
Using Social Network Information to Identify User Contexts for Query Personalization

Diogo Alves, Marcelo Freitas, Thiago Moura, Damires Souza

Informatics Academic Unit (UAI)

Federal Institute of Education, Science and Technology of Paraiba (IFPB)

Av. 1
o
 de Maio, 720, Jaguaribe, João Pessoa, Brazil

{diogoca, marcello.dudk, tmoura}@gmail.com, damires@ifpb.edu.br

Abstract-In recent years, social networks have gained a huge

popularity among internet users, serving diverse purposes and

communities. Meanwhile, in data-oriented applications, the

increasing amount of available data has made it hard for users

to find the information they need in the way they consider

relevant. To help matters, a user-centric approach may be used

to enhance query answering and, particularly, provide query

personalization. In this work, we address the issue of

personalizing query answers in data-oriented applications

considering the user context provided by social network

information. To this end, we propose a context-aware plugin

named CODI4In. The CODI4In extracts users’ social network

information regarding their “likes” and use them as context

information to provide query personalization. In this paper, we

present the developed approach and some experimental results

we have accomplished with real users. These results show that

by considering the acquired user context really enhances the

degree of relevancy of the obtained personalized answers.

Keywords-Context, User Context Management, Query

Personalization, Social Network Information

I. INTRODUCTION

Personalization, in a general sense, means tailoring a
product or a medium to a user, according to some identified
user personal characteristics [1]. Regarding query answering,
in computational settings, it aims to assist users when
formulating queries in order to enable them to receive
relevant information, where such relevancy is defined by a
set of criteria specific to each user [2]. One of the primary
ways to achieve query personalization is user profiling, so a
query can be related with user preferences stored in a user
profile [2]. On the other hand, query personalization may be
also considered a machine learning process based on some
kind of user feedback or identified usage [3]. In fact, when
formulating queries, the user may be found in various
contexts, and these contexts may change every time.
Meanwhile, the user himself may build his own context, in
terms of his specific interests, preferences, relationships and
common executed tasks. Considering that, in order to
provide query personalization, we argue that it is essential to
take into account the user model. Moreover, to build the user
model, we should include the user context.

The context may be understood as the circumstantial
elements that make a situation unique and comprehensible
[4]. We consider Context as a set of elements surrounding a
domain entity of interest which are considered relevant in a
specific situation during some time interval. The domain
entity of interest may be, for instance, a person (e.g., a user)
or a task (e.g., a given query). In addition, we use the term

contextual element (CE) referring to pieces of data,
information or knowledge that can be used to define the
Context [5]. Regarding the user, his context (e.g., location
and preferences) can be exploited by a system either to
answer queries or to provide recommendations, so users at
different locations or different perceived preferences may
expect different results, even from a same formulated query.

Context information may be acquired from diverse
sources. Considering online social networks, the users’ social
profiles are rich sources of information about their
preferences (e.g., likes and dislikes) and relationships
(friendship) [6][7]. Indeed, in our view, the information
extracted from the social user profile provides clues to
identify what is relevant to a query submitted by him in
another application he is interacting with. For instance, in a
data-oriented application, if he is querying about movies and,
from his social network profiles the application knows he
mostly likes comedy movies, thus retrieved movies from this
category can be depicted firstly. With this in mind, we
propose a query personalization approach which makes use
of social network information as a kind of contextual
element.

In order to provide the user context management, we
have developed a plugin named CODI4In [8]. The CODI4In
manages user context information, providing the persistence
and recovery of the contextual elements (CEs) using an
ontology. In this work, the CODI4In has been extended. It
extracts information from a social network, particularly the
Facebook [9], manages this user information as a CE, and
uses it as a means to provide personalized answers (in this
current version, ranked answers). Experimental results show
that by considering the user context provided by social
network information really enhances the degree of relevancy
and satisfaction of the obtained personalized answers.

Our contributions can be summarized as follows:

(i) We acquire user context information from a social
network;

(ii) We manage user context information using an
ontology, and a graph-based database as the underlying
storage model;

(iii) We present a case-study coupling the CODI4In with
a web based data-oriented application; and

(iv) We describe experiments with real users showing the
degree of relevancy obtained with the personalized answers
produced by considering context information from a social
network.

45Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

This paper is organized as follows: Section 2 introduces
the use of social networks; Section 3 proposes the
approach; Section 4 describes the developed
approach and some accomplished experiments. Related work
is discussed in Section 5. Finally, Section 6
conclusions and points out some future work.

II. SOCIAL NETWORKS AND USER INFORMATION

EXTRACTION

Recently, the use of social networks has
popularity. Statistical evidence indicates that not only more
people are joining these communities, but also
increase in the average amount of time spent [
this time spent using social networks, more and more
information about their users are generated and stored
social network is usually a place for sharing content in
different forms, e.g., short messages on Twitter
interests such as friendship, personal likes and dislikes
Facebook [9]. What is more interesting about that relies in
the fact that users themselves are responsible for keeping
these information up to date in the way they consider
important.

This introduces the concept of social profiling, which can
be valuable to be used by other applications.
user connects to a given application for the
fewer details about him are available, information gathered
from a social network can be used to build an initial user
model. A system that has access to social networks can
make use of such information in different ways.
illustration, the SmartObject system considers the
relationship information to turn on the audio player when
friends are online [12].

Most online social networks already give some access to
social information, but they limit what data can be accessed
and how it can be used [7]. In this work, we deal
information extracted from users of the social network
Facebook as a way to build the user context model
Facebook is particularly interesting because
extracted from the user profiles regarding “likes
related to movies) provide clues to identify what is
to personalize the user queries in a data-oriented application
the user interacts with. To make available some information
from the users’ profiles, the Facebook provides a
API [13], thus enabling applications to access information
as public. Examples of such public information are user
name, age and gender. It is not possible to extract more
information, unless the user make them available as public
In our work, users are asked to allow the CODI4In plugin (to
be explained in next section) to access information
movies that users have liked.

III. THE CODI4IN APPROACH

In this section, we describe the CODI4In
this end, we first present the CODI-User ontology and then
we show the main issues underlying the
architecture.

rganized as follows: Section 2 introduces
the use of social networks; Section 3 proposes the CODI4In
approach; Section 4 describes the developed CODI4In

and some accomplished experiments. Related work
is discussed in Section 5. Finally, Section 6 draws our

NFORMATION

he use of social networks has gained great
that not only more

also there is an
increase in the average amount of time spent [10]. With all

spent using social networks, more and more
are generated and stored. A
place for sharing content in

e.g., short messages on Twitter [11] or
such as friendship, personal likes and dislikes in

What is more interesting about that relies in
responsible for keeping all

up to date in the way they consider

ling, which can
to be used by other applications. When a new

 first time and
, information gathered

from a social network can be used to build an initial user
social networks can

in different ways. As an
considers the user's

relationship information to turn on the audio player when

already give some access to
social information, but they limit what data can be accessed

In this work, we deal with
the social network

as a way to build the user context model. The
 some features

likes” (specially
provide clues to identify what is relevant

oriented application
make available some information

acebook provides a personal
access information set

as public. Examples of such public information are user
gender. It is not possible to extract more

information, unless the user make them available as public.
DI4In plugin (to

be explained in next section) to access information about the

PPROACH

CODI4In approach. To
User ontology and then

main issues underlying the CODI4In

Figure 1. An excerpt from the CODI

A. CODI-User: The User Context Ontology

We represent and store user context
ontology named CODI-User. The CODI
includes contextual elements (CEs) regarding
environment and query related concepts
personalize queries. Figure 1 describes
have been specified in order to characterize the domain entity
USER. Such view has been produced using OntoViz, a
Protégé plug-in [14]. Therefore,
Domain Entity. Location, Task
Preference are sub-concepts of Contextual
elements are each one related to User
have metadata, we do not show instances.

To create a simple yet extensible model, we define
diverse CEs that could be useful in different kinds of
oriented applications. The CEs may be
views: (i) general query personalization concepts
environment concepts and, (iii) personal concepts
the first one, we consider the user
means a query), the user identification
hobbies or work-related interests) and his specific
preferences related to the task at hand
Environment concepts regard the setting where the user
interacts and the application is executed.
chosen the following CEs: the user
geographical position), the kind of
identification), the device at hand and the kind of
the user is interacting with (e.g., textual, visual).
depending on the kind of application (e.g., e
expertise, the group which the user belongs to
personal information such as email
considered. Although we have defined these three views, the
CODI-User ontology may be extended through inheritance
and the addition of more concepts, as well as concept
instantiation according to the application

B. Architecture

After defining the CODI-User concepts, we have been
working on a service concerned with the storage and
of the CEs. The CODI4In service has been defined and
developed as a plugin in such a way that
applications can be coupled to it.
plugin operates as a back-end
application which works as the front
Figure 2. The CODI4In supports the persistence and
recovery of CEs related to an identified user
with the coupled application. It includes the ability to acquire
user context information from multiple sources

An excerpt from the CODI-User Ontology.

The User Context Ontology

user context information in an
User. The CODI-User ontology

includes contextual elements (CEs) regarding personal,
related concepts, which are used to

Figure 1 describes some of the CEs that
in order to characterize the domain entity

USER. Such view has been produced using OntoViz, a
. Therefore, User is a sub-concept of

Task, Interest, Expertise and
Contextual Element. These
User. In this view, we only

data, we do not show instances.

o create a simple yet extensible model, we defined
that could be useful in different kinds of data-

CEs may be divided into three
general query personalization concepts, (ii)

personal concepts. Regarding
the user task at hand (in our case, it

identification, his interests (e.g.,
related interests) and his specific

related to the task at hand (i.e., to a query).
regard the setting where the user

interacts and the application is executed. We have primarily
: the user location (his current

, the kind of connection (his IP address
at hand and the kind of interface

the user is interacting with (e.g., textual, visual). In addition,
he kind of application (e.g., e-commerce), the

e user belongs to as well as his
such as email or birth date are also

. Although we have defined these three views, the
ontology may be extended through inheritance

and the addition of more concepts, as well as concept
application needs.

User concepts, we have been
concerned with the storage and retrieval

ervice has been defined and
in such a way that data-oriented

. In this sense, the CODI4In
end service of a data-oriented

application which works as the front-end, as depicted in
supports the persistence and
an identified user that interacts

t includes the ability to acquire
multiple sources, e.g., from

46Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

CODI4In

Facebook

Data-Oriented Applications

Context Acquisition

Explicit Information Physical Sensors

CODI-
User

Application
Database

CEs Recovery

Answers Ranking

CEs Persistence

Reasoning

 1 getUserContext()

 2 // When user logins using the Facebook login option and allows

 3 // to recover his personal data and liked options (e.g., movies)

 4 token = getUserToken()

 5 // Retrieves basic information

 6 user = getFacebookUser(token)

 7 // Retrieves movies which have been liked

 8 moviesList = getFacebookLikedMovies(user)

 9 // New empty collection

10 preferredGenres = []

11 for each moviesList in movie

12 // Retrieves movie genre names from the IMDB API

13 genres = getGenresFromImdb(movie.name)

14 // Storing

15 preferredGenres.push(genres)

16 if (at last one of moviesList = movie)

17 // Order by number of occurrences

18 sortGenresByOccurrence(preferredGenres)

19 // Removes duplicate genres

20 uniqueGenres(preferredGenres)

21 // Storing in plugin

22 insertCE(user, preferredGenres)

23 end if

24 end for

25 endGetUserContext()

physical sensors or from explicit information provided by the
user. To this end, it provides a common interface so that
diverse adapters can be built to gather information from
various sources. Particularly, in this work, it acquires context
information from the Facebook social network. This
information is then persisted in the CODI-User as a kind of
CE. Using this information as context relieves the user from
the burden of specifying details, focusing on queries he is
interested in.

The various user CEs (e.g., location, interests,
preferences) required to build the user model may be stored
as ontology instances in the CODI-User. The CODI4In
populates such ontology and retrieves the CEs when required
to identify the user or to personalize a given query. The
query personalization may be accomplished as: (i) a query
expansion, introducing CEs in the submitted query; or (ii) a
post-processing step after query results have been generated.
In this work, we personalize user queries following the latter
option, using a ranking algorithm on the resulting query
answers. Thus, the CODI4In is able to acquire context
information from user profiles (in this case, from the
Facebook). Then it ranks the query answers according to the
CEs it has gathered as relevant to make a decision on the
ranking. These ranked answers are forwarded to the
application to provide means to present them to the user.

An example of a data-oriented application that can gain
from using the CODI4In is a web-based application named
MovieShow, which has been developed and coupled to the
plugin as our first case study (it will be presented in Section
4). Other applications, e.g., query applications or
recommender systems, which need to work with
personalized queries over data, may benefit from using it as
well.

Although in this current version, we are using context
information provided by the Facebook, the population
process at the CODI-User ontology may be also
accomplished during the user registration (if this is the option
underlying the front-end application) or through on-going
user interactions, when the user is submitting queries or
defining parameters that can be identified as context. Such
population process is accomplished in a dynamic and
incremental way.

Figure 2. CODI4In Architecture Overview.

IV. IMPLEMENTATION AND RESULTS

In this section, we present the CODI4In implemented
with the Facebook-based Context Acquisition, showing a
high-level main algorithm. We also describe some
implementation issues, a case study and some experimental
results.

A. The Algorithm

The principle of our approach is to enhance query
personalization by using information from the Facebook user
profiles as CEs. Answers produced by the CODI4In
algorithm are consistent with what the user has defined as
relevant through his “likes”. A high level view of the
CODI4In main algorithm is sketched in Figure 3. To acquire
the movie genres information, we use the IMDB API [15].

In order to provide query personalization, the algorithm

performs the following tasks:

I. Once the user has logged in the Facebook and allows

the CODI4In to retrieve his personal information and

his “likes”, the CODI4In gets a specific token

(access key) to request the information needed to be

dealt with (i.e., the movies that the user has liked).

II. The CODI4In then iterates over the list of obtained

movies. To each obtained movie, it recovers all

genres using the IMDB API and stores it in an

auxiliary list called "preferred genres".

III. When the iteration process is finished, the algorithm

ranks this auxiliary list according to the number of

occurrences of each genre and removes duplicated

names.

IV. The basic information of the user profile and

preferred genres captured on the fly are persisted in

the CODI-User ontology. These CEs will be used to

enhance the ranking of query results, providing a

kind of query personalization.

Figure 3. High Level View of The CODI4In Main Algorithm.

47Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

B. Implementation Issues

We have developed the CODI4In plugin and the
presented algorithm in Java. Since our representation model
is an ontology (which may be represented as a graph [1
have used, as the storage model, a graph-b
called Neo4J [17]. Such database stores the
instances as the nodes and relationships of a graph
allows preserving the natural structure of the
ontology. Besides, to gather information from the
we have used its specific API and the JavaScript SDK

As a case study, we have implemented a web
oriented application to be used as front-end to the
back-end service. This application allows users to submit
queries about movies and has been named MovieShow. In
order to deal with movies information, we have imported
data from the IMDB into a local relational database.
database, we have four tables, as follows: Movie
Release Year, Genre, Actor, Director), Actor
BirthDate) and Director (Id, Name, BirthDate).

When logging to the MovieShow application, the user is
required to allow the system to deal with his profile
information from the Facebook. If he agrees with that, he is
invited to log into the social network. If he does not want to
allow such access, he can register in the MovieShow
application and log into as well. To help matters, i
work, we are considering only the first option, i.e., the user
allows the CODI4In to extract information from
Facebook profile.

When logged in the Facebook and also in the
the CODI4In retrieves information (in JSON format
the user profile, as follows: (i) personal information
first_name, last_name, email and gender, and (ii)
information regarding, in this case, the user “likes”

Figure 4. An Example of the Algorithm Instantiation and a given Query Personalization

plugin and the
Since our representation model

is an ontology (which may be represented as a graph [16), we
based database

Such database stores the CEs and user
nodes and relationships of a graph, what

preserving the natural structure of the CODI-User
Besides, to gather information from the Facebook,

JavaScript SDK.

we have implemented a web based data-
end to the CODI4In

end service. This application allows users to submit
queries about movies and has been named MovieShow. In

we have imported
into a local relational database. In this

Movie (Id, Title,
Actor (Id, Name,

(Id, Name, BirthDate).

the MovieShow application, the user is
deal with his profile

tion from the Facebook. If he agrees with that, he is
the social network. If he does not want to

r in the MovieShow
To help matters, in this

y the first option, i.e., the user
extract information from his

Facebook and also in the application,
JSON format) from

(i) personal information, such as
(ii) preferences

, in this case, the user “likes” about

movies. Particularly, in this case study, the
acquires the titles of the movies the user has liked.
set of movies titles at hand, the CODI4In
IMDB web service and retrieves the list of the
genres. These genres are persisted in the CODI
preferences on the movies. Also,
list of these preferences on the fly.
this list, but if he does not matter, the
ranked list to personalize user quer
applies an ordering method (Bubble sort
query is not reformulated, only its results are.
depicts the overall process to accomplish the context
acquisition by using the Facebook user pro
management, the query personalization step and
presentation.

As an illustration, in Figure 4
logs into the Facebook and into
(step I). Diogo allows the plugin
information. The CODI4In thus
information (step II) and the movies he has liked. In this
example, Diogo has liked the movie
(step III). With this information at hand, the
retrieves its genres, using the IMDB web service
“Biography, Comedy, Crime and Drama”
example, we illustrate this operation with only one movie,
but indeed all the user liked movies are taken into account.
Thus, the genre elements of all
processed, i.e., the obtained list of genres
to the number of occurrences of each genre
genre names are removed. Then, they are
CODI-User ontology and depicted to the user
the MovieShow interface (step
relevant to personalize queries submitted by Diogo
MovieShow application. Finally, Diogo
about movies starred by the actor “

An Example of the Algorithm Instantiation and a given Query Personalization.

. Particularly, in this case study, the CODI4In
acquires the titles of the movies the user has liked. With the

CODI4In interacts with the
IMDB web service and retrieves the list of the given movies

persisted in the CODI-User as user
 the CODI4In sets a ranked

list of these preferences on the fly. The user is able to refine
this list, but if he does not matter, the CODI4In uses this
ranked list to personalize user query results. To this end, it

Bubble sort). Thereby, the SQL
query is not reformulated, only its results are. Figure 4
depicts the overall process to accomplish the context
acquisition by using the Facebook user profiles, the CEs

anagement, the query personalization step and the answers

4, the user named “Diogo”
into the Movieshow application

Diogo allows the plugin to retrieve his profile
thus acquires his personal

II) and the movies he has liked. In this
the movie “Catch me if you can”

With this information at hand, the CODI4In
, using the IMDB web service, set as

“Biography, Comedy, Crime and Drama” (step IV). In this
example, we illustrate this operation with only one movie,

liked movies are taken into account.
 Diogo’s liked movies are

of genres is ranked according
to the number of occurrences of each genre. Also duplicated

are removed. Then, they are persisted in the
and depicted to the user by means of

V). The movie genres are
relevant to personalize queries submitted by Diogo in the

. Finally, Diogo submits a query
about movies starred by the actor “Michael Madsen”. The

.

48Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

query is executed and its answers are ranked according to the
CEs regarding Diogo’s preferences on movies genres.
snapshot from the MovieShow application with the set of
ranked answers for the user Diogo is shown in Figure 4
Thereby, the user Diogo firstly receives documentary and
action movies as query answers, according to the identified
genres preference order. If a retrieved movie genre
submitted query) does not match the list of user preferences
it comes at the end of the list.

In this sense, we observe that the CODI4In
the original query algorithm by integrating a restriction
obtained through the identified CEs (in this example,
concerned with the genre preferences order). As a result, data
presented to the user are ranked according to each user
identified context model. In this case study, the user context
model has been built using information provided by a social
network. This implementation may be extended to consider
other CEs related to queries, thus providing more specific
personalization.

C. Experiments

We have conducted some experiments to verify the
effectiveness of our approach. The goal is to check if
enabling the CODI4In plugin would provide benefits
users, i.e., if the produced query answers
considered as more suitable in terms of results ranking
this end, we have invited some users (a total of
evaluate our prototype. The users group was composed by
undergraduate students in Computer Science as well as from
people from other areas (e.g., Engineering). At first, we
explained the goal of the evaluation together with
objective of the CODI4In. We also discussed the usage of the
social network as a source of context information and the
need of agreement on its access. We asked them to provide
“likes” on some movies by using the Facebook, if they ha
not done it yet.

Then, users received a survey containing questions
divided into three main issues: (i) personal information
as age and occupation, (ii) frequency of using the Facebook
to “like” movies and (ii) feedback on the relevancy of the
obtained answers when the CODI4In was enabled and his
“likes” were taken into account as CEs. More specifically,
we wanted to know if there is any difference in the query
results in terms of its ranking, when considering
user context. To answer the survey, they spent a time
submitting a number of queries about movies according to
actors, directors and release year. They could verify the
obtained query answers without enabling the
well as by enabling the plugin. When the
enabled, the answers were ranked according to the user genre
preferences ranking.

As shown in Figure 5, liking movies using the Facebook
is not an usual task in this group of users. The reason
underlying that is that most of them are more interested in
the messages posting instead of this specific option.
Nevertheless, they became curious and particularly engaged
in this new task.

according to the
CEs regarding Diogo’s preferences on movies genres. A

with the set of
in Figure 4 (VI).

documentary and
, according to the identified

. If a retrieved movie genre (from the
user preferences,

CODI4In can change
ing a restriction

(in this example,
order). As a result, data

d according to each user
, the user context

model has been built using information provided by a social
This implementation may be extended to consider

related to queries, thus providing more specific

experiments to verify the
effectiveness of our approach. The goal is to check if

would provide benefits to
answers were really

in terms of results ranking. To
(a total of 30) to

group was composed by
e as well as from

). At first, we
valuation together with the main

We also discussed the usage of the
social network as a source of context information and the

We asked them to provide
“likes” on some movies by using the Facebook, if they had

received a survey containing questions
personal information such

of using the Facebook
feedback on the relevancy of the

obtained answers when the CODI4In was enabled and his
More specifically,

difference in the query
considering or not the

. To answer the survey, they spent a time
submitting a number of queries about movies according to

They could verify the
enabling the CODI4In as

hen the CODI4In was
enabled, the answers were ranked according to the user genre

5, liking movies using the Facebook
sual task in this group of users. The reason

underlying that is that most of them are more interested in
posting instead of this specific option.

Nevertheless, they became curious and particularly engaged

Figure 5. Frequency at which Users “Like” Movies on the Facebook

Regarding the benefits obtained from the
enabling, the great majority of them were very satisfied with
this new functionality. They considered as very relevant the
answers ranked according to their likes (Figure 6). On the
other hand, they reported that the response time
considering the user context, was slower
queries were executed without the plugin.
movie genre has not been returned
Facebook returned a movie with
translated), thus it could not be
service.

Thus, we could verify the effectiveness of our approach
We have confirmed that not only
essential (comparing the ranked result
ones), but also that our techniques are

V. RELATED

Query personalization techniques have been tackled in
diverse environments. The works
[2], Stefanidis et al. [3] and Arruda
preferences to personalize queries.
query personalization in databases based on user profiles.
The second one [3] provides a recommendation system that
expands query results according to user preferences. This
system can compute query results by considering the user
history and the current state of the query
Arruda et al. [18] implemented a query module in a PDMS
(Peer Data Management System)
personalization. This is accomplished by means of the choice
of which correspondences (mappings) should be considered
when reformulating a query between two peers. As a result,
query answers are ranked according to the priority
established for the correspondences.

In the field of context-aware system
significant amount of research e
managing context information.

Figure 6. Degree of Relevancy of the Produced Answers when U

CODI4In

Frequency at which Users “Like” Movies on the Facebook.

Regarding the benefits obtained from the CODI4In
enabling, the great majority of them were very satisfied with

onality. They considered as very relevant the
answers ranked according to their likes (Figure 6). On the

reported that the response time, when
was slower than when the

thout the plugin. In some cases the
returned. This occurred when the

a movie with a Portuguese title (not yet
thus it could not be found using the IMDB

we could verify the effectiveness of our approach.
that not only is personalization highly

essential (comparing the ranked results with the original
our techniques are promising to proceed.

ELATED WORK

Query personalization techniques have been tackled in
s of Koutrika and Ioannidis

Arruda et al. [18] consider user
preferences to personalize queries. The first one [2] provides

tion in databases based on user profiles.
a recommendation system that

expands query results according to user preferences. This
system can compute query results by considering the user
history and the current state of the query and the database.

] implemented a query module in a PDMS
(Peer Data Management System) that enables query
personalization. This is accomplished by means of the choice
of which correspondences (mappings) should be considered

ting a query between two peers. As a result,
query answers are ranked according to the priority
established for the correspondences.

aware systems, there has been
of research effort for modeling and

Figure 6. Degree of Relevancy of the Produced Answers when Using the

CODI4In

49Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

The Context-ADDICT (Context-Aware Data Design,
Integration, Customization and Tailoring) project [1] has
been working in the development of a framework which,
starting from a methodology for the early design phases,
supports mobile users through the dynamic hooking and
integration of new, available information sources, so that an
appropriate context-based portion of data is delivered to their
mobile devices.

Kabir et al. [6] introduce the SCIMS, a social context
information management system which uses an ontology
based model for classifying, inferring and storing social
context information, in particular, social relationships and
status. It also provides an ontology based policy model and
language for owners to control access to their information.

The CareDB project [19] addresses the goal of
embedding support for context and preference-aware query
processing within a database system. It has been developed
as a complete relational database system, supporting two
main core functionalities: (i) various preference evaluation
methods (e.g., skyline) and (ii) integration of surrounding
contextual data (e.g., traffic, weather). Both functionalities
are included within the query processor.

Karapantelakis and Maguire [20] present a system that
uses social network information to recommend Web feeds of
related content to users. The system mines data from popular
social networks and combines it with information from third
party websites to create user profiles. Then, these profiles are
matched with appropriately tagged Web feeds and are
displayed to users through a mobile device application.

Comparing these works with ours, most of them deal
with user profiles, and some of them with context
information. In our work, we provide a model to be used in
any user context management solution, through an ontology.
Differently from these works, our approach is not concerned
with only providing context as a means to enhance query
personalization, but also, providing a plugin to be coupled in
data-oriented applications. Using the CODI4In plugin, the
front-end application does not need to take care about the
user context. In this current version, our approach lies in the
lack of user intervention, since his preferences regarding
movies genre are automatically acquired from his profiles in
a commonly used social network. The CODI4In is able to
identify these preferences from the user tagged “likes” and
extract genres from the “liked” movies using information
stored in the IMDB on the fly. These obtained preferences
are persisted as CEs and used to provide query
personalization in the front-end application.

VI. CONCLUSION AND FUTURE WORK

In data-oriented applications, the semantics surrounding
queries are rather important to produce results with relevancy
according to the users’ context. This work has presented the
CODI4In - a plugin for retrieving the user context from
social networks and then using this context information to
personalize user queries submitted in a data-oriented
application. The CODI4In accesses the information from a
social network which has been allowed by the user, thus
respecting his privacy.

In our case study, when CODI4In is enabled, CEs related
to the user (in this case, movies’ likes and referred movies’
genres) are taken into account to rank query answers
presented by the application. Experiments carried out with
real users have shown that query answers have become more
relevant when the context has been considered to rank them.

We are now extending the CODI4In along with a number
of directions, including support for reasoning mechanisms
and other kinds of query personalization algorithms. We are
also specifying another application to be coupled with the
CODI4In plugin. It will provide means to accomplish other
kinds of experiments, including the usage of other social
networks, e.g., the LinkedIn.

REFERENCES

[1] L. Tanca, C. Bolchini, E. Quintarelli, F. Schreiber, and G.
Orsi, “Problems and Opportunities in Context Based
Personalization,” Proc. VLDB Endowment (PersDB 2011),
Vol. 4, No. 11, pp. 1 – 4, 2011.

[2] G. Koutrika and Y. Ioannidis, “Personalized Queries under a
Generalized Preference Model,” 21st Intl. Conf. On Data
Engineering (ICDE 2005), pp. 841 – 852, Tokyo, 2005.

[3] K. Stefanidis, M. Drosou, and E. Pitoura, “You May Also
Like Results in Relational Databases,” Proc. 3rd International
Workshop on Personalized Access, Profile Management and
Context Awareness in Databases (PersDB 2009), pp. 37-42.
Lyon, 2009.

[4] A. Dey, “Understanding and Using Context”. Personal and
Ubiquitous Computing Journal, vol. 5 (1), pp. 4-7, 2001.

[5] V. Vieira, P. Tedesco, and A.C. Salgado, “Designing Context-
Sensitive Systems: An Integrated Approach,” Expert Systems
with Applications, vol. 38(2), pp.1119-1138, 2010.

[6] M. A. Kabir, J. Han, J. Yu, and A. W. Colman, “SCIMS: A
Social Context Information Management System for Socially-
Aware Applications,” CAiSE, pp.301-317, 2012.

[7] M. Rowe and F. Ciravegna, “Getting to me: Exporting
semantic social network from facebook,” Proc. 1st Workshop
on Social Data on the Web (SDoW2008), vol. 405, pp. 28-41.
Oct. 2008.

[8] M. Freitas, J. Silva, D. Bandeira, A. Mendonça, A. C.
Salgado, and D. Souza, “A User Context Management
Approach for Query Personalization Settings,” Proc. 6th
International Conference on Semantic Computing (ICSC),
pp. 333-335, 2012, Palermo, Italy.

[9] Facebook, available at http://www.facebook.com. Accessed
on November 26th, 2012.

[10] Nielsen Online. Global Faces and Networked Places. A
Nielsen report on Social Networking's New Global Footprint.
Available at
http://blog.nielsen.com/nielsenwire/wpcontent/uploads/2009/0
3/nielsen_globalfaces_mar09.pdf.

[11] Twitter, available at http://www.twitter.com. Accessed on
November 26th, 2012.

[12] G. Biamino, “Modeling social contexts for pervasive
computing environments,” Pervasive Computing and
Communications Workshops (PERCOM 2011), pp. 415- 420,
2011.

[13] Facebook documentation. Available at
http://developers.facebook.com/docs/reference/api/. Accessed
on December 2nd, 2012.

[14] OntoViz documentation. Available at
http://protegewiki.stanford.edu/wiki/OntoViz. Accessed on
November 26th, 2012.

[15] IMDB API, available at http://www.imdbapi.com. Accessed
on November 26th, 2012.

50Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

[16] Y. An, J. Mylopoulos, and A. Borgida, “Building Semantic
Mappings from Databases to Ontologies,” Proc. Twenty-First
National Conference on Artificial Intelligence (AAAI), pp.
1557-1560. Boston, 2006.

[17] Neo4J. Available at http://www.neo4j.org. Accessed on
November, 26th, 2012.

[18] T. Arruda, D. Souza, and A.C. Salgado, “PSemRef:
Personalized Query Reformulation based on User
Preferences,” 12th International Conference on Information
Integration and Web-based Applications & Services
(iiWas2010), pp. 681-684, Paris, 2010.

[19] J. Levandoski, M. Khalefa, M., “An Overview of the CareDB
Context and Preference-Aware Database System”, In. Proc.
IEEE Data Eng. Bull. 34(2), pp. 41-46. 2011.

[20] A. Karapantelakis, and G. Q. Maguire Jr, “Utilizing Social
Context for Providing Personalized Services to Mobile
Users,” Proc. 5th European conference on Smart sensing and
context (EuroSSC 2010), pp. 28-41, 2010.

51Copyright (c) IARIA, 2013. ISBN: 978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications

