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Abstract—Meta-model merging is the process of incorporating 
data models into an integrated, consistent model against which 
accurate queries may be processed. Within the data 
warehousing domain, the integration of data marts is often 
time-consuming. In this paper, we introduce an approach for 
the integration of relational star schemas, which are instances 
of multidimensional data models. These instance schemas 
represented as data marts are integrated into a single 
consolidated data warehouse. Our methodology which is based 
on model management operations focuses on a formulated 
merge algorithm and adopts first-order Global-and-Local-As-
View (GLAV) mapping models, to deliver a polynomial time, 
near-optimal solution of a single integrated data warehouse. 

Keywords-Schema Merging; Data Integration; Model 
Management; Multidimensional Merge Algorithm; Data 
Warehousing 

I. INTRODUCTION 
Schema merging and data integration are important 

research areas with many practical applications. Some of the 
application areas are federated database systems, Enterprise 
Information Integration (EII), bioinformatics data 
integration, and financial information integration. Schema 
merging involves the integration of instance schema of meta-
data models using the mappings between the elements of the 
instance schemas [1]. Data integration, on the other hand, 
involves the consolidation of the instance data within the 
framework of a merged instance schema to deliver efficient 
query solutions [2]. Most procedures that involve these 
concepts have focused on traditionally identifying the 
independent data sources and the associated element 
mapping correspondences. Recent studies have emphasized 
the importance of inferring the semantic meaning of the data 
source elements during integration. Some problems that are 
associated with the procedural methodologies for these 
concepts are the identification of prime meta-models, and the 
formulation of algorithms for specific meta-models and their 
schema and data instances. 

The conceptual processes of data integration and schema 
merging largely come from the fundamental operations of 
model management [3] [4]. Some of these operations are 
namely, match schemas (expressed as schema matching), 
compose mappings and apply mappings (both expressed as 
schema mapping discovery), and merge schemas (expressed 
as schema merging) [3]. In line with multidimensional data 
integration for data warehouses, a number of studies have 
been investigated. Cabibbo and Torlone [5] [6] introduce and 

address dimension algebra and dimension compatibility in 
relation to data marts integration. Riazati et al. [7] also 
propose a solution for integration of data marts where they 
infer on the aggregations in the hierarchies of the dimension. 
Although these studies and others attempt to address this 
integration problem, they fail to investigate in detail areas 
such as an elaborate merge algorithm, element conflict 
management, technical merge requirements, amongst others. 

In this paper, we introduce an integration procedure for 
both instance schema and instance data of multidimensional 
data models. Our motivation is to employ the concept of 
model management to address the above-mentioned 
shortcomings of merge algorithm, conflict management and 
technical merge requirements for integration of data marts. 
Our key contribution in this paper is the formulation of a 
novel well-defined algorithm capable of delivering an 
efficient integrated data warehouse. Our presentation focuses 
on the proposition of star schema instances in our analyses. 
We deal with different procedures starting with finding of 
mapping correspondences to a more complex procedure of 
merging. Our work subsumes and extends prior work on 
generic models [1], to present a practical solution for 
merging schema instances of multidimensional data models. 

The technical contributions may be summarized as 
follows. We adopt a hybrid form of schema matching, in 
which we use both instance schema structure and instance 
data and extension algorithms to deliver correct attribute 
mapping correspondences. To this end, we employ first-
order Global-and-Local-As-View (GLAV) mapping models 
in the mapping discovery procedure. We identify and resolve 
specific conflicts that are exposed as a result of the 
integration of data marts. We further define technical 
qualitative merge correctness requirements which serve to 
validate the formulation of our merge algorithm. 

This paper is organized as follows. In Section II, we 
discuss our integration methodology. We present the 
multidimensional instance schema and data merging in 
Section III. In Section IV, we address the implementation 
and evaluation analysis of the merge methodology. In 
Section V, we conclude, discuss the open issues, and the 
areas of future work. 

II. INTEGRATION METHODOLOGY 
Our approach for generating a single integrated data 

warehouse from independent, but related, multidimensional 
star schemas extends from the above-mentioned concept of 
model management. 
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Figure 1.      Logical and Conceptual Multidimensional Schema Merge 

 
In line with this meta-data conceptual assertion, we 

present an overview of our integration methodology, as 
depicted in Figure 1. The figure shows a logical and 
conceptual merging of the fact and dimension tables from the 
Policy and Claims data marts, of an Insurance industry, to 
form an enterprise data warehouse. We explain further our 
motivation using Example 1 and Figure 1. 

Example 1. Suppose we have 2 data marts from an 
Insurance industry – Policy Transactions and Claims 
Transactions – and we have to integrate these data marts 
into an enterprise-wide data warehouse, as illustrated in 
Figure 1. The existence of corresponding attributes will 
enable the possibility of integrating the attributes of the fact 
and dimension tables of these data marts. A merge algorithm 
can be applied to the corresponding mappings to generate 
the integrated data warehouse needed in answering queries, 
as it will be posed to the independent data marts.                ∎ 

A. Overview of Integration Methodology 
We outline our methodology based on 3 main 

streamlined procedures. These are finding mapping 
correspondences, mapping models discovery, and the 
formulation of merge algorithm. Figure 2 illustrates a 
description of our methodology and framework architecture 
in a workflow chain.  Here, we describe the step-wise 
procedures and processes, algorithm executions, and the 
generated outputs, as well as, query analyses. We further 
describe into detail the first 2 procedures (Finding Mapping 
Correspondences and Mapping Models Discovery & 
Modelling) and give also a detailed description of procedure 
3 (Merge Algorithm) in Section III. 

B. Finding Mapping Correspondences 
In our methodology, we adopt a hybrid form of schema 

matching which aim to deliver efficient schema attribute 
correspondences. Our adoption of this hybrid approach uses 
the logical and conceptual features of the multidimensional 
schema structure in schema-based matching and the instance 
data and extensions in instance-based matching, to find 
attribute correspondences. We adopted schema-based 
algorithms in the form of Lexical Similarity and Semantic 
Names. The Lexical Similarity uses schema string names and 
text, equality of names, synonyms, homonyms, and 
similarity of common substrings. The Semantic Names, on 
the other hand, uses schema data types, constraints, value 
ranges, relationship types, amongst others to match attributes 
[10]. We use Example 2 to illustrate the schema-based form 
of finding mapping correspondences. 

Example 2. Following up on Example 1, suppose we 
want to merge the dimensions of DimPolicyHolder and 
DimInsuredParty from Policy and Claims data marts, 
respectively. The application of Lexical Similarity algorithm 
will produce mapping correspondences, such as: 

1.  𝑃𝑜𝑙𝑖𝑐𝑦𝐻𝑜𝑙𝑑𝑒𝑟.𝑃𝑜𝑙𝑖𝑐𝑦𝐻𝑜𝑙𝑑𝑒𝑟𝐾𝑒𝑦
≈ 𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦. 𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦𝐾𝑒𝑦 

2.  𝑃𝑜𝑙𝑖𝑐𝑦𝐻𝑜𝑙𝑑𝑒𝑟.𝐹𝑢𝑙𝑙𝑁𝑎𝑚𝑒 ≈ 𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦.𝐹𝑎𝑚𝑖𝑙𝑦𝑁𝑎𝑚𝑒,
𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦.𝐺𝑖𝑣𝑒𝑛𝑁𝑎𝑚𝑒, 𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦.𝐶𝑖𝑡𝑦𝑁𝑎𝑚𝑒 

3.  𝑃𝑜𝑙𝑖𝑐𝑦𝐻𝑜𝑙𝑑𝑒𝑟.𝐴𝑑𝑑𝑟𝑒𝑠𝑠 ≈ 𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦. 𝑆𝑡𝑟𝑒𝑒𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠,
𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦.𝐸𝑚𝑎𝑖𝑙𝐴𝑑𝑑𝑟𝑒𝑠𝑠 
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Figure 2. Workflow Framework of Integration Methodology

Moreover, the application of the Semantic Names algorithm 
will offer an improved schema matching. This matching 
eliminated InsuredParty.CityName in the 2nd matching to 
deliver mapping correspondence, as in: 
2.  𝑃𝑜𝑙𝑖𝑐𝑦𝐻𝑜𝑙𝑑𝑒𝑟.𝐹𝑢𝑙𝑙𝑁𝑎𝑚𝑒 [𝑣𝑎𝑟𝑐ℎ𝑎𝑟(60)] ≈
𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦.𝐹𝑎𝑚𝑖𝑙𝑦𝑁𝑎𝑚𝑒[𝑣𝑎𝑟𝑐ℎ𝑎𝑟(30)],  
𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦.𝐺𝑖𝑣𝑒𝑛𝑁𝑎𝑚𝑒𝑠[𝑣𝑎𝑟𝑐ℎ𝑎𝑟(40)]                          ∎ 

The instance-based algorithms that were adopted are 
Signature, Distributions, and Regular Expressions. The 
Signature algorithm uses the similarity in the actual data 
values contained in the schemas based on data sampling. The 
Distributions algorithm, on the other hand, uses the common 
values and frequent occurrences of data values based on 
sampling. The Regular Expressions algorithm uses textual or 
string searches based on regular string expressions or pattern 
matching [10]. We use Example 3 to illustrate a generalized 
form of instance-based algorithm. 

Example 3. Following up on Examples 2, we 
complement the results of the initial schema-based mapping 
correspondences with a generalized instance-based mapping 
to produce a final semantically correct mapping 
correspondence for the 3rd matching, as in: 

3.  𝑃𝑜𝑙𝑖𝑐𝑦𝐻𝑜𝑙𝑑𝑒𝑟.𝐴𝑑𝑑𝑟𝑒𝑠𝑠 ≈ 𝐼𝑛𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑟𝑡𝑦. 𝑆𝑡𝑟𝑒𝑒𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠 

This final matching was attained because of the data values 
and extensions from the dimension attributes. Some of the  
instance data values contained in PolicyHolder.Address are 
{39 Baywood Drive, 178 Flora Ave., 79 Golden Rain St.}, 
where as data values contained in 
InsuredParty.StreetAddress and InsuredParty.EmailAddress 
are {40 Roslyn St., 68 Hastings Drive, 48 Whitehall Avenue} 
and {amartens@cybserv.com, drice@vipe2k.com, 
jtausig@fitexes.com}, respectively.                                       ∎ 

C. Mapping Models Discovery and Modelling 

Definition 1. (First-Order Mapping): Let               
ℳ = (𝑆,𝑇,𝑓)  represent a mapping model from Source, 𝑆 
and Target, 𝑇  schemas. Let 𝒶 ∈   {𝑆 ∪ 𝑇} represent disjoint 
variable element where 𝒶 denotes {𝒶1,𝒶2, … ,𝒶𝑛}. The 
mapping assertion, ℳ  is said to be in first-order if 
𝑓: {∀𝒶 �𝑆(𝒶) → 𝑇(𝒶)�}, where 𝑓 represents the logical view 
from the Source to the Target.                                               ∎ 

We adopted first-order Global-and-Local-As-View 
(GLAV) mapping model formalisms in the mapping 
discovery procedural step. Our motivation is based on the 
expressiveness of the correspondences that exist between the 
attributes of the schemas [2]. This mapping model combines 
mapping formalisms from both the Local-As-View (LAV) 
and Global-As-View (GAV) mappings. It expresses mapping 
views where the extensions of the source schemas provide 
any subsets of tuples satisfying the corresponding view over 
the global mediated schema. Moreover, an equivalent 
number of attribute view definitions are expressed in both 
the LAV and GAV queries [2]. One other unique feature is 
the expression of multi-cardinality mappings between 
mapping elements. This enables the expression of complex 
transformation formula which is much useful in our 
integration methodology [12]. 

Definition 2. (Equality Mapping): Let ℳ = (𝑆,𝑇, 𝑓) 
represent a mapping for Source, 𝑆  and Target, 𝑇  schemas. 
The assertion 𝑓: {∀𝑥∀𝑦 (𝑆(𝑥,𝑦) → ∃𝑧 𝑇(𝑥, 𝑧))} for disjoint 
variable elements 𝑥,𝑦, 𝑧  is an Equality mapping such that 
𝑦 = z.                                                                                     ∎ 

Definition 3. (Similarity Mapping): Let ℳ = (𝑆,𝑇, 𝑓) 
represent a mapping for Source, 𝑆  and Target, 𝑇  schemas. 
For disjoint element variables 𝑥,𝑦, 𝑧 the assertion 
𝑓: {∀𝑥∀𝑦 (𝑆(𝑥,𝑦) → ∃𝑧 𝑇(𝑥, 𝑧))}  is a Similarity mapping 
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such that  𝑔(𝑦) = 𝑧 where 𝑔 denotes or encloses a complex 
transformation expression.                                                     ∎ 

In this second step of mapping discovery and modelling, 
2 forms of mapping relationships were adopted. These are 
equality and similarity mapping relationships. It should be 
emphasized that these defined classifications were based on 
expressive characterization of relationship cardinality, and 
the attribute semantic representation, amongst others [11]. 
We used these forms of mapping relationships in a GLAV 
mapping model, as explained in Example 4. 

Example 4. Continuing on Example 1, suppose we want 
to integrate the DimPolicyHolder and DimInsuredParty 
dimensions from Policy and Claims data marts, respectively, 
into DimInsuredPolicyHolder dimension. The Datalog 
queries for the GLAV mapping model will be expressed as:                 

InsuredPolicyHolder (InsuredPhKey, InsuredPhID, 
InsuredPhName, BirthDate, StateProvince, Region, 
City, Status

PolicyHolder (PolicyHolderKey, PolicyHolderID, 
PolicyHolderFullName, DateOfBirth, State, City, 

):- 

Status
InsuredParty (InsuredPartyKey, InsuredPartyID, 

InsuredFamilyName, InsuredGivenName, BirthDate, 
Province, 

), 

Region

In this Datalog query, the existence of corresponding 
attributes in both dimensions are automatically expressed in 
the merged dimension, as well as, local attributes of Status 
and Region from Policy and Claims data marts, respectively, 
are included in the global or merged dimension.                  ∎ 

, CityName) 

III. MULTIDIMENSIONAL INSTANCE SCHEMA 
AND DATA MERGING 

In this section, we present the technical qualitative 
requirements necessary for producing an efficient single 
consolidated data warehouse. We further outline and 
describe an elaborate merge algorithm (Algorithm 1) for 
integrating the instance schema and data of data marts fact 
and dimension tables. We finally describe the resolution of 
identifiable conflicts associated with the integration of the 
data marts. 

A. Merge Correctness Requirements 

The single consolidated data warehouse that is generated 
as a result of the implementation of the merge algorithm 
needs to satisfy some requirements, to ensure the correctness 
of the data values from the queries that would be posed to it. 
These qualitative technical requirements describe the 
properties that the data warehouse schema should exhibit. 

Drawing on the propositions in the requirements defined 
by the authors in [1] for merging generic meta-models, we 
performed a gap analysis on their propositions in relation to 
generating a data warehouse. Hence, we formulate and 
describe a set of correctness requirements in relation to 
merging of multidimensional star schemas. These technical 
requirements extend the requirements already proposed in 
[1], in order to address star schemas. We outline the set of 

Merge Correctness Requirements (MCR) that validates the 
formulated merge algorithm needed for the generation of a 
global data warehouse. 

Dimensionality Preservation. For each kind of dimension 
table connected to any of the integrating fact tables, there is a 
representation of corresponding dimension also connected to 
the merged fact table. 

Measure and Attribute Entity Preservation. All fact or 
measure attribute values in either of the integrating fact 
tables are represented in the merged fact table. Additionally, 
all other attribute values in each of the dimension tables are 
represented through an equality or similarity mapping. 
Finally, there is an automatic inclusion for non-
corresponding attributes in the merged fact (dimension) 
tables based on the condition of no attribute redundancy or 
duplication. 

Slowly Changing Dimension Preservation. Slowing 
Changing Dimension is the occurrence where an entity in a 
dimension has multiple representations based on the changes 
in instance data values in some key attributes. For such 
dimensional entity occurences, the merged dimension should 
offer an inclusion of all the instance representations from 
each integrating dimension. Hence, we enforce an automatic 
inclusion of attributes that contribute to the dimensional 
change in the merge dimension. 

Attribute Property Value Preservation. The merged 
attribute should preserve the value properties of the 
integrating attributes, whether the mapping correspondence 
is an equality or similarity mapping. Equality mapping 
should be trivially satisfied by the UNION property for all 
equal attributes. For a similarity mapping, the transformation 
expression should have the properties to be able to satisfy the 
attribute property value of each integrating dimension 
attribute. 

Definition 4. (Surrogate Key): Let 𝒟𝑖  represent a 
dimension table for a multidimensional model, ℬ such that 
𝒟𝑖 ∈ {𝒟1,𝒟2, … ,𝒟𝑛} for 𝑖 ≤ 𝑛.  Let ℰ  represent each entity 
of a dimension, 𝒟𝑖  such that ℰ ∈  𝒟𝑖 . The identifier, 𝒦  is 
said to be a Surrogate Key for  ℰ such that 𝒦𝑚 ≡ ℰ𝑚          ∎ 

Tuple Containment Preservation. The single consolidated 
data warehouse should offer the containment of all unique 
tuples as they are valuable in returning correct answers to 
queries posed. This ensures the preservation of all Surrogate 
Keys needed in identifying each dimensional entity. 

B. Merge Algorithm 
The merge algorithm (Algorithm 1) is formulated and 

designed to generate the single consolidated data warehouse 
from different related data marts, modelled as star schemas 
instances. The algorithm primarily performs 2 levels of 
integration. Firstly, the integration of the instance schema 
structure which comprises the attribute relationships and 
properties for the fact and dimension tables. These 
procedures are described in Steps (1) to (9).  
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Algorithm 1:        Multidimensional Instance Schema and Data Merging 
Input: 
(a) A set of star schema data marts, A and B 
(b) A set of first-order GLAV mapping model; 𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵, consisting of 𝑓𝑎𝑐𝑡𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵 and 𝑑𝑖𝑚𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵 
(c) An optional designation of a data mart, A or B, as the  𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑀𝑎𝑟𝑡; 
Output: 
(a) A single consolidated star schema instance data warehouse free of duplicate and redundant schema and instance data. 
(b) A metadata consisting of data definition of the integrating data marts and the single consolidated data warehouse. 
Procedure: 
Initialization 
(1) Let 𝑚𝑒𝑟𝑔𝑒𝐷𝑎𝑡𝑎𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 ← 𝑁𝑈𝐿𝐿 

Generate Merged Table 
(2) For each 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑇𝑦𝑝𝑒 ∈ 𝑓𝑎𝑐𝑡𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵 do 

(a) If 𝑐𝑜𝑟𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑇𝑦𝑝𝑒 = 𝑁𝑈𝐿𝐿 then 
i. Return 𝑚𝑒𝑟𝑔𝑒𝐷𝑎𝑡𝑎𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 ← 𝑁𝑈𝐿𝐿 

(b) Else 
i. Let 𝑚𝑒𝑟𝑔𝑒𝐷𝑎𝑡𝑎𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 ← 𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒 ∈ {𝑓𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒𝐴, 𝑓𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒𝐵} 

(3) Repeat Step (2) for each 𝑚𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑇𝑎𝑏𝑙𝑒 using 𝑑𝑖𝑚𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵, add {𝑛𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐷𝑖𝑚𝑇𝑎𝑏𝑙𝑒} 
(4) Return 𝑚𝑒𝑟𝑔𝑒𝐷𝑎𝑡𝑎𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 ⊃ {𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒, {𝑚𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑇𝑎𝑏𝑙𝑒, 𝑛𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐷𝑖𝑚𝑇𝑎𝑏𝑙𝑒}} 

Merged Table Attribute Relationships 
(5) For each 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑇𝑦𝑝𝑒 ∈ 𝑓𝑎𝑐𝑡𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵 do 

(a) Let 𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒 ← 𝑁𝑈𝐿𝐿 
(b) If 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑇𝑦𝑝𝑒 = “Equality” then 

i. Let 𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ← 𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒  ∈ {𝑓𝑎𝑐𝑡𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵 ∈ 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑀𝑎𝑟𝑡} 
(c) Else If 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑇𝑦𝑝𝑒 = “Similarity” then 

i. Let 𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ← 𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∈  𝑓𝑎𝑐𝑡𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵 
(6) For each 𝑛𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∈ {𝑓𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒𝐴, 𝑓𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒𝐵} do 

(a) If 𝑛𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∉ {𝑚𝑒𝑟𝑔𝑒𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒} then 
i. Let 𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ← 𝑛𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐴𝑡𝑡𝑟𝑖𝑢𝑏𝑡𝑒 

(b) Return 𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒 ⊃ {𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑛𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒} 
(7) For each 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑇𝑦𝑝𝑒 ∈ 𝑑𝑖𝑚𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵 do 

(a) Repeat Step (3) for each 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∈ {𝑑𝑖𝑚𝑇𝑎𝑏𝑙𝑒𝐴, 𝑑𝑖𝑚𝑇𝑎𝑏𝑙𝑒𝐵} 
(b) Repeat Step (4) for each 𝑛𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∈ {𝑑𝑖𝑚𝑇𝑎𝑏𝑙𝑒𝐴, 𝑑𝑖𝑚𝑇𝑎𝑏𝑙𝑒𝐵} 
(c) Return 𝑚𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑇𝑎𝑏𝑙𝑒 ⊃ {𝑚𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑛𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒} 

Merged Table Attribute Properties 
(8) For each 𝑚𝑒𝑟𝑔𝑒𝑑𝐹𝑎𝑐𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∈ 𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒 do 

(a) Let 𝑚𝑒𝑟𝑔𝑒𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑇𝑦𝑝𝑒𝑉𝑎𝑙𝑢𝑒 ← 𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑇𝑦𝑝𝑒 ∈ 𝑓𝑎𝑐𝑡𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵 
(9) Repeat Step (6) for each 𝑚𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑇𝑎𝑏𝑙𝑒 using 𝑑𝑖𝑚𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝐴𝐵 

Dimension Tables Data Population 
(10) For each 𝑚𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑇𝑎𝑏𝑙𝑒 do 

(a) If (𝑘𝑒𝑦𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 OR 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝐸𝑛𝑡𝑖𝑡𝑦𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛) = 𝑇𝑅𝑈𝐸 then 
i. Let 𝑒𝑛𝑡𝑖𝑡𝑦𝐾𝑒𝑦𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 ← 𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝐾𝑒𝑦 ∈ 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑀𝑎𝑟𝑡 

(b) Else 
i. Let 𝑒𝑛𝑡𝑖𝑡𝑦𝐾𝑒𝑦𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 ← (𝑛𝑒𝑤𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝐾𝑒𝑦 ≡ 𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝐾𝑒𝑦) ∈ 𝑛𝑜𝑛𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑀𝑎𝑟𝑡 

Fact Table Data Population 
(11) For each 𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒 do 

(a) Load fact records using 𝑒𝑛𝑡𝑖𝑡𝑦𝐾𝑒𝑦𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 ∈ {𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝐾𝑒𝑦, 𝑛𝑒𝑤𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝐾𝑒𝑦} 
(12) Let 𝑚𝑒𝑟𝑔𝑒𝐷𝑎𝑡𝑎𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 ⊃ {𝑚𝑒𝑟𝑔𝑒𝐹𝑎𝑐𝑡𝑇𝑎𝑏𝑙𝑒, {𝑚𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑇𝑎𝑏𝑙𝑒, 𝑛𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐷𝑖𝑚𝑇𝑎𝑏𝑙𝑒}} 
(13) Return 𝑚𝑒𝑟𝑔𝑒𝐷𝑎𝑡𝑎𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 

   
 
Steps (1) to (4) initialize and generate the integrated fact and 
dimension tables. Steps (5) to (7) describe the generation of 
attributes for the integrated tables. Finally, Steps (8) and (9) 
describe the derivation of attribute property values of the 
merged fact and dimension tables.  

Secondly, the algorithm performs integration of the 
instance data contained in the star schema data marts. This 
involves the population of these instance data from the data 
marts fact and dimension tables into the merged tables in the 
data warehouse. Steps (10) to (13) describe these procedures 
of data population. 

We further summarize the merge algorithm in fulfilment 
of the technical Merge Correctness Requirements (MCRs) 
outlined in Section III.A. 

a) Step (2) satisfies Dimensionality Preservation: 
Each fact and dimension table is iterated to form the Merged 
Fact Table. 

b) Steps (3), (4), (5) satisfy Measure and Attribute 
Entity Preservation: All the attributes contained in the Fact 
or Dimension Tables are represented in the Merged Table 
(Fact or Dimension) through equality or similarity mapping.  

c) Steps (6) and (7) satisfy Attribute Property Value 
Preservation: Value properties of attributes are represented 
for each of the Fact or Dimension Tables. 

d) Step (8) satisfies Slowly Changing Dimension 
Preservation and Tuple Containment Preservation: Entity 
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representations from the different data marts are included in 
the merged dimensions. 

e) Steps (9), (10) satisfy Tuple Containment 
Preservation: Tuple data values from each of the data marts 
are populated in the merged data warehouse. 

C. Conflicts Identification and Resolution 
The integration of meta-data models are generally coupled 
with different forms of conflicts in either the instance 
schema structures or instance data. These conflicts are 
resolved through different propositions from the algorithm 
and based on the semantic representation of the meta-data 
models and their instance schemas. In our integration 
approach, we identify and propose resolution measures for 
these conflicts that are encountered during merging. 

Identifier Conflicts. These conflicts arise as a result of the 
same identifier for different real-world entities in the merged 
dimension. These categories of conflicts are practically 
exposed as a result of the possibility of different entities from 
the integrating data marts having the same surrogate key 
identifier in their individual dimensions. A resolution 
measure for these conflicts is explained in Example 5. 

Example 5. Suppose we aim to merge the employee 
dimensions into a single merged dimension, using 
DimPolicyEmployee and DimInsuredPolicyEmployee from 
Policy and Claims data marts, respectively. In such an 
integration procedure, it happens that Employee P from 
DimPolicyEmployee and Employee Q from 
DimInsuredPolicyEmployee have the same identifiers of a 
surrogate key. There is the need to resolve such a conflict, 
in the algorithm, by preserving the surrogate key identifier 
in the preferred data mart and re-assign a new surrogate 
key identifier for the non-preferred data mart(s).                ∎ 

Entity Representation Conflicts. These conflicts arise as a 
result of the multiple representations of the same real-world 
entity in the merged dimension by the different identifiers. 
This occurrence is traced to different representations of 
surrogate key identifiers from different dimensions for the 
same real-world entity in the merged dimension. Following 
on Example 1, a proposed resolution measure, outlined in the 
merged algorithm, will be to perform a de-duplication of the 
conflicting entities, by preserving the entity from the 
preferred data mart as the sole representation of the real-
world entity in the merged dimension. 

Attribute Property Type Conflicts. These forms of 
conflicts occur as a result of the existence of different 
attribute property values from the integrating attributes into 
a merged attribute. Using Example 5, a merged attribute for 
HireStatus and EmployeeStatus from DimPolicyEmployee, 
DimInsuredPolicyEmployee, respectively, will hold a data 
type value of, say varchar(1), being the UNION of 
integrating attribute data types for char(1) and bit data types 
from HireStatus and EmployeeStatus, respectively. We 
resolve these conflicts by using the attribute data types as 
defined in the mapping model. 

IV. IMPLEMENTATION AND EVALUATION 
In this section, we discuss the implementation and 

evaluation work based on the integration methodology and 
formulated merge algorithm. We present our 
implementation framework and the procedures we followed, 
and we discuss and analyze the evaluation results. 

A. Implementation 
We implemented our methodology using 2 different data 

warehouses, for the Insurance business and Transportation 
services. The Insurance data consisted of 2 initial data 
marts. These were Policy and Claims data marts. The Policy 
and the Claims data marts contained 7 and 10 dimension 
table schemas, respectively. The Policy fact table schema 
contained instance data of 3070 tuples of data, whilst the 
Claims fact contained 1144 tuples of data. The Transport 
data set contained 3 data marts. These were Frequent Flyer, 
Hotel Stays, and Car Rental data marts. Their fact tables 
contained 7257, 2449, 2449 tuples of data for Frequent 
Flyer, Hotel Stays, and Car Rental, respectively. The data 
marts resided in a Microsoft SQL Server DBMS. Each 
entity representation in the dimensions was identified by a 
unique surrogate key and with a clustered indexing as 
created on the primary key. 

The schema matching and mapping models discovery 
procedural steps were implemented using IBM Infosphere 
Data Architect [9] [10]. This tool incorporated the schemas 
of the data mart source repositories, together with their 
contained instance data. The schema matching step was 
implemented using the set of algorithms incorporated in the 
application software. The algorithms were configured by 
sequentially manipulating the order of execution, 
configuration of rejection threshold, sampling size and 
sampling rate. The manipulations of these configurations for 
finding mapping correspondences were based on an iterative 
procedure of inspection. With regards to the mapping 
models discovery and modelling step, the adoption of 
GLAV mappings enabled the inclusion of all attributes for 
each mapping formulation of fact and dimension table 
attributes. Moreover, complex transformation expressions 
were derived for multi-cardinality mappings. An output file 
in a Comma Separated Values (.csv) format was later 
generated, which contained the mapping definitions based 
on the tables, their attributes, and the attribute property 
values from each of the data marts. The merge algorithm 
was implemented using C# .Net programming. 

B. Evaluation 
Our evaluation analyses were primarily based on the 

single consolidated data warehouse from the formulated 
merge algorithm, in Section III.B, as against the 
independent data marts. We compared both the outputs of 
the query processing on the data marts and the generated 
data warehouse. We first ran a formulated query on one or 
more data marts, and afterwards ran the same query on the 
generated data warehouse. With this ordering, we are able to 
effectively compare the results from the data marts and the 
single consolidated data warehouse. 
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Evaluation Criteria and Analysis. We evaluate the 
outcome of the experiments conducted based on a set of 
criteria based on the guidelines proposed by Pedersen et al. 
[8]. We performed a gap analysis on their study and then 
adapted the correctness of data values, dimensionality 
hierarchy, and rate of query processing as criteria. 

The metrics that we used in evaluating these criteria for 
query processing were recall, precision, and accuracy. These 
were proposed by Junker et al. [13] to evaluate the 
performance of database query processing and information 
retrieval. Recall is computed by the number of tuples 
retrieved from a data mart divided by the number of tuples 
that should have been retrieved from the generated data 
warehouse from each original data mart. Precision is 
computed by the number of tuples retrieved from a data 
mart divided by the number of tuples that were retrieved 
from the single consolidated data warehouse, per the data 
mart. Accuracy is determined by the degree of validity or 
exactness of the data values generated from a query posed to 
the data warehouse in comparison to the data values 
retrieved from a data mart. 

All formulated queries that were posed to the data 
warehouse were based on fact and dimension attributes from 
all the data marts. For recall, an evaluation of 100% was 
trivially attained and verified. The verification was based on 
the assertion that the merge algorithm fulfilled the MCRs of 
measure and attribute entity preservation and tuple 
containment preservation. 

Precision evaluation was very important, as it measured 
the proportion of relevant and non-relevant tuples that were 
retrieved based on a formulated query. This gives us insight 
into the composition of our merged data warehouse, in 
terms of the level of integration of related data from 
multiple sources. Deducing from the precision values, a 
higher rate was attained for all formulated queries that were 
posed against the data warehouse. For cases of dimensions 
that were only related to some specific data marts, a 
formulated query against the fact and these dimension tables 
yielded a very high precision rate. This was as a result of the 
retrieval of few non-relevant tuples. An example query was, 
“What insurance claimant employment type receives the 
most claims processed for the current Calendar Season”? 
Conversely, for queries on dimensions that related to all 
data marts, an average precision rate was observed where a 
considerable number of non-relevant tuples were retrieved 
in reference to a particular data mart. An example query 
was, “What type of Policy Coverage is most popular? What 
are the trends since the 2nd Calendar Quarter.” 

Figures 3 and 4 show the precision evaluation for 
Insurance and Transportation data warehouses, respectively. 
In Figure 3, an average rate of 86% was achieved for the 
queries posed to dimensions only related to the Claims data 
mart. The precision rate increases significantly with an 
increase in the tuples in these dimensions, as more relevant 
tuples are generated. This is evident in queries 1 to 7. In 
terms of corresponding dimensions for all data marts, 

processed queries generated an average rate of 51% and 
49% for Claims and Policy data marts, respectively, as 
highlighted in queries 8 to 12. In Figure 4, an average 
precision rate of 72%, 74%, and 83% were attained for 
Hotel Stays, Car Rental, and Frequent Flyer data marts, 
respectively, for the set of formulated queries posed. In 
summary, we were able to provide the user with details 
regarding the proportion of the data in the merged data 
warehouse that originate from a specific source. This holds 
important practical value, for data warehouse practitioners, 
who want to be able to have statistics regarding the 
composition of the merged data. 

In terms of accuracy, we achieved a 100% return rate of 
valid and exact data values from the data warehouse in 
comparison to each individual data mart. This was affirmed 
based on the merge algorithm fulfilling MCRs of Tuple 
Containment Preservation and Measure and Attribute Entity 
Preservation. Additionally, the adoption of GLAV mapping 
model enabled the processing of exact and sound queries on 
the data warehouse. 

We also analyzed the rate of query processing to ensure 
that queries posed to the data warehouse are of optimal rate. 
With an integration of instance data from the data marts, a 
considerable volume of expected data cannot be 
overemphasized in the data warehouse. We recorded the 
query response time for an average of 20 query executions 
for each of the data sets. These queries were processed on a 
single 3.20 GHz processor with a 4 GB of RAM. 

 
Figure 3. Precision for Insurance Data Set 

Figure 4.  Precision for Transportation Data Set 
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TABLE I.  SUMMARY OF AVERAGE QUERY RESPONSE TIME 
AND VARIANCES 

Data Set 
Average Query Response Time and Variances 

Data Mart / 
Data Warehouse 

Avg. Query 
Response 
(ms) 

Variance From 
Integrated Data 
Warehouse (ms) 

Transportation Car Rental 26.70 63.95 

Transportation Hotel Stays 27.10 63.55 

Transportation Frequent Flyer 70.95 19.70 

Transportation DataWarehouse 90.65 0.00 

Insurance Policy 29.65 19.60 

Insurance Claim 13.75 35.50 

Insurance DataWarehouse 49.25 0.00 

 
Figure 5.  Query Processing Rate for Insurance Data Set 

We further computed the variance of the average query rate 
per data mart as it quantitatively differs from its 
consolidated data warehouse. Our evaluation showed that 
queries generally ran at almost the same rate or slightly 
higher than when posed against the data mart sources.  

The query execution durations for the data marts and data 
warehouses for the Insurance data set are shown in Figure 5. 
It can be deduced from these data values that the query rate 
for the data warehouses were appreciable taking note of the 
compared values generated from the data marts. In some 
cases, such as queries 7 and 8, the rates were a bit higher 
due to higher level of aggregation and increased number 
dimension attributes involved in data values retrieved. We 
present a summary of the variances in the average query 
response time for the data marts in comparison to the 
respective data warehouse. Table 1 shows the query 
response (in milliseconds) for the Insurance and 
Transportation data sets. 

V. CONCLUSION 

This paper presents a methodology for the merging of 
multidimensional data models using star schemas instances. 
We formulated a merge algorithm for integrating disparate 
data marts into a single consolidated star schema data 
warehouse. We further identified and outlined the resolution 
of likely conflicts that may be encountered when merging 

data marts. Moreover, we outlined the satisfaction of some 
technical merge correctness requirements for integrating data 
marts into a data warehouse. 

Analyses of our evaluation showed that the rates of 
recall, precision and accuracy of the data values retrieved 
from the generated data warehouse are high and noticeable. 
Our approach, thus, provides data warehouse researchers and 
practitioners with procedures, criteria, and exact measures as 
to how successful an integration process is achieved. 

A number of future research directions remain. The 
potential enrichment of the mapping language by modelling 
the functional dependencies between the attributes of the fact 
and dimension tables is an interesting future direction. 
Additionally, incorporation of data mart level integrity 
constraints into the data warehouse needs to be investigated 
further. We also envisage the extension of the methodology 
to handle snowflake and fact constellation multidimensional 
schema models. 
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