p′1 and

(t′, w′
2) |= p′2. By inductive hypothesis, (ϕ−1(t′), w′

1) |= p1
and (ϕ−1(t′), w′

2) |= p2, and hence (ϕ−1(t′), w′) |= p1/p2.
Moreover, interpretation λt′ |1 satisfies that for each position
α of pi such that pi|α is atomic, λt′ |1(w′

i(α)|2) = Xα (i ∈
{1, 2}). Hence the second condition holds.

The case where p = p1[p2] can be shown similarly.
Theorem 1: The typing problem for an XPath class X

with respect to an XML schema S is reducible in polynomial
time to satisfiability for XPath class X plus path union in
the presence of a DTD ϕ(S).

Proof: Let (α1, X1), . . . , (αk, Xk) be given pairs of
positions of an XPath expression p and types of S =
(N,Σ, B, P ), where N = {Y1, . . . , Yn}. Let ϕ(p) denote
the XPath expression obtained by replacing each atomic
subexpression χi :: li of p at αi with χi :: (Xi, li), and
other atomic ones χ :: l with χ :: (Y1, l) ∪ · · · ∪ χ :: (Yn, l).

Suppose that there exist t ∈ TL(S), an interpretation
ISt , and a mapping w such that w(ε)|1 = ε, (t, w) |= p,
and ISt (w(αi)|2) = Xi for each i (1 ≤ i ≤ k). Then, by
Lemma 2, we have (ϕ(t, ISt ), w) |= ϕ(p).

Conversely, suppose that there exist t′ ∈ TL(ϕ(S)) and a
mapping w′ such that w′(ε)|1 = ε and (t′, w′) |= ϕ(p).
Then, by Lemma 2 again, we have (ϕ−1(t′), w′) |= p
and the interpretation λt′ |1 of ϕ−1(t′) for S satisfies that
λt′ |1(w′(αi)|2) = Xi for each i (1 ≤ i ≤ k).

By Theorem 1, many known results on XPath satisfiability
in the presence of DTDs can be used to realize tractable
combinations of classes of XPath expressions and XML
schemas. For example, from the result in [1], the typing
problem for an XPath class consisting of downward axes
with respect to an arbitrary XML schema S is tractable.

In what follows, we focus on the known results on
disjunction-capsuled DTDs [3], or DC-DTDs for short, since
satisfiability of wide XPath classes including path union
∪ is tractable under DC-DTDs. A regular expression e is
disjunction-capsuled, or DC for short, if e is in the form of
e1e2 · · · en (n ≥ 1), where each ei (1 ≤ i ≤ n) is either

• a symbol in Σ, or
• in the form of (e′i)

∗ for a regular expression e′i.
An XML schema S = (N,Σ, B, P ) is disjunction-capsuled,
or DC for short, if for each transition rule X → a(e) in P , e
is disjunction-capsuled. Immediately from the results in [3],
we have the following corollary of Theorem 1:

Corollary 1: The typing problem for an XPath class X
with respect to a DC XML schema S is tractable if

• X consists of ↓, ↓∗, →+, ←+, and [ ]; or
• X consists of ↓, ↓∗, ↑, ↑∗, →+, and ←+.

The known time complexities are O(|p||S|4) for the former
case and O(|p|3|S|3) for the latter case.

B. Efficient enumeration of types of subexpressions
The first case of Corollary 1 can be extended so that all

the possible combinations of types of atomic subexpressions
(precisely speaking, the witness mappings ξ introduced be-
low) can be efficiently enumerated. To demonstrate this, we
first briefly explain how satisfiability can be determined in
this case. We introduce a schema graph of a given DC-DTD,
which represents parent-child relationship as well as the
possible positions of the children specified by the DC-DTD.
We also define a satisfaction relation between schema graphs
and XPath expressions. The satisfaction relation coincides
the satisfiability under DC-DTDs and is decidable efficiently.
In what follows, let D = (N,B, P ) be a DC-DTD and p be
an XPath expression without upward axes. For each A ∈ N ,
let P (A) denote the content model of the unique rule in
P whose left-hand side is A. Moreover, for a DC regular
expression e = e1e2 · · · en, let len(e) denote the number n
of subexpressions of the top-level concatenation.

Definition 1: The schema graph [3] G = (U,E) of a DC-
DTD D = (N,B, P ) is a directed graph defined as follows:

• A node u ∈ U is either
– (⊥, 1,−, B), where ⊥ is a new symbol not in N ,

or
– (A, i, ω,A′), where A, A′ ∈ N and 1 ≤ i ≤

len(P (A)) such that A′ appears in the i-th subex-
pression ei of P (A), and ω = “−” if ei is a single
symbol in N and ω = “∗” otherwise.

The first, second, third and fourth components of u are
denoted by λpar (u), pos(u), ω(u), and λ(u), respec-
tively.

• An edge from u to u′ exists in E if and only if λ(u) =
λpar (u

′).
If t ∈ TL(D), then each node of t can be associated with

a node of the schema graph of D. More precisely, there
exists a mapping θ, called an SG mapping of t, from the set
of nodes of t to the set of nodes of the schema graph of D
with the following properties:

• θ maps the root node of t to (⊥, 1,−, B).
• Let v be a node of t with n children. Then, θ(v ·

j) = (λt(v), ij , ωij , λt(v · j)), where 1 ≤ ij ≤
len(P (λt(v))), ωij = “−” if the ij-th subexpression
of P (λt(v)) is a single symbol in N and ωij = “∗”
otherwise, and ij ≤ ij′ if j ≤ j′. Moreover, for
every maximum subsequence (v ·j) · · · (v ·j′) such that
ij = · · · = ij′ , the ij-th subexpression of P (λt(v))
matches λt((v · j) · · · (v · j′)).

A satisfaction relation |=DC of an XPath expression p by
a schema graph G with a witness mapping ξ, which is from
the set of positions of p to the set of pairs of nodes of G, is
defined as follows (some cases are omitted because of the
space limitation):

• G |=DC (↓:: l)(ξ(α)) if there is an edge from ξ(α)|1
to ξ(α)|2 in G and λ(ξ(α)|2) = l.
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• G |=DC (→+:: l)(ξ(α)) if λpar (ξ(α)|1) =
λpar (ξ(α)|2), λ(ξ(α)|2) = l, and pos(ξ(α)|1) <
pos(ξ(α)|2) if ω(ξ(α)|1) = “−” and pos(ξ(α)|1) ≤
pos(ξ(α)|2) if ω(ξ(α)|1) = “∗”.

• G |=DC (p1/p2)(ξ(α)) if G |=DC p1(ξ(α · 1)),
G |=DC p2(ξ(α ·2)), ξ(α ·1)|2 = ξ(α ·2)|1, and ξ(α) =
(ξ(α · 1)|1, ξ(α · 2)|2).

• G |=DC (p1 ∪ p2)(ξ(α)) if G |=DC pi(ξ(α · i)) and
ξ(α) = ξ(α · i) for some i ∈ {1, 2}. Moreover, if j ∈
{1, 2} does not satisfy G |=DC pj(ξ(α · j)), then for
any position α′ whose prefix is α·j, ξ(α′) is undefined.

If G |=DC p(ξ(ε)), we say that G satisfies p with witness ξ
and write (G, ξ) |=DC p.

Theorems 3 and 4 in [3] imply the following theorem:
Theorem 2: If (t, w) |= p with an SG mapping θ, then

(G, θ ◦ w) |=DC p. Conversely, if (G, ξ) |=DC p, then there
is an SG mapping θ such that ξ = θ ◦ w and (t, w) |= p.
Hence, ξ such that (G, ξ) |=DC p has enough information
to give one possible combination of the types of atomic
subexpressions of p.

Let S be a given DC XML schema and p be a given XPath
expression without path union and upward axes. Let ϕ′(p)
denote the expression obtained by replacing each atomic
subexpression χ :: l of p with χ :: (Y1, l)∪ · · ·∪χ :: (Yn, l),
where Y1, . . . , Yn are all the states of S. Now, the enumer-
ation algorithm is as follows. First, construct the schema
graph G of DC-DTD D = ϕ(S). Then, compute the set
Ξ(α) of all the pairs (u, u′) such that G |=DC ϕ′(p)|α(u, u′)
for each position α of p, in a bottom-up manner with respect
to the structure of p. Finally, by traversing Ξ in a top-
down manner with respect to α, construct each ξ such that
(G, ξ) |=DC p. Each ξ can be enumerated with worst-case
delay O(|p||S|4) time.

V. CONCLUSION

This paper has discussed typing XPath subexpressions
with respect to an XML schema. An algorithm which
directly decides the typing problem has been proposed.
Moreover, it has been shown that the typing problem is
reducible to the XPath satisfiability problem in the presence
of DTDs, for which many tractability results are known.

In the definition of the typing problem, we have excluded
the path union operator ∪ from XPath expressions. Actually,
we have found that handling path union is a challenging
task. For example, consider an XPath expression p1 ∪ p2.
If (ε,X) is specified, then we have to check whether X is
associated with p1 or X is associated with p2. On the other
hand, if (1, Y ) and (2, Z) are specified, then we have to
check whether Y is associated with p1 and Z is associated
with p2 simultaneously. In this sense, the meaning of ∪
changes depending on the specified pairs of positions and
types. Now we are trying to incorporate path union operator
and to find a wider condition where the typing problem
is solvable efficiently. However, we are also conjecturing

that polynomial-time reduction to XPath satisfiability in the
presence of DTDs is possible only if atomic subexpressions
are specified in the typing problem. It is also interesting to
investigate whether efficient enumeration is possible in the
second case of Corollary 1.
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