
An Approach for Dynamic Materialization
of Aggregates in Mixed Application Workloads

Stephan Müller
Hasso Plattner Institute
University of Potsdam
August-Bebel-Str. 88

14482 Potsdam, Germany
stephan.mueller@hpi.uni-potsdam.de

Carsten Meyer
Hasso Plattner Institute
University of Potsdam
August-Bebel-Str. 88

14482 Potsdam, Germany
carsten.meyer@hpi.uni-potsdam.de

Hasso Plattner
Hasso Plattner Institute
University of Potsdam
August-Bebel-Str. 88

14482 Potsdam, Germany
hasso.plattner@hpi.uni-potsdam.de

Abstract—Aggregate queries are one of the most resource
intensive operations for databases systems. Despite scanning and
processing large data sets, they only return relatively small
outputs, making them predestined for reuse in future queries.
The challenge is to manage the infinite number of possible data
areas that can be selected for caching, identify the relevant
ones and materialize the corresponding aggregates on a reusable
level of granularity. While analytical database systems often save
materialized data in cubes of aggregated chunks this is not
feasible in systems with transactional insert and change processes.
We present the concept dynamic materialized aggregate views
(DMAV) that materializes aggregates based on mixed application
workloads. Using control tables, aggregate query structures as
well as selected data areas are captured and kept track of.
We evaluate data access characteristics and only materialize
aggregates that are read often but at the same time have only
few updates resulting in low aggregates maintenance costs.

Index Terms—caching, data aggregation, dynamic view mate-
rialization, mixed-workload, OLAP, OLTP.

I. INTRODUCTION

In the last decades, enterprise data management systems
have evolved in two directions: transactional (OLTP) and
analytical (OLAP) systems. Queries with aggregation func-
tions that scan, read, and finally calculate large amounts of
data are very resource intensive for both systems [1], [2],
resulting in system-specific work-arounds: In OLTP systems,
the applications maintain tables that contain materialized ag-
gregates and deliver by magnitudes faster access to the desired
abstraction level compared to aggregating on the original
base table. On the downside, every change on the base data
must be propagated to the materialized table. OLAP systems
on the other hand often contain data schemas that are an
aggregated abstraction of the underlying transactional data.
The selection and definition of views is either done manually
by an administrator or based on sophisticated materialized
view selection algorithms. This enables fast response times
for pre-defined queries. However, this setting inhibits flexible,
ad-hoc queries, hence realistic analytical scenarios.

To overcome these and other drawbacks of the separation
and to enable analytical processing directly on the transac-
tional data, in-memory databases such as HYRISE [3] or
SAP HANA [4] have evolved in academia and industry. The

workload of the combined system is called mixed workload
and consists of transactional as well as analytical data access
patterns [5], [6]. Application scenarios such as dunning, cross
selling and availability to promise [7] are an example for such
workloads.

Although resource-intensive operations such as aggregations
can now be processed directly on the base data and provide
acceptable response times, reading a pre-aggregated result is
always more efficient, especially in multi-user scenarios and
when the same or similar queries are executed repeatedly.
When considering the materialized aggregate maintenance
costs on the other hand, an on-the-fly aggregation strategy
can be more efficient. Nevertheless, the application should not
deal with the maintenance of materialized aggregate tables and
operate on the base data directly. We believe that the decision
of which parts of a table should be materialized as an aggregate
should be made in the database layer and not within the
application for two reasons: First, this significantly simplifies
application development as the aggregations are executed
transparently. Second, the materialization of aggregates should
be based on the actual workload and not on a static basis.

In this paper we introduce the concept of dynamic materi-
alized aggregate views. This concept selectively materializes
aggregates, based on the characteristics of a mixed workload,
independent from the application. To our best knowledge,
there are no techniques available that allow materialization
and reuse of generic aggregates in transactional databases
which are based on dynamic changing data characteristics. An-
alyzing these workloads, one can find application-dependent
data ranges that do not change. Financial statements of past
periods, point of sales data or historic production orders are
often described as cold data. Still, they can be relevant for
analytical queries. This paper proposes to analyze a given
mixed workload in order to find those aggregates that are
frequently requested and are based on cold data. Stored in
dedicated control tables, the database shall be able to keep
track of those hot aggregates. Instead of calculating hot
aggregates over and over again they are materialized and can
then be used to answer matching queries faster while, at the
same time reducing CPU and memory bandwidth allocation.

77Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

We contribute by providing a generic framework that iden-
tifies and characterizes aggregate queries in a mixed work-
load. We describe how historical data relevance and change
frequency can be evaluated in order to find important data
regions, so called hot spots. Our concept will be provided
for dynamically materialized aggregates on database level, as
opposed to application based hard coded materialized tables.

The remainder of the paper is structured as follows: Section
II provides background information and evaluates related
work on materialization in analytical databases, optimization
techniques and the nature of aggregate functions. Section III
introduces the analysis framework that is used to identify
aggregate queries and extract their structure as well as tracking
hot spot areas. The core concept of DMAVs is presented and
explained using an example in Section IV. It will be shown
how different aggregate queries respectively their structural
characteristics are stored in a relation and used for view
matching and materialization. The number of materialized
aggregates will not only be limited to the relevant ones but will
also consider changes in the transactional base data. Different
ways of optimizing the definition of data areas (hot spots)
will be presented in Section V. Finally, in Section VI we
preliminarily evaluate our concept with a mixed workload.

II. BACKGROUND AND RELATED WORK

In this section, we present background information for
aggregation queries and evaluate related work in the areas of
clustering hot and cold data, materialized view selection and
maintenance, and cache replacement techniques.

A. Data aggregations

Aggregates are the result of a query that has an aggregation
function f() applied to an attribute A of an arbitrary relation
r. The granularity of aggregates depends on the cardinality of
its grouping attributes G. The structure of an aggregate query
consists of three main aspects:

1) The aggregate function and the attribute A
2) The group by clause and its fields G
3) The relation r and its data selection (where clause struc-

ture)
In relational algebra the aggregation operation over a

schema (A1, A2, ... An) of relation r is written as follows:
G1, G2, ..., Gm g f1(A1), f2(A2), ..., fk(An’) (r)

Let us assume that we have a table named "Sales" with three
columns, namely "Product_Id", "Year" and "Rev". We wish to
find the maximum Rev of each Product_Id in Year = 2011.
This is accomplished by:
Product_IdgMax(Rev)(Select * Sales where Year = 2011).
The relation "r" (Select * Sales where Year = 2011) could
also be a relation joined over multiple tables. The table of the
attribute "A" is called the base table and all rows selected in
relation "r" are the base data of the aggregates. A materialized
aggregate view is defined by the grouping and selection of
aggregates on the base data. This data is then materialized
using another table in the database.

B. Clustering data in hot and cold areas

Categorizing data areas according to their usage is espe-
cially relevant in mixed workload databases. Cold data that is
not accessed for updates or maybe even reads can be handled
in other ways than hot data that is accessed more frequently.
In [8] Funke et al. measure the temperature of data, based on
memory page granularity. They store attributes column-wise,
each attribute vector cut into chunks the size of a memory
page. For every chunk they determine its usage from the
number of page access but do not distinguish between read
and write access. They categorize the usage into hot, cooling,
cold, and frozen areas. In this paper, chunk based granularity
for usage characteristics is not sufficient as hot spots must be
described and captured on row level granularity.

C. Materialized view selection and maintenance

Materializing views in order to speed up the processing
of queries is not new [9], [10]. Today, all major analytical
database systems support the definition of de-normalized,
pre-aggregated views [11], [12], [13] for resource-intensive
queries. Although static view selection is a common approach
in OLAP systems, it contradicts with the dynamic nature
of decision support analysis as well as the diverse usage
scenarios of enterprise standard software. Kotidis et al. show
that the time frame needed to update those views becomes
more and more the limiting factor, as the cost per disk
decreases while the number of views increases [2]. In their
paper they propose a concept for data warehouse systems
called DynaMat that materializes results based on a goodness
measure that is extracted from the workload demand. This
measures the relevance of each materialized multi-dimension
range fragments and limits the data amount to a certain disk
space. In [14] Zhou et al. propose a different approach, but
address the same problem. They use key parameters in the
where-clauses and an associated control table to filter only
the most relevant data. The values (filters) in the control table,
dynamically change the number of materialized rows of the
view.

This paper builds upon the idea of a workload demand [2]
as well as on the concept of control tables [14]. Adapted to
a mixed workload, the approach of this paper does not rely
on predefined views. Instead, it extracts arbitrary aggregate
queries and their structure from a given workload demand.
Multi-parameter control tables are used to filter includable
and excludable data areas eligible for materialization. This
will ensure that only those aggregates are materialized that
are selected frequently and do not have frequent updates in
their base records, minimizing view maintenance costs.

In [15] Deshpande et al. propose a way to build aggregates
based on chunks of aggregates. The idea of chunk based
caching [16] requires a simple correspondence between chunks
(called closure property) at different levels of aggregation.
Without having defined hierarchies, respectively hierarchical
dimensions that are used to select aggregates, there is no
possibility to aggregate low level chunks up to high level
chunks. However, materializing dynamic aggregates shall not

78Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

require hierarchical dimensions, but adapt to a mixed, chang-
ing workload. Still, in section V we will look into ways how
simple hierarchies in dimensional- & fact- tables can be used
to harmonize the definition of data areas.

The problem of view matching has already received consid-
erable attention in research. Larson and Yang were the first to
describe view matching algorithms for SPJ queries and views
[9], [10]. In [12] Goldstein and Larson extended SPJ view
matching for aggregate queries. They show conditions a view
has to fulfill in order to compute a query. A general survey
on view matching can be found in [13] by A. Y. Halevy. This
paper will only explain those steps, additionally needed to
identify aggregate queries that can be answered by a DMAV.

D. Cache replacement

In order to measure and manage the data area definitions
(hot aggregates, hot change data) according to their usage
and cost, there must be a replacement and admission mech-
anism for materialization filters in the control tables. In [17]
Scheuermann et al. discuss a cache manager (LNC-RA) that
employs cache replacement and admission policy that aims at
maximizing the query execution cost savings. In comparison
to a vanilla LRU algorithm, this one promises to be a good
algorithm for managing control tables. Even though the control
tables do not manage the caching of data pages but the
materialization of aggregates, similar costing functions can be
used. With a cost-based ranking, introduced in V-A filters in
control table can be compared.

III. ANALYSIS FRAMEWORK

The framework that is used to analyze the workload is
explained within this section. It is shown how the framework is
used to identify aggregates including their structure as well as
capture relevant data areas as the basis for DMAV. As a generic
framework the basic idea is to analyze and identify arbitrary
workload characteristics by parsing SQL statements being
executed on a database. Today, all major databases (Oracle,
DB2, SQL Server, MySQL) are able to trace SQL workloads.
This paper shows algorithms that find and save characteristics
as well as additional workload information, such as the number
of executions, rows processed and the elapsed time in a fact
table of an analytical star schema. The framework proposed in
this paper was implemented as an database external Microsoft
.Net application that can read SQL statements either from
exported CSV files, or directly access specific log tables in
the database. The application can parse those SQL statements
and write commands (facts) into the star schema. As this paper
provides a concept for materializing aggregates, the question
how this functionality can be integrated into a DBMS is not
addressed.

A. Commands

Commands are a substantial component of the analysis
framework. Each command describes a certain characteristic
of a database table or field that was identified by the parsing
code. The used parser is able to distinguish between different

FactSQLCmd

PK Id

FK1 CommandKey
FK2 SQLKey
FK4 RunKey
FK3 PeriodKey
 TableName
 FieldName
 Text
 Executions
 Elapsed_Time
 Rows_Processed

DimCmd

PK CommandKey

 Name
 Desc

DimSQLStatement

PK SQLKey

 SQL_ID
 SQLStatement

DimRunKey

PK RunKey

 TimeStamp
 TraceFile
 Comment

DimPeriod

PK PeriodKey

 DateTimeFrom
 DateTimeTo

Fig. 1. Star Schema Analysis Framework

statement types (select, insert, delete, update, etc.) , detect
projected columns, tables and join relations, predicates and
group-by clauses. In general all aspects of an SPJG query
can be identified and tracked. The characteristics parsed and
needed for the the identification of dynamic, materialized
aggregated view are defined as follows:
AGR_SUM SUM aggregates
AGR_AVG AVG aggregates
AGR_CNT COUNT aggregates
AGR_GRP GROUP BY table field
AGR_WCL WHERE clause with values
AGR_WCP WHERE clause w/o field values
UPD_WCL WHERE clause in update statements with values
UPD_WCP WHERE clause in update statements, w/o values
AGR_GCL GROUP BY clause in aggregate queries

B. Star schema
The analysis star schema as illustrated in Figure 1 allows to

capture all the parsed information into relational tables. Next
to the fact table there are four dimensional tables that describe
each captured fact.
DimCmd All commands with their description and version
DimPeriod The time span information of a period
DimRun Holds information for each executed analysis run
DimSQLStatement Stores the actual SQL query information
The analyzer parses each query, looks for certain characteris-
tics, and then creates a fact. The sum aggregate parsing code
(AGR_SUM) for example creates a new fact every time it finds
a sum aggregate function in a query, while AGR_GRP creates
a fact for every group-by table field found in an aggregate
function. The captured facts, provided by the workload, which
are measurable, are:
TableName Name of the table
FieldName Name of the table field
Executions Number of executions
RowsExecuted Number of rows read, updated, etc.
ElapsedTime Total time in ms used for execution
Text Used to save string values (e.g. values of predicates)

C. Ways to mine those data
Once the workload is parsed and captured in the analysis

schema, it is possible to query and mine this data according
to certain questions:

79Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

TABLE I
WORKLOAD ANALYSIS

Field Value

SQLKey 5832

Base table TB BSEG

View predicate PV BSEG.VBELN = VBRK.VBELN

Exec 64

Rows 658

Elapsed Time 87036ms

Aggregate A AGR_SUM(BSEG.DMBTR)

GroupBy G BSEG.PSWSL-&&-BSEG.GJAHR

Select predicates
PS

NE(BSEG.AUGDT)-&&-BT(VBRK.FKDAT)-
&&–EQ(BSEG.KOART)-&&-
EQ(BSEG.SHKZG)-&&-EQ(BSEG.BUKRS)

Filters (Select
predicate values)
PSV

(’0001-01-01’,’2001-11-01’,’2002-01-31’,’D’,
’S’,’6000’), (...), (...)

• How often has which aggregate function been executed,
• On what tables do they base,
• What group-by fields have been used, and
• How do the where-clause predicates look like?

All these questions can be ranked by the provided metrics
(executions, rows processed and elapsed time) and additionally
joined as required using the SQLKey. In Table I it can be
seen, how the identified commands are joined into a usable
result set. The set is grouped on: TB, PV, A, G, and PS. From
that information, structural information as well the data areas
(filters) can be extracted. Besides, all required infrastructure
(view definitions, aggregate structure) for DMAVs are derived.

IV. DYNAMIC MATERIALIZED AGGREGATE VIEWS

The idea of DMAV is that aggregates of generic aggregate
queries are selectively materialized, limited to hot spot data
areas. Therefore a data structure keeping track of generic
aggregate functions is needed. As there are no predefined
aggregate views, even ad-hoc executed queries are persisted
to a central structure control table TS.

Additionally to this structure there are data control tables
TD for every base table that holds the hot spot data (as include
and exclude filters), dynamically adjusted to the workload.
Both structures, TD and TS are required to materialize aggre-
gated results, based on the group-by and selection attributes of
the aggregate query. They are also both used for view matching
(see Section IV-F). Only when a query matches both structure
(TS) and data TD, it can be answered by the corresponding
VdA view. Because VdA contains (is grouped by) the selection
attributes of the aggregate query, (see Section: IV-E3) it is
possible for the aggregate query to directly select on the VdA
instead of the base relation. Because of this grouping the result
of an aggregate query cannot be saved to the VdA during
runtime but is materialized asynchronously. The concept of
DMAV is split into two phases. A periodically executed update
phase (see Figure 3) that runs asynchronous to the actual
database and a second phase (see Figure 2), which is active
during query runtime (online phase). This separation provides

the key requirements that the materialized aggregates can
be invalidated and maintained when the base data changes,
adapting to a changing workload.

The main task of the online phase is view matching. Every
aggregate query is matched against TS and TD. When it hits
a hot spot, this means the query can be answered by the
DMAV VdA. Otherwise the query has to be answered by the
base tables. At the same time, unknown structures or newly
selected data areas (filters) are added to TS and to TD. In
both ways (hit or miss) the usage, cost, and the size of the
result of a filter is captured in TD. Thus, a changing workload
is recognized as new structures and new filters during the
online phase. However, as new aggregates are not directly
materialized to the according VdA view during runtime, those
new filters are marked as invalid. During the online phase,
every change statement to a base table is tracked and captured
as an exclude filter in TS. Additionally, all affected include-
filters are invalidated (see: Table II).

Based on change metrics and the system load, the update
phase of a TD is triggered periodically. Those metrics shall not
be considered in further detail. Still, they could be dependent
on the number and usage of new filters and structures as well
as available system resources. Obviously, every TD table that
is updated puts a load on the system and therefore should
only be executed when necessary. However, every TD can be
updated separately. Hence, it is easy to scale with the workload
demand of different base tables.

During the update phase a VdA view gets materialized.
Before that step, new filters in TS and aggregate structures
in TD are evaluated and optimized. As can be seen in Figure
3 this includes four steps: cost ranking, variable distribution,
time correlation, and structural harmonization. Cost ranking
calculates a profit for each filter, based on usage statistics
captured during online phase: EXEC (number of executions),
COST (time of execution) as well as FUSE (first use time)
are captured by the runtime manager and the numbers used
for profit calculation (see: Section V-A). This ensures that only
the relevant filters are part of the control table, vacant includes
and excludes are cleaned up and the memory consumption
used for materialized aggregates is kept small.

In Section V-C distribution of variables and correlation
between current date and filter-variables V-D is used to
predict future aggregate selections. In order to improve the
view matching, filters are extended during optimization. Thus,
include filters are not only based on captured workload selec-
tions, but also anticipate aggregates that have not been, but
are probable to be selected. E.g.: a correlation between an
attribute "posting date" of an exclude filter and the current
date and time indicates that changes in a base table always
happen in a certain time frame. Harmonization of structures
(Section V-B) tries to find selection predicate (PS) that can be
replaced by one unifying attribute in order to keep the number
of diverse structures and materialized views VdA small. Finally,
the optimized and harmonized filters in control table TD are
used to limit the number of materialized aggregates in view
VdA.

80Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Runtime Manager

Aggregate Query
QA

...

Base Tables

V
iew

 m
atch

in
g

1. TS

2. TD

hit miss

Change Query
QC

Record changes to
base table

Record Events

Capture structures
and filters

Fig. 2. Runtime Architecture

VdA

...

Base Tables

1. TS

2. TD

1. Cost Ranking
2.Harmonization
3.Variable Distribution
4. Time Correlation

Materialization

Fig. 3. Update Architecture

The basic steps of each phase are as follows:

1) online phase
• View matching of aggregate queries
• Provide aggregates from VdA or refer to base tables
• Capture filter usage in TD
• Add missed aggregates in TS as structures
• Add missed data areas in TD as include filter
• Add changed data areas in TD as exclude filter
• Invalidate aggregates that clash with change areas
• Trigger update phase

2) Update phase
• Parse historic workload: identify, save characteristics
• Parse new structures and data areas
• Analyze, rank workload characteristics
• Create materialized aggregate views VdA

• Create control tables TD
• Optimize control table TD
• Materialize aggregates VdA

A. Global Structure table TS

TS is designed as one global table holding the structures
of all aggregate queries that shall be used in a dynamic
materialized view VdA. A structure is defined by the aggre-
gate function, its group-by and its predicate-fields. Aggregate
queries that have the same predicates, but different group-by
fields, can share the same structure, as long as every group-
by is covered. However, two aggregate queries, even if they
have the same function and grouping, must be handled as two
separate structures when they have different selection pred-
icates. This is because two aggregate queries, one selecting
using attribute year, the other with a selection on product id
produce overlapping, incomparable results.

1) Data Schema: The data schema of TS consists of the
following fields:
SID (int) PK, referenced in TD
TB (char) Name of the base table
PV (char) Predicate that defines base view VB
A (char) The name of the function and the attribute f(A)
G (char) The group-by clause G1,G2...Gn (attribute names)
PS (char) The where clause of the relation (attribute names)

B. Control table TD

For every base table, used to build aggregates there is one
control table TD that contains filters, limiting the number of
aggregates that are dynamically materialized in its correspond-
ing view VdA. Filters stored in TD define data ranges that are
read (includes) and changed frequently (excludes).

TD only stores the value characteristics of data areas but not
the structure. Therefore, every include filter also references a
structure (SID) persisted in TS . The combined information
is needed during materialization, as well as during view
matching.

For simplicity reason it is assumed that where-clauses only
consists of predicates that are linked with ANDs and that the
predicates are all equality predicates. In [14] it is shown how
the data structure must be adapted in order to support other
predicate types, such as range and expression.

1) Data Schema: There is one dedicated control table for
every base table in TS. Its data schema depends on the number
and types of the PS attributes of the corresponding structures.
FID (int) Primary key - filter id
SID (int) Secondary key, referencing a structure in TS
SIGN (bit) (I/E) Sign for (I)nclude and (E)xclude filters
FUSE (datetime) A timestamp when filter was first used
LUSE (datetime) A timestamp when filter was last used
EXEC (int) Number of executions of the filter
COST (int) Time used by database cursor for parsing, exe-

cuting, fetching data of queries referencing the filter
MAT (boolean) A control sign that marks a filter validity
PSV (as original) Filter attributes, store the values of the

selection predicates (parameters), derived from PS in TS.

81Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

2) Hot read data: The runtime manager tracks the usage
(number of executions) and cost (elapsed time) for every
aggregate query that matches an existing include-filter. Addi-
tionally, every aggregate query that does not match an existing
filter is captured by the runtime manager as a new include filter
in TD. This filter is saved as invalid until it gets materialized
during the update phase.

3) Hot change data: Changes to base table data, such
as inserts, updates, and deletes can invalidate materialized
aggregates. In order to minimize the aggregates maintenance
effort, aggregates based on frequently changing base data
are excluded from materialization. Typically, the hot change
data area shifts over time. Once the data ages, the frequency
of change transactions is reduced. In our framework, every
change event is recorded by the runtime manager as exclude
filter(s). First of all, it must be determined how a change
statement can effect an existing aggregate. Changes to at-
tributes that are not part of the view structure VdA can be
neglected because they neither change the value of the ag-
gregated attributes, nor does it change the grouping attributes.
Changes to a grouping attribute always effect aggregates of
two groups: the group of aggregates with the old data and
the new one. Inserts and deletes on the other hand can always
effect aggregates and results in the creation of an exclude filter.
Secondly, the data area that is changed must be identified when
selected with a primary key, updates and deletes effect a single
row, and when selected with a non-unique attribute they effect
a range of rows. In order to make that comparable with the
existing include filters (hot read data), every change must be
normalized to the filter-attributes, as defined in PS.

4) Data Hotspots: Hotspots are data areas in a base table
that are frequently used for aggregations but do not change
frequently. Those hotspots change over time and adapt to
the workload. The example in Table II shows how hotspots
are identified in TD. The values are extracted from three
different aggregate queries (see SID column). SID1 selects
its aggregates using attributes Product and Quarter. SID2
uses Product and Month and SID3 aggregates just over the
parameter Month. The exclude filters are independent from
the SID. The exclude filter FID7 for example could be derived
from an insert of Product A in Quarter 3 and Month 8. Because
of this, filter FID1 and FID5 are no hotspot areas anymore,
even though they have been used to select aggregates. The
same happens with FID6 because of FID9. FID9 means that
there was a change in Month 7 and therefore aggregates of
that selection do not qualify for materialization.

C. Dynamically materialized view VdA

While the structure and filter control tables are maintained
online during runtime, DMAVs are created and materialized
only during the update phase. For every aggregate structure
there is one VdA defined and materialized. The algorithm that
materializes the views is based on the view structure derived
from TS and the filters provided by TD. It is important to note
that the aggregates of VdA are not only grouped by the Gi
attributes of the structure but also by the Pi attributes.

TABLE II
HOTSPOT EXAMPLE OF TD

FID SID SIGN Product Quarter MONTH

1 1 I A 3
2 1 I A 2
3 1 I A 1

4 2 I A 7
5 2 I A 8

6 3 I 7

7 E A 3 8
8 E B 3 8
9 E B 3 7

Aggregates are not specific to a certain filter, but comply
to all filters. In fact, they can be used among different
aggregate queries and different (overlapping) data selections.
On the condition that there is a valid, matching filter, different
aggregate queries (with different parameter values) can select
directly on the aggregated view VdA, instead of the base view.
This allows the reuse of aggregates that have overlapping
filters VB.

1) Data Schema: The data schema of an aggregate view
consists of (a) column(s) for the aggregated value Ai, (b) the
group-bys Gi and (c) the selection attributes Pi.

D. Example for dynamic view materialization

The following example will show two aggregate queries
(Q1 and Q2) as well as two change queries (U1 and I1) that
represent a mixed workload. Based on a simple table schema,
consisting of three tables (one fact table , two dimension
tables) it is explained, how the query structure and its read
and changed data ranges (includes and excludes) are extracted
into the structure table TS and a control table TD. The data
schema is as follows:
Product (pid, pname, pcategory)
DateH (did, dyear, dquarter, dmonth)
Sales (pid, did, rev)

Suppose Q1 and Q2 (see Listing 1 and 2) are two parame-
terized SPJG (Select, project, join and group-by) aggregate
queries from a given mixed workload. In the first step of
the analysis, the base table TB:(Sales), the view predicate
PV:(Sales.pid = Product.did AND Sales.did = DateH.did) as
well as the aggregate function and field A:(sum(Sales.rev))
are identified and written to the TS table (as illustrated in
Figure 3). For both queries they are the same. However
their selection-predicates PS are different; consequently, two
separate structures have to be created. In Table III, Q1 has
SID=1 and Q2 has SID=2. Their grouping attributes are written
to G.

By collecting that information, the data structures of the
materialized views can be defined as:
VdA1 (SUM(rev), pcategory, dyear dmonth)
VdA2 (SUM(rev), pname, dyear, dquarter)

82Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

TABLE III
STRUCTURE CONTROL TABLE TS

SID TB PV A G PS

1 Sales Sales.pid = Product.did AND
Sales.did = DateH.did

SUM(rev) dmonth EQ(pcategory)-&&-EQ(dyear)-&&-EQ(dmonth)

2 Sales Sales.pid = Product.did AND
Sales.did = DateH.did

SUM(rev) dquarter-pname EQ(pname)-&&-EQ(dyear)

TABLE IV
DATA CONTROL TABLE TD FOR TABLE SALES: TD_SALES

FID SID SIGN FUSE & LUSE EXEC COST MAT PNAME PCATEGORY DYEAR DMONTH

1 1 I true/false 2 2011 3

2 1 I true/false 4 2011 3

3 2 I true/false ’A’ 2011

3 2 I true/false ’A’ 2010

4 - E true/false ’B’ 1 2010 9

4 - E true/false ’A’ 2 2010 9

4 - E true/false ’A’ 1 2011 12

Listing 1. Aggregate Query Q1
SELECT d.dmonth, SUM(s.rev)
FROM Sales AS s, Product AS p, DateH AS d
WHERE s.pid = p.pid
AND s.did = d.did
AND (p.cat = 2 OR p.cat = 4)
AND d.dyear = 2011
AND d.dmonth = 3

GROUP BY d.dmonth

Listing 2. Aggregate Query Q2
SELECT d.dquarter, p.pname, SUM(s.rev)
FROM Sales AS s, Product AS p, DateH AS d
WHERE s.pid = p.pid
AND s.did = d.did
AND d.dyear = 2011
AND p.pname = ’A’

GROUP BY d.dquarter, p.pname

Having captured the structure of the aggregate query in TS,
the control table TD is created. As illustrated in Table IV,
the distinct set of attributes (Ai, Gi and PSi of both structures
SID= 1 and SID= 2) defines its data structure. Afterwards the
values of the selection predicates PSV (parameters) are inserted
as include filters FID1-3 in Table III.

Listing 3. Change Query I1
INSERT INTO Sales (pid, did, rev)

VALUES (2,34,898.99)

Listing 4. Change Query U1
UPDATE Sales

SET rev = 99.99
WHERE
1st Option: sid = 55
2nd Option: p.pid=’1’ and d.dyear=’2011

Listing 3 and 4 are two changing queries: an insert and an
update statement with two typical selection predicates. As all
their selection predicates cannot be captured in TD, they need
to be normalized, as shown in Listing 5 and 6, and described
in Section IV-C.

Listing 5. Normalized Exclude Query I1 language
INSERT into control_table

SELECT p.pname, p.pcategory, d.dyear, d.dmonth
FROM Sales s, Product p, DateH d
WHERE s.pid = p.pid AND s.did = d.did AND s.sid = <id>
GROUP BY ...

Listing 6. Normalized Exclude Query U1
INSERT into control_table
SELECT p.pname, p.pcategory, d.dyear, d.dmonth
FROM Sales s, Product p, DateH d
WHERE s.pid = p.pid AND s.did = d.did AND
1st Option: s.sid = 55
2nd Option: p.pid=’1’ AND d.dyear=’2011’
GROUP BY ...

E. View maintenance and materialization VdA

1) Maintenance: Compared to traditional, fully material-
ized views, dynamic materialization using the control table TS
allows for more efficient maintenance as only the hotspot parts
of the view are materialized. Further, as aggregates of base
data that is subject to changes is excluded, re-materialization
is kept to a minimum.

Many different incremental view maintenance algorithms
that compute changes of the base relation to the corresponding
views [18] have been discussed in research. The concept used
in this paper is built upon the control table TD. Before a view
is materialized, every filter is marked as invalid (mat = false).
This status information is also used during view matching in
Section IV-F. Aggregate queries that match an invalid filter
cannot use the aggregate view, but must be answered by the

TABLE V
DYNAMIC, MATERIALIZED VIEW VDA2 FOR STRUCTURE SID 2

REV PNAME DYEAR DQUARTER

2499.12 A 2010 1

3189,81 A 2010 2

3747.15 A 2010 3

1806.07 A 2010 4

83Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

base relation. This is true until the view is re-materialized
during update phase where all invalid filters are set valid again.

2) Materialization: Let VB denote a query expression on a
base table TB joining other tables using a predicate PV. VBi
may be referred to as a base view, defined by the structure
SID=i in TS. Ai shall be its aggregated function on an attribute
of VBi. Gi.* are all of its grouping attributes and Pi.* are the
parameters of the where-predicate. For each structure (SID) a
dynamic materialized view VdAi is defined. For each VBi the
materialization is controlled by the control table TD, its own
include-control-predicate PICi(VBi,TD) and an exclude-control-
predicate PEC(VBi,TD). The algorithm in Listing 7 shows the
generic definition of a materialized view. The exists- and
not-exists-clause in the definition confine the rows, actually
materialized in VdAi, to those satisfying the control predicates
PICi(VBi,TD) and not to those of PEC(VBi,TD).

Listing 7. Algorithm for Materialization of dA
FOR ALL structures as i in TS DO

CREATE VIEW AS
SELECT Ai, Gi.*, Pi.* FROM VBi
WHERE
EXISTS

SELECT 1 FROM TD WHERE PICi(VBi,TD))
AND NOT EXISTS

SELECT 1 FROM TD WHERE PEC(VBi,TD)))
GROUP BY Gi.*, Pi

END FOR

In Listing 8 the view definition for SID=2, VdA2 is shown.
Td_Sales shall be the control table TD, holding all include and
exclude filters. However, most interestingly are the include and
exclude predicate controls (PICi(VBi,TD), PEC(VBi,TD)) that
ensure that only aggregates over the hotspot data areas are
materialized.

Listing 8. Materialized View VdA for SID=2
SELECT SUM(s.rev), Gi.*, Pi.*
FROM VBi AS bV
WHERE EXISTS (

SELECT *
FROM Td_Sales f
WHERE bV.pcategory = f.pcategory AND bV.pname = f.pname AND

bV.dyear = f.dyear AND f.sign = I AND f.sid = 1 AND f.
mat = false) --includes

AND NOT EXISTS (
SELECT *
FROM Td_Sales f
WHERE bV.pname = f.pname AND bV.ddyear = f.dyear AND f.sign

= E) --excludes
GROUP BY Gi.*,Pi.*

3) Aggregate granularity: The granularity of an aggregated
result set depends on the number and cardinality of its group-
ing attributes. Aggregates with several group-by attributes have
the advantage that they can be reused to calculate coarse-
grained ones. On the other hand this increases the size of
the result set. This trade-off is considered during cost ranking
in Section V-A that calculates the profit of an filter depending
on the size of the result set. In the proposed concept, the
granularity of the materialized view VdA is also determined
by the number and cardinality of the predicate attributes of
the base relation. As the aggregates in VdA are not specific
for one parameter selection (filter) but should be reusable
among overlapping selections (filters), of the same structure,
the aggregates are additionally grouped by predicate attributes.

This way, different aggregates with different groupings can be
selected on the same materialized view.

F. View matching

The question whether an aggregate query or a sub query
can be answered by a view (VdA), is a well-known view
matching problem. In [12] Goldstein et al. already looked
at SPJ queries having an aggregate function followed by a
group-by operation. Still, there is one major aspect that makes
view matching for DMAVs different to other algorithms: query
containment of the aggregate query in the view cannot be
tested before execution time. As outlined in [14], the part of
view matching that checks if the parameters of a query match
a valid include-filter and not an exclude-filter in TD has to be
postponed to execution time. This is being done using a guard
condition as described in Listing 9.

Listing 9. Guard Condition
EXISTS(SELECT 1 FROM Td WHERE SID=i AND MAT=true AND SIGN=’I’ AND

hotkeys = @parameters)
NOT EXISTS(<exclude-filter>)

A guard condition is only executed when there is a valid
structure for a query. If the guard condition is positive it is
served from VdA, otherwise it must be calculated from the base
relation. Besides, aggregate queries can be treated as a SPJ
query followed by a group-by. Accordingly, as described in
[12] an aggregation query can be computed from a view VdA if
there is a structure in TS that meets the following requirements.

1) All columns required by compensating predicates (if any)
are available in the view output.

2) The view contains no aggregation or is less aggregated
than the query, i.e., the groups formed by the query can
be computed by further aggregation of groups output by
the view.

3) All columns required to perform further grouping (if
necessary) are available in the view output.

4) All columns required to compute output expressions are
available in the view output.

All of these requirements can be satisfied by using the
structure control table TS. They can already be checked during
optimization time. Then during execution time the SID of a
query is known and the view matching can be limited to the
guard condition check.

V. CONTROL TABLE MANAGEMENT & OPTIMIZATION

Both tables, TD and TS are managed during the online phase
and optimized during update phase. During the online phase,
the goal is to answer as many queries as possible from the
view, because they will be answered a lot faster from VdA
than from the base relation. At the same time the runtime
manager tracks new queries, usage/ hit statistics, and change
events. This allows adapting to new query patterns as well as
efficiently utilize the system resources during the update and
optimization phase. During this phase, new filters in TD and
structures in TS are materialized while invalidated filters are
refreshed and validated again. Before that the control tables are
optimized. The reason for optimization is to materialize only

84Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

relevant aggregates, reduce the overhead of different aggregate
structures and to anticipate future selections and improve the
hit ratio. Therefore:

• Every filter is ranked based on a cost function,
• Different query structures of one base table are scanned,

harmonized, and merged, and
• Future selection parameters are anticipated and added as

filters to TD.

A. Cost ranking

Every filter that is stored in a control table has a certain
cost in terms of storage and materialization resources. Whether
a new filter that is captured during online phase replaces
existing ones shall depend on the calculated profit that can
be compared amongst each other. Following are some metrics
that are available for each filter. They are either tracked by the
runtime manager or calculated.

• ci: Sum of time used by the database cursor for parsing,
executing, fetching data of all queries that reference the
same filter (without materialization)

• FUi: Time stamp when the filter was used the first time
• LUi: Time stamp when the filter was used the last time
• si: Max. granularity of a view VdA
• ei: Number of hits (see:EXEC in TD)

The goal of cost ranking is to have a number that allows
the comparison of materialized and un-materialized filters and
structures. Based on that number it can be decided which filters
to admit to VdA and which ones to replace.

profit(i) =
hi · ci

si
− (ci ·MAT) (1)

hi =
ei

t− FU i
(2)

si =

n∏
j=1

AGj (3)

profit(SID) =

n∑
i=1

profit(FIDi) (4)

In (1) the profit of an include-filter is calculated based on
the average hit rate of the filter hi, the cost of a filter ci to
be retrieved without materialization and the product of the
attribute granularity of all view attributes. In order to compare
materialized and non-materialized filters, the cost of a onetime
materialization is subtracted at the end.

The average hit rate hi of filter i (2) tells how many times
a filter has been hit in average since it was first screened.
Including the current time t, is guaranteed that aging of filters
is considered. A filter, hit ten times in the last hour has a
higher hit rate than a filter, hit ten times in the last two hours.
(3) Si is the maximum possible granularity of the view VdA
as defined by its structure. Therefore the cardinality of each
attribute must be multiplied. The profit of a structure (4) is
calculated by the sum of all filters that reference the structure.

relev(i) =
hi

t− LU i
(5)

Exclude filters are ranked on their time dependent relevance
(5). The overall average hit ratio of the exclude filter divided
by its actuality (last time used).

B. Structure harmonization

For each aggregate structure, there is one view VdA defined.
They cannot serve aggregate queries with different structures
as they have a different predicates clause, different predicate
attributes as well as different aggregate granularity. However,
if different predicate structures could be harmonized to one
structure, this would reduce the number of required aggregates,
and improve reuse of materialized aggregates. The example
in Listing 10 shows two aggregates (see line 1 and 2). Both
queries require their own structure and filters. Accordingly,
there would be two materialized views.

In the mentioned example there is one hierarchical dimen-
sion: Date(did-year-month-day). The base table is joined with
that table on the PK attribute "did". Thus, aggregates can be
selected using all attributes of Date. The idea of structure
harmonization is to consolidate the selection predicates of one
dimension to its unique (composite) key. As can be seen in
line 4 of Listing 10, the real selection of data is swapped out
to a sub query wrapped with an IN operator. With the unique
dimension key "did" every selection in dimension "Date" can
be expressed without overlapping sets.

Listing 10. Predicate harmonization
1WHERE did=d.did AND d.day=x
2WHERE did=d.did AND d.year=y AND d.day=z
3
4WHERE did IN (Select did from Date WHERE
51st Option: d.year=y and d.day=z
62nd Option: d.month=x)

Rewriting aggregate queries into such a harmonized form
would also simplify the data schema of control table TD to one
attribute "did". The number of filters, however, would increase
significantly: E.g.: Assumed that there is one unique key per
day, a filter of type: year=2012 would be changed to 365 filters
of type "did". Instead, if the key was based on a chronological
interval scale, a range control filter could express year=2012
as did=from:1-to:365.

Structure harmonization/ replacement can only be done be-
tween attributes of the same dimension table. The new attribute
must be on a lower level than the old one. Additionally, only,
if there is an overlapping free, n:1 relation between those
attribute this harmonization works.

As a downside of this concept, materialized aggregates can
become extremely fine grained. Even though the number is
filtered by the control table, grouping by a unique dimension
key "did" in VdA results in very high numbers of results. At
this point, it might happen that the results in views VdA are
not aggregated anymore but materialize the base relation.

85Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

C. Variable distribution

As there is a big training set of recorded selection parame-
ters in TS one can check for significant statistical distributions
of the single attributes. Those selection characteristics could be
used to automatically adjust filters and optimize the material-
ized view. A continuous distributed variable X (attribute) that
has a similar probability for every captured value characteristic
should not be limited during materialization to certain values.
It is probable that the user might select another value next time,
as there is no accumulation of value characteristics. For such
attributes existing filters can be replaced so that aggregates are
not filtered on that attribute anymore.

D. Time correlation

Often, there are dependencies between time and certain se-
lection parameters. Products might be relevant only in certain
seasons, account balances might only be interesting for the last
twelve months and so forth. Finding those correlation can be
done based on the captured filters in TD. Not only include-
filters could be anticipated in order to improve hit ration
on VdA, but also exclude-filters. Based on such knowledge,
exclude filters can better adapt to hot change data as it changes
over time.

VI. EXPERIMENT & DISCUSSION

To evaluate our proposed concept, we have tested it rudi-
mentarily with a mixed workload benchmark. The chosen
benchmark [5] was setup on a MySQL database and executed
twice with the same settings. The share of read-only OLTP
queries was set to 95% and the share of OLAP queries for the
mixed client was set to 40%.

In the first run, the benchmark performed all queries with
the original schema. In the second run, the OLAP queries
where optimized so that they did not accessed the base table
anymore, but a DMAV VdA instead. There were four different
analytical queries with aggregate functions, two of them had
additional sub queries with aggregate function. Hence, there
were six different structures and VdA views that the queries
could use to select and aggregate. Every run was executed for
15min, plus 2min warm-up time that was not counted. During
each run, database performance was monitored using MySQL
Enterprise Monitor and the general db log. Afterwards the
general log was analyzed using the Analysis Framework III.

Compared with the default benchmark, during the opti-
mized run, the database could serve eight-times more select
statements. Hence, the overall output performance increased,
also for the OLTP queries. That was because the runtime
cost (time in ms) for the OLAP queries was reduced by up
to 99,96% each. Obviously, this comparison can only show
relative improvements. Performed on a real application, the
number of aggregate queries would be even higher. Besides,
DMAVs would put an overhead on the database engine in
terms of storage consumption and runtime performance. This
was not considered in the experiment. Still, it became obvious
that the performance can be improved by using DMAVs.

VII. CONCLUSION & FUTURE WORK

In this paper we presented dynamic materialized aggregate
views (DMAV), a concept to selectively materialize arbitrary
aggregate queries in a mixed workload environment. Built
upon a central dictionary structure that holds generic aggregate
structures and corresponding hot spot tables, it was shown how
the execution of analytical queries in transactional databases
can be improved. Intelligent selection and materialization of
hot aggregates promises to be a way to handle such workload
demands in future applications. Even though major parts of the
concept can be transferred to asynchronous update phases or
can be done during optimization phase it still puts an overhead
on the database. Therefore, focus of future research addresses
the problem of how and when to integrate the required steps
of DMAV into query execution of a database.

REFERENCES

[1] S. Chaudhuri and K. Shim, “Optimizing queries with aggregate views,”
EDBT, 1996.

[2] Y. Kotidis and N. Roussopoulos, “DynaMat: a dynamic view manage-
ment system for data warehouses,” ACM SIGMOD Record, 1999.

[3] M. Grund, J. Krüger, and H. Plattner, “HYRISE: a main memory hybrid
storage engine,” Proceedings of the PVLDB, pp. 105–116, 2010.

[4] V. Sikka, F. Färber, W. Lehner, T. Peh, and C. Bornhövd, “Efficient
Transaction Processing in SAP HANA Database – The End of a Column
Store Myth,” SIGMOD, pp. 731–741, 2012.

[5] A. Bog and J. Kruger, “A Composite Benchmark for Online Transaction
Processing and Operational Reporting,” BIRTE, 2008.

[6] R. Cole, F. Funke, L. Giakoumakis, W. Guy, A. Kemper, S. Krompass,
H. Kuno, R. Nambiar, T. Neumann, M. Poess, and Others, “The mixed
workload CH-benCHmark,” in Proceedings of the Fourth International
Workshop on Testing Database Systems. ACM, 2011, p. 8.

[7] C. Tinnefeld, S. Müller, H. Kaltegärtner, S. Hillig, L. Butzmann,
D. Eickhoff, S. Klkauck, D. Taschik, B. Wagner, O. Xylander, A. Zeier,
H. Plattner, and C. Tosun, “Available-To-Promise on an In-Memory
Column Store,” BTW, pp. 667–686, 2011.

[8] F. Funke, A. Kemper, and T. Neumann, “Compacting Transactional Data
in Hybrid OLTP & OLAP Databases,” VLDB, 2012.

[9] P. Larson and H. Z. Yang, “Computing Queries from Derived Relations,”
VLDB, 1985.

[10] H. Z. Yang and P.-A. Larson, “Query transformation for PSJ-queries,”
VLDB, pp. 245–254, 1987.

[11] R. Bello, K. Dias, and A. Downing, “Materialized views in Oracle,”
VLDB, 1998.

[12] J. Goldstein and P.-a. k. Larson, “Optimizing queries using materialized
views: a practical, scalable solution,” ACM SIGMOD Record, vol. 30,
no. 2, pp. 331–342, 2001.

[13] A. Halevy, “Answering queries using views: A survey,” VLDB, no. 1999,
pp. 270–294, 2001.

[14] J. Zhou, P.-A. Larson, J. Goldstein, and L. Ding, “Dynamic Materialized
Views,” ICDE, pp. 526–535, 2007.

[15] P. M. Deshpande and J. F. Naughton, “Aggregate Aware Caching for
Multi-Dimensional Queries,” EDBT, pp. 167–182, 2000.

[16] P. M. Deshpande, K. Ramasamy, A. Shukla, and J. F. Naughton,
“Caching multidimensional queries using chunks,” SIGMOD, pp. 259–
270, 1998.

[17] P. Scheuermann, “WATCHMAN: A Data Warehouse Manager Intelligent
Cache,” VLDB, 1996.

[18] A. Gupta, “Maintaining views incrementally,” ACM SIGMOD Record,
1993.

86Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

