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Abstract—Naive implementations of hierarchical classifiers
that classify documents into large-scale taxonomy structures
may face the contradiction between relevancy and efficiency
performances. To address this problem, we focused on tax-
onomy modification algorithms for gradually improving the
relevance performances of large-scale hierarchical classifiers.
We developed four taxonomy modification algorithms that
aggregate primitive operations before investigating hierarchi-
cal relevance performances. All but one produced taxonomy
sequences that generate classifiers exhibiting practical effi-
ciencies. One algorithm, which strictly maintains balanced
proportions of taxonomy structures, generated a taxonomy
sequence producing classifiers that exhibit stable relevancy
performances. Another algorithm, which roughly maintains the
proportions of taxonomy structure, but strictly maintains the
maximum size of the training corpus for each local classifier,
generated a taxonomy producing a classifier that exhibited
the best relevance performance in our experiment. The base
classification system we developed for this experiment uses an
approach that locates local classifiers per parent node of tax-
onomies. It is able to classify documents into directed-acyclic-
graph structured taxonomies. The system reached the level
of practical hierarchical classification systems that efficiently
and relevantly predict documents into over 10,000 taxonomy
classes.
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I. INTRODUCTION

A classifier with a larger set of classes has the potential to
enable more precise predictions than one with fewer classes.
Hierarchical structures are commonly applied to large sets
of classes to increase the usability of the classes. A hierar-
chical structure for a classifier is called a taxonomy. Most
taxonomies are constructed manually. They provide natural
and easy-to-use methods for users to access categorized
documents. Automatic classification systems that classify
documents into hierarchical taxonomies are called hierarchi-
cal classifiers. What strategy we should take to implement
hierarchical classifiers is one of the most essential aspects
when classifying documents into large-scale taxonomies.
There are three basic classification strategies: the top-down
(or local) strategy [1]–[6], the big-bang (or global) strategy,
and the flat strategy [7].

While taxonomies usually provide natural and easy-to-use
methods for users, they rarely provide the best efficiency and

relevancy hierarchical structures for automatic classifiers.
There are two approaches for improving hierarchical clas-
sifier performances by maintaining the benefit of manually
constructed taxonomies:

1) clustering approach — decomposing a taxonomy into
a flat set of classes and applying an ordinary clus-
tering algorithm to those classes for building the best
performance hierarchical structure [8],

2) gradually modifying approach — gradually modifying
taxonomy structures by applying promote, demote,
and merge primitive operations on hierarchical struc-
tures [9]–[11].

The first approach has a high possibility of obtaining the
best performing hierarchical structure because there is no
restriction in arranging structures. The second approach
has an advantage that it can precisely control the balance
of modified hierarchical structures. Unbalanced hierarchical
structures may result in producing inefficient or irrelevant
classifiers, especially when they used the local classification
strategy.

We present four versions of taxonomy modification al-
gorithms formulated based on the gradually modifying ap-
proach for local strategy hierarchical classifiers. The first
algorithm simply and simultaneously accumulates primitive
operations for all taxonomy nodes. The second algorithm
reduces primitive operations that induce child node con-
centrations to specific nodes. The third algorithm limits the
average depth of generating a taxonomy, while the fourth one
also limits each corpus size used for training a parent node of
the taxonomy. We developed an experimental classification
system for evaluating these algorithms. We conducted an
experiment with at most 120 iterations for each taxonomy
modification algorithm. The result showed that the third
algorithm produced stable relevance metric scores, while the
fourth one produced much better relevance scores than the
others.

Contributions of the paper can be summarized as follows:

• presentation of a taxonomy modification algorithm with
stable relevancy performance,

• presentation of a taxonomy modification algorithm with
best relevancy performance,
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• implementation of practical hierarchical classifiers that
take the “local classifier per parent” approach [7] to
directed acyclic graph (DAG)-structured taxonomies,
and

• implementation of practical hierarchical classifiers that
efficiently and relevantly predict documents into over
10,000 taxonomy classes.

II. LARGE-SCALE HIERARCHICAL DOCUMENT
CLASSIFICATION

A. Hierarchical Classifier Specifications

General definitions and categorizations of machine-
learning document classifiers have previously been published
[12], as have the results of experiments on various types of
hierarchical taxonomy classifiers [7], [13]–[15]. According
to their applications and requirements, hierarchical classifi-
cation systems might have different problems, algorithms,
and corpus arrangements. This often causes confusion when
the performance of various classifiers are compared. To guar-
antee fair comparisons with the classification system we de-
veloped for this experiment, we represent the specifications
using the unifying framework for hierarchical classification
[7], which provides comprehensive and essential notations
of hierarchical classification tasks and solutions.

The specifications of our system are described as follows:

< Γ, Ψ, Φ > = < D,MPL, PD >

< ∆, Ξ, Ω, Θ > = < SPP, NMLNP,D, LCPN >,

where < Γ, Ψ, Φ > and < ∆, Ξ, Ω, Θ > specify the types
of problems and algorithms of the framework, respectively.

The property of original taxonomy data is mainly affected
by the problem specifications. ‘Γ = D’ indicates the DAG
taxonomy graph structure. ‘Ψ = MPL’ indicates that data
instances can have multiple paths of labels, and ‘Φ = PD’
indicates that data instances may have labels corresponding
to interim nodes of taxonomies (partial depth labeling).
Further description of the data is explained in Subsection
II-C.

Our primary goal was to develop practical web-document
classifiers for large-scale web directories. This application
category majorly affected the determination of the algo-
rithm specifications. ‘∆ = SPP ’ indicates that the algo-
rithm performs single path predictions. Although multiple
path predictions might help some types of users, they
may complicate algorithms and lose classifier’s efficiency.
‘Ξ = NMLNP ’ indicates that the algorithm performs non-
mandatory leaf-node predictions. It is normal for web pages
to be categorized not only in leaf nodes but also in interim
nodes of web directory structures. ‘Ω = D’ indicates that
the algorithm can handle DAG-structured taxonomies, and
‘Θ = LCPN ’ indicates that the type of algorithm is ‘local
classifier per parent node’. The reasons for choosing this
type is discussed in Subsection V-C.

B. System Implementation

We developed an experimental classification system that
consists of eight modules: taxonomy translator, crawler,
feature extractor, training and evaluation corpus generator,
trainer, predictor, evaluator, and taxonomy modifier. The
taxonomy translator translates the whole category structure
of the original web directory data into a taxonomy that
can be processed by the system. The crawler accesses the
Internet, fetches the contents of all the documents (URLs)
categorized in the taxonomy, and saves them as HTML
files. The feature extractor first divides each crawled HTML
file into four parts: the title, body, meta-keywords, and
meta-description. It then selects a content string from each
part, tokenizes the string into a set of terms, and saves
them as bag of words (BOW) features. If the content
is written in Japanese, the tokenization is performed by
applying a Japanese morphological analyzer. The training
and evaluation corpus generator reads relational information
between the nodes and documents in the latest taxonomy
and builds a relationship table that combines each taxonomy
node with documents for training and evaluation purposes.
The trainer trains a linear-kernel support vector machine
(SVM) model of a multi-class classifier for each parent node
of the latest taxonomy using the saved BOW features of
training corpus documents. The predictor generates a BOW
feature from a URL or loads a saved BOW feature of the
URL, performs local classification, and predicts a taxonomy
node class. The evaluator applies the predictor to the test
corpus, saves all the classification results, and calculates
several evaluation metrics. The taxonomy modifier generates
a new taxonomy from the classification results saved by
the evaluator. The next generation of the taxonomy can
be produced by repeating the process sequence after the
training and evaluation corpus generator.

The system is executed on a common Linux PC server
that has four 2.33-GHz Xeon CPUs and 64-GB memory.
Each CPU has 4 independent cores. The PC has totally 16
cores. The codes are written in Shell, Perl, and Erlang with
a total of 25,532 lines.

C. Data Preparation

The taxonomy used in this experiment was constructed
from the Yahoo! Japan category (http://dir.yahoo.co.jp/)
snapshot on May 2, 2007. The taxonomy translator gen-
erated the original taxonomy, which had a total of 85,791
classes. The crawler fetched 490,018 documents represent-
ing 90.6% of all the documents in the taxonomy. The trainer
produced 25,747 models for parent nodes of the taxonomy,
each of which had more than one child node. The taxonomy
modifier generated taxonomies that have more than 200,000
nodes in the experiment.

Our training example assigning policy can be formalized
as follows using notations described by Fagni and Sebastiani
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[16] and Cai and Hoffmann [7]:

Tr+(cj) =
⋃

c∈⇓(cj)

Tr+(c) \
⋃

c∈⇓(↓(↑(cj))\cj)

Tr+(c) . (1)

Our classification, not taxonomy modification, algorithm
used in the experimental hierarchical classifiers is classified
as “local classifier per parent node” classification (Θ =
LCPN ). Each parent classifier of this algorithm is a multi-
class (not a binary) classifier. Only positive examples are
explicitly assigned to class cj for training its parent node
↑ (cj) multi-class classifier. Because the handling taxonomy
is a DAG structure (Ω = D), child node class cj may
appear under different parent node classes (cp1, cp2 ∈↑
(cj), cp1 6= cp2). Sibling class sets ↓ (↑ (cj)) \ cj may
differ under different parent nodes cp1 and cp2. Therefore,
the example set Tr+(cj) under cp1 and Tr+(cj) under
cp2 are not always identical in the policy (1). This issue
impacts many subsystems of hierarchical classifiers. Our
classification system was designed to handle the issue by
introducing example class identifiers, each of which includes
not only the target class identifier but also the parent class
identifier.

III. IMPROVEMENT METHODS FOR LARGE-SCALE
TAXONOMY

A. Tang et al.’s Methods

The basic idea behind the methods proposed by Tang et
al. [9] is that taxonomy improvements can be achieved by
iterating three types of primitive operations (promote, de-
mote, and merge) for taxonomy modifications. The promote
operation raises a target node to the same hierarchical level
as its parent node. The demote operation lowers a target node
to the same hierarchical level as its child nodes as a sibling.
The merge operation gathers two sibling target nodes into a
newly created sibling node. The most conservative approach
to taxonomy improvements might involve the following
steps: 1) investigate hierarchical classifier relevance perfor-
mances of taxonomies that can be produced by all possible
single operations from the initial taxonomy, 2) select the
operation and target nodes that perform the best, 3) apply
the selected operation to the taxonomy, 4) take the modified
taxonomy as the next initial taxonomy, and 5) repeat from
step 1). Because this approach is far from efficient, Tang et
al. proposed two heuristic methods [10] that perform more
efficiently: a greedy approach, which selects possible single
operations according to the classification result statistics of
the initial taxonomy, and a local approach, which prioritizes
target nodes according to the hierarchical structure of the
initial taxonomy.

B. Accumulate Primitive Operations Algorithm

The two heuristic methods described above require train-
ing and evaluation processes for each taxonomy modified
by an operation candidate before the operation is actually

applied to the taxonomy. The total computational cost for
those processes increases drastically according to the scale of
the taxonomy. While the cost of training processes might be
reduced by limiting the training node classifiers to only ones
affected by single taxonomy modification operations, the
cost of evaluation processes cannot be easily reduced. Local
classification results might be affected by modifications of
distantly located nodes, especially if those nodes belong to
the upper positions in the taxonomy. The ‘upper positions’
mean the positions of taxonomy nodes located near the
root node. Therefore, we developed four algorithms for
modifying large-scale taxonomies by extending Tang et al.’s
methods to drastically reduce the training and evaluation
costs.

The first modification algorithm extended for large-scale
taxonomies, accumulate primitive operations (APO), con-
sists of processes that find promote, demote, and merge
operation candidates from all nodes in the initial taxonomy,
solve conflicts among them, simultaneously apply those
operation candidates to produce next-generation taxonomies,
train a hierarchical classifier using the taxonomy, and eval-
uate the classifier. These processes reduce the number of
the evaluation process iterations to one for generating the
next taxonomy, while Tang et al.’s methods might iterate
the evaluation process O(n) times, where n is the size of
the taxonomy.

C. Avoid Child Concentration Algorithm

Although the APO algorithm improved the efficiency
of taxonomy improvement processes, it worsened training
and predicting process efficiency. The later generations
of taxonomies modified by the APO algorithm tend to
concentrate child nodes to particular parent nodes. Nodes
holding many classes and training documents require enough
memory to maintain large number of support vectors in
training and predicting processes of parent multi-class SVM
classifiers. Such nodes also consume certain computational
time. Therefore, we developed the avoid child concentration
(ACC) algorithm to avoid the child concentration phenomena
by extending the APO algorithm. The difference is that
the new algorithm has an additional constraint in selecting
promote candidates. The constraint limits each parent node
to having at most a predefined number of child nodes.

D. Limit Average Depth Algorithm

The ACC algorithm solved the problem of training and
predicting process efficiency by forcing the taxonomy struc-
ture not to spread widely. This results in deepening of the
structure. Local classifiers have a weak point in that rele-
vancy scores might worsen by accumulating errors through
the path of parent node classifiers. The deeper structure
enhances this weak point. Therefore, we developed the
limit average depth (LAD) algorithm by restricting primitive
operations that produce deeper structures. This algorithm
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Figure 1. Flat f1 scores of classifiers generated using APO, ACC, LAD,
and LCV algorithms

differs from the ACC algorithm in definitions of the demote
and merge candidate node set. The LAD algorithm may
eliminate nodes, which are located at depths deeper than
the predefined depth, from the candidates node set.

E. Limit Corpus Volume Algorithm

The LAD algorithm has two contradicting restrictions for
selecting primitive operations. While the restriction for the
number of child nodes deepens the taxonomy structure, the
depth restriction attempts to increase the number of child
nodes for several parent nodes. The contradicting restric-
tions decrease the number of primitive operation candidate
nodes and require many taxonomy generations in order to
improve relevance performances. Our detailed observation of
taxonomy modification experiments revealed that the size of
the training corpus affects training and predicting process
efficiency more directly than the number of child nodes.
Therefore, we developed the limit corpus volume (LCV)
algorithm by primarily restricting the size of the corpus
used for each parent node to train its classifier. Although
it also applies the restrictions used in the LAD algorithm,
the parameters are partly loosened for the primitive operation
candidate sets to obtain more freedom to improve relevance
efficiency.

IV. EMPIRICAL RESULTS

Figure 1 shows flat f1 scores of hierarchical classifiers,
whose companion taxonomies are generated by the APO,
ACC, LAD, and LCV algorithms. On the X-axis, T1, T2,
T3, T4, . . . denote generations for the 1st-, 2nd-, 3rd-, 4th-,
. . . taxonomies, respectively. The ‘flat f1’ scores are macro
averaged f1 scores of taxonomy nodes, each of which has at
least one expected document and one predicted document.
The APO algorithm iteration was terminated at the 11th
generation because the computational cost for training and
predicting processes had became too large. The predicting
process efficiencies for the first ten generations are shown in
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Figure 2. Predicting process efficiency of classifiers generated using APO,
ACC, LAD, and LCV algorithms
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Figure 3. Average depths of taxonomies generated using APO, ACC,
LAD, and LCV algorithms

Figure 2. The ACC algorithm iteration was terminated at the
16th generation because the depth of the taxonomy structure
had become too deep. The average depths of taxonomies
generated by the APO, ACC, LAD, and LCV algorithms
are shown in Figure 3. There is no significant reason for the
termination of the LAD and LCV algorithms.

The metrics of flat precision, recall, and f1 scores might
be too strict for relevance performances of hierarchical
classifiers. More adequate metrics, hierarchical precision,
recall, and f1 scores, have been proposed [7]. Because we
had accidentally lost all raw classification results of the
APO, ACC, and LAD algorithms, only the LCV algorithm
results could be processed to calculate for those metrics. The
hierarchical f1 scores of classifiers generated for the LCV
algorithm are shown in Figure 4.

V. DISCUSSION

A. Stability of Relevance Performance

The LAD algorithm generated a sequence of taxonomies,
which produce hierarchical classifiers exhibiting stable rele-
vance scores, as shown in Figure 1. Although each process
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Figure 4. Flat f1 score (f1) and hierarchical f1 score (hf1) of classifiers
generated using LCV algorithm

for generating a new taxonomy modifies a small number of
nodes compared to other algorithms, the LAD flat f1 scores
exhibited small improvements and reached the best record of
such scores sometimes even after the hundredth generation.
While the LAD algorithm has strict restrictions for solving
the child node concentration and deep structure problems, it
sometimes found a successful primitive operation candidate
set. The LAD algorithm will perform well when that a) the
original taxonomy structure is stable and b) the user has
leeway to compute enough taxonomy modification iterations.

B. Best Relevance Performance

The LCV algorithm generated the 2nd generation taxon-
omy, which produced a hierarchical classifier that attained
the best flat f1 score record (9.99%) of the experiment, as
shown in Figure 1. The figure also indicates that the per-
formance of this algorithm is not stable. There were several
rapid depressions at the 7th, 12th, and 13th generations. The
determinant reason for the depressions is currently under
investigation. The major differences between the LCV from
LAD algorithm were

1) avoiding corpus concentration and
2) loosening the parameter for child concentrations.

Differences 1) seems to play the same role as the restriction
for avoiding child concentration, and succeeded in maintain-
ing training and predicting process efficiency at the practical
level, as shown in Figure 2. The effects of difference
2) seems to be both good, recording the best relevancy
score, and bad, unsteadiness of relevancy scores of modified
taxonomy sequences. The LCV algorithm should be applied
when a) the original taxonomy structure is unstable and b)
classification systems must be developed rapidly.

Figure 1 shows that the LCV algorithm performed the best
at the 2nd generation measured using flat f1 scores. Figure
4 shows that the algorithm performed the best at the 85th
generation measured using the hierarchical f1 scores. This
means that the hierarchical classifier for the 85th generation

taxonomy miss-classified more times than the 2nd taxonomy
classifier, but the degree of miss-classification of the 85th
one was less significant than the 2nd one. The flat f1
scores penalize miss-classifications uniformly. Nevertheless,
the hierarchical f1 scores penalize them heavily if each
one predicts a document to the more distanced node from
its expected node. The distance-based loss scores [17] are
commonly used to measure the degree of miss-classification.
We could not use the loss scores successfully because it
was difficult to combine the score with other relevancy
scores such as f1. The hierarchical precision, recall, and
f1 scores naturally combine relevance performance metrics
with hierarchical penalty metrics. The criteria of selecting
between the flat and hierarchical relevance metrics depends
on the types of classification applications. If an application
emphasizes the number of documents that were predicted to
the exact matching nodes, the flat metrics should be used for
evaluating classifiers. If another application tolerates miss-
classification between nearby leaf-level sibling nodes, the
hierarchical metrics should be used. We consider the web
document classification applications as the latter type.

C. Classifier Design Selection

While we selected the ‘local classifier per parent node’
type classification algorithm (Θ = LCPN ), Silla and
Freitas [7] presented other types as ‘local classifier per node’
(LCN ), ‘local classifier per level’ (LCL), and ‘global clas-
sifier’ (GC). Implementations of the LCN algorithm locate
local binary classifiers at all nodes that have the possibility
of being predicted. The number of LCN local classifiers
is always greater than that of the LCPN algorithm. The
local strategy hierarchical classifiers designed for large-scale
taxonomies must have a large number of local classifiers.
This is a fatal disadvantage for training and predicting
process efficiency. Considering that we are using SVM-
based multi-class local classifiers that consist of optimized
combinations of binary classifiers, it might be feasible to
apply the LCN algorithm with careful selection of the
training corpus. The LCN classifiers tend to be trained using
unbalanced corpus that consist of a few positive examples
and a huge number of negative examples. It requires ad-
ditional processing time to improve relevancy performance.
The LCL and GC classifiers have to simultaneously treat
many prediction classes. When they are applied for large-
scale taxonomies, they increase the size of model, training
time, and prediction latency.

D. Performance Limits of Large-Scale Hierarchical Classi-
fiers

There are several issues to improving relevance and
efficiency performances that have not been applied to our
experimental hierarchical classifiers. While the classifiers
might not exhibit the best relevance or efficiency, they
seem to balance better relevance and efficiency performances
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considering they deal with large-scale taxonomies and are
executed on a commonly available server machine. The
classifier design choices of the feature extraction (full BOW)
and the classification algorithm (Θ = LCPN ) support
balanced performance improvements. A large number of the
improvements was achieved using the taxonomy modifica-
tion method. The 11th generation taxonomy of the APO
algorithm produced a classifier that resulted in 9.08% flat
f1 value, as shown in Figure 1. Nevertheless, the efficiency
of the classifier is inferior to all other evaluated hierarchical
classifiers, as shown in Figure 2. One of the LCV classi-
fiers exceeded the relevancy performance by maintaining
practical efficiencies, as shown in Figure 1. The LCV
classifier gives an example of practically executable large-
scale hierarchical classifiers, each of whose taxonomy has
more than 10,000 classes.

VI. CONCLUSION

We focused on taxonomy modification algorithms that
gradually improve the relevance performances of large-scale
hierarchical classifiers of web documents. Considering the
research results from Tang et al. [9], [10], who took the same
approach, we investigated and implemented four taxonomy
modification algorithms that aggregate primitive operations
before evaluating hierarchical relevance performances. The
LAD algorithm generated a sequence of taxonomies that
produce classifiers exhibiting stable relevancy performances.
The LCV algorithm generated a taxonomy that produces a
classifier that resulted in the best flat f1 score (9.99%) in
our experiment. The hierarchical classifiers executed in the
experiment used the “local classifier per parent” approach [7]
and classified documents into DAG-structured taxonomies.
The system we developed for this experiment reached the
level of practical hierarchical classification systems that
relevantly and efficiently predict documents into taxonomies
containing more than 10,000 classes.
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