
Optimization of SuperSQL Execution

by Query Decomposition

Ria Mae Borromeo

Faculty of Information and Communication Studies,

University of the Philippines Open University

Los Baños, Laguna, Philippines

riamae.borromeo@upou.edu.ph

Motomichi Toyama

Department of Information and Computer Science

Faculty of Science and Technology, Keio University

Yokohama, Japan

toyama@ics.keio.ac.jp

Abstract— SuperSQL is an extension of SQL that allows

formatting and publishing of database contents into various

kinds of application data directly as a result of a query.

Possible application data output formats include, but are not

limited to, HTML, PDF, XML, XLS, and Ajax-driven pages.

Originally, the SuperSQL query is directly converted into a

single SQL query. In some query cases, this procedure returns

a large intermediate table, which typically require a long

execution time and consume a lot of memory. To minimize the

execution time and memory consumption, query

decomposition, the process of dividing a query into sub queries

whose result sets’ union is equivalent to the result set of the

original query, was applied to SuperSQL query processing.

Experiments show that for several query cases, there is

significant reduction in SuperSQL query execution time and

memory consumption.

Keywords- database applications; database publishing; query

processing; query optimization.

I. INTRODUCTION

Relational databases are here to stay. Although new

database technologies continue to arise and gain popularity,

relational databases are far from being obsolete [2]. SQL,

the standard query language used for managing and

querying relational databases, returns query results to the

user in the form of a flat table. To translate this output into a

specific application, report writers have been used.

However, there is no standard language that covers the

specification of such translations into various types of

application data [10].

SuperSQL is an extension of SQL that has the capability

of generating various kinds of application data directly as a

result of a query. Its syntax is similar to SQL with additional

formatting capabilities. Currently, it is mainly used to easily

create data-driven web pages and applications. Figure 1 is a

sample SuperSQL query and Figure 2 is a sample

SuperSQL query output. This is a sample page of a

bookstore website that lists from left-to-right its records of

all books, authors and publishers.

A SuperSQL query is converted into a single SQL query,

which is processed by the Database Management System

(DBMS). Consequently, one intermediate table is returned

and processed by SuperSQL. Depending on the number and

size of tables to be accessed, the size of intermediate table

can become large even though the actual number of tuples

in the desired output is small.

GENERATE HTML [

 {"Books"![b.title]!

 {"Authors"![a.name]!},

 {"Publishers"![p.publisher]!}

]!

FROM books b, publishers p, authors a

Figure 1. Sample SuperSQL Query

Figure 2. Sample SuperSQL Query Output

The SuperSQL query in Figure 1 is converted into the

SQL query in Table I a). If the books, authors and

publishers tables have 550, 25 and 20 tuples respectively,

the resulting SQL query takes the Cartesian product of the

three tables. The intermediate table size would have 275,000

tuples. However, in the sample query, there is no

relationship between the tables. The desired output only

consists of a list of the contents of each table, displayed

from left-to-right. Therefore, the desired number of tuples is

only 595, which is the sum of the tuples in each table.

Initial experiments using the current SuperSQL version

showed that as the intermediate table size increases, the

execution time and memory consumption of a SuperSQL

query also increase. Thus we aim to reduce the intermediate

table returned by the DBMS to reduce execution time and

memory consumption of executing SuperSQL queries.

In this study, the concept of query decomposition was

65Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

applied to SuperSQL queries. Query decomposition is the

process of finding several queries wherein the union of the

result sets is equivalent to the original result set. Having

several queries instead of one eliminates unnecessary

Cartesian product and join operations thus reducing the

intermediate table size and consequently reducing execution

time and memory consumption.

TABLE I. COMPARISON OF RESULTING SQL QUERIES WITH AND

WITHOUT QUERY DECOMPOSITION

a) without Decomposition b) with Decomposition

SELECT DISTINCT b.title,

 a.name, p.publisher

FROM books b,
 authors a, publishers p

1) SELECT title FROM books;

2) SELECT name FROM authors;

3) SELECT publisher FROM
publishers;

If query decomposition is applied to the example, instead

of being converted to the SuperSQL query in Table I a), the

query is converted into Table I b). The results of the

individual queries are combined later on to produce the

desired output.

The query decomposition algorithm models the

SuperSQL query as an undirected graph where the query’s

attributes are represented as nodes and the attributes’

relationship with each other are represented as edges. The

number of connected components in the resulting graph

represents the number of possible divisions for the query.

The original query is divided into the number of connected

components and the resulting queries are executed

individually. The results are combined later on to produce

the desired output.

II. RELATED WORKS

Query Decomposition is the process of dividing a query

into several queries wherein the union of the result sets of

the divided queries is equivalent to the result set of the

original query. It is widely used in systems wherein a query

contains data from different database servers. In such

applications, a query is decomposed based on the mapping

of data attributes to its sources.

In 2008, Le applied query decomposition to access data

from various data repositories [4]. However, since creation

of mappings is an expensive process, an input query is

automatically decomposed into sub queries without pre-

defined mappings. The algorithm traverses from the bottom

to the top of a schema tree depending on the structure of

local schemas. Compared to top-down approaches, the

algorithm can reduce the time for creating the divided

queries for local schemas.

Also in 2008, Bonchi applied query decomposition to a

document retrieval system [3]. A query is decomposed into

a small set of queries whose union of resulting documents

corresponds approximately to that of the original query. The

goal is to assist users in finding the information they are

looking for, by providing them a suitable set of queries as

part of the results of their queries.

The problem was instantiated a specific variant of a set

cover problem where an efficient greedy algorithm and a

clustering algorithm were designed.

In this study, we applied query decomposition to
SuperSQL queries. Instead of converting a SuperSQL query
into one SQL query, when possible, it is converted into
several queries in order to minimize the intermediate table
output and reduce SuperSQL execution time and memory
consumption.

III. SUPERSQL

SuperSQL extends the functionality of an SQL query by

using the Target Form Expression (TFE) processing system.

TFE was formerly developed to generate ordinary reports

from the contents of relational databases [9]. Currently, it

has been extended to generate application data directly from

database queries.

A. Syntax

TABLE II. COMPARISON OF SQL AND SUPERSQL SYNTAX

SQL Syntax SuperSQL Syntax

SELECT <attribute list>

FROM <tables>

WHERE <condition>

GENERATE <media>

<Target Form Expression (TFE)>

FROM <tables>

WHERE <condition>

The syntax of SuperSQL is similar to SQL. The major

difference is the introduction of the GENERATE keyword,

which allows the user to specify the target application data

output. Table II shows the syntax comparison of an SQL

and a SuperSQL query. Instead of the SELECT keyword, a

SuperSQL query starts with the GENERATE keyword.

Moreover, the attribute list in SQL is specified in the TFE.

As of the latest version of SuperSQL, the following are the

possible target media: Actiview [5], Excel, Flash, HTML,

HTML5, LaTeX, LDAP, PDF, VRML (X3D) and XML.

B. Target Form Expression

While an ordinary target list in SQL is a comma-
separated list of attributes, TFE uses new operators called
connectors and repeaters to specify the structure of the
document to be generated by the query. For example, in a
table element of a webpage, the columns of the table are
associated to the first dimension while the rows are
associated to the second dimension and the hyperlinks are
associated to the third dimension. Binary operators
represented by a comma (,), an exclamation point (!) and a
percent (%) symbol are used as the connectors of the first
three dimensions. They connect objects generated by their
operands horizontally, vertically and in the depth direction,
respectively [10]. This is illustrated in Figure 3.

66Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 3. a) Connectors and b) Repeaters

A pair of square brackets ([]) followed by any of the

above connectors is a repeater for that dimension. It will

connect multiple instances in its associated dimension. For

example, [publishers.publisher, books.title, authors.name]!

will connect a publisher, a book title and an author into

horizontal direction and connect them vertically as long as

there are tuples in the query result.

C. SuperSQL Architecture

Figure 4. SuperSQL System Architecture

As can be seen in Figure 4, the SuperSQL system has
four major components: the Parser, the Tree Constructor, the
DBMS and the Code Generators. The Parser is responsible
for detecting syntax errors. It extracts the underlying SQL
syntax components such as the SELECT, FROM and
WHERE clauses. Then an SQL query is created and sent to
the DBMS.

The Parser also extracts the layout expression. The layout

expression is composed of two parts. The first part is called

the schema, which is a tree-structured representation of the

layout of the attributes in the query. The second part is

called the data formatting, which contains layout

information specific to the application data. For example, if

the desired application data output is HTML, the data

formatting would contain information about HTML

formatting such as background color, font size, page title,

etc.

The DBMS, which is currently either PostgreSQL or

MySQL, executes the SQL query and returns a flat table.

The Tree Constructor combines the schema with the flat

table containing the SQL query result and outputs a tree-

structured data. The Code Generator takes as inputs the data

formatting and the tree-structured data and produces the

application data output specified in the SuperSQL query.

IV. QUERY OPTIMIZER

Figure 5. Proposed SuperSQL System Architecture

To implement query decomposition, a Query Optimizer

component was added to the system as can be seen in Figure

5. The Query Optimizer is responsible for checking the

divisibility of a query and creating single or multiple SQL

statements.

The divisibility of a query is determined by modeling the

query as an undirected graph. All the attributes found in the

schema and the WHERE clause are represented as vertices.

The relationships that exist between the attributes are

represented as edges.

Edges are added to the graph based on three conditions:
first, two attributes are from the same table; second, two
attributes are equated in a WHERE condition; and lastly, two
attributes are grouped together in the schema.

Figure 6. Example: Query graph with Connector Node

In Figure 6 a), we have a SuperSQL query with Figure 6

b) as the schema. From the schema, we added the attributes,

b.title, p.publisher and a.name were added as vertices in our

graph. From the WHERE clause, b.publisher and

a.publisher were also added as vertices in the graph. Figure

6 c) shows the resulting graph.

Connector nodes are nodes that connect at least two
attributes from different tables. A connector node must not

67Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

be in the same table as any of the attributes it connects. In
Figure 6 c), p.publisher is a connector node.

After creating the graph, connected components were

identified using Depth-First Search. A connected component

is a sub graph that contains a path between all pairs of

vertices in the graph. Depth-First Search is a search

algorithm that extends the current path as far as possible

before backtracking to the last choice point and trying the

next alternative path. Each node can only be visited once

except for connector nodes, which can be visited as many

times as the number of nodes it connects. The Depth-First

Search was repeated until all nodes have been visited. The

resulting number of paths in the path list is equal to the

number of connected components of the graph, which is

subsequently equal to the number of possible divisions for

the query.

In the example in Figure 6, we get two connected

components: {b.title, b.publisher, p.publisher} and

{p.publisher, a.publisher, a.name}. Therefore, the query can

be divided into two.

A. Tree-Structured Data Construction

The Tree Constructor was modified to handle the results
of multiple queries generated by the query optimizer. To
create the tree structure, the schema must be combined with
SQL query results from different tables. The results of SQL
queries are stored in a structure, which can be referenced by
the schema. The schema is traversed to create the tree
structure. A node in the schema becomes a parent node and
the values from the query results are added to the tree
structure as its children. Attribute-value pairs are used to
ensure the correctness of the parent-children mapping.

B. Cases Handled

Figure 7. Example: Trivial Case

1) Trivial Case: Figure 7 illustrates the trivial case. In

this example, p.publisher, the list of publishers, b.title, the

list of books and a.name, the list of authors, are retrieved.

These attributes are from different tables and are not related

by any conditions thus they are independent of each other.

Originally, the resulting query will generate an intermediate

table equal to the Cartesian product of the three tables.

However, based on the proposed query decomposition

algorithm, the query can be divided into the following sub

queries and retrieve smaller intermediate tables.
 SELECT p.publisher FROM publishers p;

 SELECT b.title FROM books b;

 SELECT a.name FROM authors a;

2) Grouped Columns: In this case, independent columns

are grouped together by a common attribute. This is

illustrated in Figure 6. In the given example, b.title and

a.name are grouped together by p.publisher. The original

query generates an intermediate table which takes the

Cartesian product of the books and authors tables joined

with the publishers table. However, based on the query

decomposition algorithm, this query can be divided into the

following sub queries.
 SELECT b.title, p.publisher
 FROM books b, publishers
 WHERE b.publisher = p.publisher;

 SELECT a.name, p.publisher
 FROM authors a, publishers p
 WHERE a.publisher = p.publisher;

Figure 8. Example: Query with String Literal

3) Queries with String or Literal Conditions: In Figure
8, a.publisher is equated to the string literal, “McGraw
Hill.” Since a.publisher is connected to the connector node,
p.publisher, the string literal, “McGraw Hill” is copied to
the p.publisher. This is done so that when the query is
divided, the sub queries will contain the same condition and
thus the number of tuples retrieved would be minimized.
The resulting queries for this example are:

 SELECT a.name, p.publisher
 FROM authors a, publishers p
 WHERE a.publisher = p.publisher
 AND (a.publisher = 'McGraw Hill');

 SELECT b.title, p.publisher
 FROM books b, publishers p
 WHERE b.publisher = p.publisher
 AND (p.publisher = 'McGraw Hill');

V. EVALUATION

This study aims to reduce the execution time and memory

consumption of SuperSQL queries by reducing the size of

the intermediate table returned by the DBMS. This was

done by adding a query optimizer, that implements query

decomposition, to the SuperSQL system. The resulting

SuperSQL system is called the optimizer version.

A. Input Queries

To evaluate the effectiveness of the query optimizer, two

query cases were used. Query case 1 refers to the query in

68Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

Figure 7, which illustrates the trivial case. Query case 2

refers to the query in Figure 6, which illustrates the grouped

case. Table III compares the expected number of tuples with

and without query decomposition.

TABLE III. COMPARISON OF EXPECTED NUMBER OF TUPLES WITH

AND WITHOUT QUERY DECOMPOSITION

Query

Case

Expected no. of Tuples

w/o Decomposition

Expected no. of Tuples

w/ Decomposition

1 |b.title| × |p.publisher| ×

|a.name|

|p.publisher| + |b.title| +

|a.name|

2 |(b.title × a.name) ⋈

p.publisher|

|p.publisher ⋈ b.title| +

|p.publisher ⋈ a.name|.

Theoretically, the reduction of the intermediate table size

results to the following: faster execution of the DBMS,

smaller data structure size used to store the intermediate

table, and faster selection of tuples to be included in the

application data tree structure. In other words, reduction of

intermediate table size results to faster execution and less

memory consumption, which were proven by the

experiments discussed in this section.

B. Experimental Environment

The test queries were executed by a machine running

Mac OS X version 10.6.8 with 2.3GHz Inter Core i5

processor and 4GB 1333 MHZ DDR3 main memory. The

intermediate table size is the independent variable. It is

defined as the number of expected tuples without query

division. Three intermediate table sizes were used. Small –

with tuples ranging from 10 to 100; medium – with tuples

ranging from 100 to 1000; and large with tuples ranging

from 10000 to 100000. Results were compared to the

performance of the SuperSQL src08 package, which was

used as the baseline in the experiments.

C. Data Construction Time

For the three different size ranges, the data construction

time of the optimizer version was compared to the baseline.

In the following graphs, the legend Base1 refers to the

baseline Query Case 1 (trivial case) and Opt-1 refers to the

optimized Query Case 1. Base-2 refers to the baseline Query

Case 2 (grouped case) and Opt-2 refers to the optimized

Query Case 2.

In the small intermediate table size range, it can be

observed in Figure 9 a) that the data construction time of all

the cases are almost the same. Since the original query

yields only a small intermediate table, its processing time is

not significantly different from the total processing time of

checking the divisibility of the query, executing and

combining results of individual sub queries. Nevertheless, it

can be seen that Opt-1 and Opt-2 performed a little faster

than their baseline counterparts.

In the medium intermediate table size range, the

optimizer version performed significantly faster than the

baseline. This can be observed in Figure 9 b). It can also be

seen that after processing 800 tuples, a rapid growth was

seen in baseline algorithm’s data construction time.

However, for both trivial and grouped case, the data

construction time growth of the optimizer version was

linear.

In the large intermediate table size range, the optimizer

version also performed significantly faster than the baseline.

In Figure 9 c), it can be observed that the growth of the

baseline in the grouped case is exponential. The growth of

the baseline in the trivial case is also exponential but at a

slower level. In the optimizer version, the data construction

time of Opt-1 and Opt-2 were almost the same and their

growths were both linear.

Figure 9. Data Construction Time of Queries

It can be inferred from these results that for the medium

and large intermediate table size ranges, the percentage of

data construction time reduced is significantly larger than

the overhead cost of checking the divisibility of the query

and executing and combining results of the sub queries.

D. Memory Consumption

Figure 10. Memory Consumption of Queries

Query Case 1 and Query Case 2 were also used to

observe the memory consumption.

For small and medium intermediate table size ranges, the

amount of memory used to process both query cases in both

the baseline and optimizer version range from 8-12 MB.

This can be observed in Figure 10 a) and Figure 10 b). This

is because for such intermediate table size ranges, the

amount of memory saved from the reduction of the

69Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

intermediate table size and the overhead memory

consumption cost of the graph structure used for checking

divisibility are not significantly different.

It can also be observed that the Query Case 2 or the

grouped attribute case consumed a little more than the trivial

case. This is because the height of its schema tree is higher

and thus more memory is needed to represent the tree.

It can be observed in Figure 10 c) that the optimizer
version consumes significantly less amount of memory than
the baseline for both the trivial case and grouped attribute
case. This means that for this size range, the amount of
memory saved from the reduction of the intermediate table
size is significantly greater than the overhead memory
consumption cost of the graph structure used in checking the
divisibility of the query.

VI. CONCLUSIONS AND FUTURE WORK

The study proposed a query optimizer for the SuperSQL

system based on query decomposition. The main goals were

to reduce SuperSQL execution time and memory

consumption by reducing the intermediate table size. A

SuperSQL query was modeled as a graph wherein vertices

are the attributes in the query and edges are the relationships

that exist between the attributes. The relationships between

the attributes were based on the desired layout of the

attributes in the query and the schema, the relational

operations in the input query’s WHERE clause, and the

tables where each attribute belongs. The connected

components of the resulting graph were computed by using

the Depth-First Search algorithm. The number of connected

components is equal to the number of possible divisions for

the query. The connected components were converted into

SQL queries and executed individually. As a result, for

some query cases, the combined size of the intermediate

tables of the sub queries was significantly smaller than the

size of the intermediate table without query division.

The data construction time and memory consumption of

the SuperSQL with the query optimizer were compared to

the original SuperSQL version. The comparison was done

for three intermediate table size ranges. For queries with

intermediate table size of 10 to 100 tuples, the optimizer

version did not significantly differ from the original in terms

of execution time and memory consumption. For queries

with a medium intermediate table size of 100 to 1000 tuples,

the optimizer version executed significantly faster, but the

memory consumption was not significantly lower. For

queries with a large intermediate table size of 10000 to

100000 tuples, the optimizer version executed significantly

faster and consumed significantly less memory. Based on

these experiments, it can be concluded that the proposed

optimizer is effective in reducing SuperSQL execution time

and memory consumption for the query cases that it can

handle.

The proposed optimizer has already been integrated to the

currently working SuperSQL system as a command line

parameter for the standalone SuperSQL JAR executable file

and as preference setting in the SuperSQL Eclipse plugin.

For future work, the processing of more query cases is

deemed necessary to increase the optimization level of the

proposed optimizer. The proposed optimizer is still not able

to handle all possible query cases. However, it was designed

it to fail safely and execute the original process when

unhandled cases are encountered.

ACKNOWLEDGMENT

The authors would like to thank the members of the
SuperSQL group of Toyama Laboratory for their support and
Asian Development Bank – Japan Scholarship Program for
the graduate scholarship grant.

REFERENCES

[1] SuperSQL Website: http://ssql.db.ics.keio.ac.jp/en,

[retrieved: November, 2012].

[2] T. Bain: “Are Relational Databases Doomed?”, ReadWrite

Enterprise,

http://www.readwriteweb.com/enterprise/2009/02/is-the-

relational-database-doomed.php (2009),

[retrieved: November, 2012].

[3] F. Bonchi, C. Castillo, D. Donato, and A. Gionis: “Topical

Query Decomposition”, In Proceedings of the 14th ACM

SIGKDD International Conference on Knowledge Discovery

and Data Mining (2008), pp. 52-60.

[4] T. T. T. Le, D. D. Doan, V. C. Bhavsar, and H. Boley: “A

Bottom-up Algorithm for Query Decomposition”,

International Journal of Innovative Computing and

Applications Volume 1, Issue 3 (July 2008), pp. 185-193.

[5] Y. Maeda and M. Toyama: “ACTIVIEW: Adaptive data

presentation using SuperSQL”, In Proceedings of the 27th

International Conference on Very Large Data Bases (2001),

pp. 695-696.

[6] S. G. Shin: “The Integration of Media Generators in

SuperSQL Query Processor”, Master’s Thesis: Keio

University School of Science for Open and Environmental

Systems (2002).

[7] A. Silberchatz, H. F. Korth, and S. Sudarshan: “Database

System Concepts (6th Edition)”, McGraw-Hill, (2010).

[8] S. S. Skiena: “The Algorithm Design Manual”, Springer,

(2008).

[9] M. Toyama: “Three dimensional generalization of Target List

for simple database publishing and browsing”, Research and

Practical Issues in Database (Proc. 3rd Australian Database

Conference), World Scientific Pub. Co. (1992), pp. 139-153.

[10] M. Toyama: “SuperSQL: an extended SQL for database

publishing and presentation”, In Proceedings of ACM

SIGMOD International Conference on Management of Data,

(June 1998), pp. 584-586.

70Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

