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Abstract—Data imbalance problem has received a lot of 
attention in machine learning community because it is 
one of the causes that degrade the performance of 
classifiers or predictors. In this paper, we propose 
geometric mean based boosting algorithm (GM-Boost) 
to resolve the data imbalance problem. GM-Boost 
enables learning with consideration of both majority 
and minority classes because it uses the geometric mean 
of both classes in error rate and accuracy calculation. 
We have applied GM-Boost to bankruptcy prediction 
task. The results indicate that GM-Boost has the 
advantages of high prediction power and robust 
learning capability in imbalanced data as well as 
balanced data distribution.   

Keywords - data imbalance; GM-Boost; bankruptcy 
prediction 

I. INTRODUCTION  
Data imbalance problem is frequently observed in 

various classification and prediction tasks when most 
of training samples belong to one majority class. Data 
imbalance problem is reported in a wide range of 
classification tasks, such as oil spill detection [16], 
response modeling [23], remote sensing [1], scene 
classification [27], card fraud detection [9] and credit 
rating [18].   

Data imbalance problem could be one of the main 
causes that degrade the performance of machine 
learning algorithms in classification tasks. There are 
two main reasons why data imbalance causes 
degradation in performance of machine learning 
algorithms [13,14,24]. The first reason is associated 
with the objective function of classification 
algorithms. One of widely used objective functions 
for classification algorithms is the arithmetic mean 
based accuracy (hereafter, arithmetic accuracy) which 
is a ratio of the number of correctly classified 
instances over the number of total instances. However, 
in the presence of data imbalance, arithmetic accuracy 
can be inappropriate because the accuracy is highly 
dependent on the classification accuracy of majority 
class samples. More specifically, in very imbalanced 
domains, most standard classifiers will tend to learn 
how to predict the majority class. While these 
classifiers can obtain higher predictive accuracies 
than those that also try to consider the minority class 
more, this seemingly good performance can be argued 
as being meaningless [24]. 

The second reason for the degradation in 
performance is the distortion of decision boundaries 

resulting from imbalanced distribution of the classes. 
As the imbalance of data is getting severe, the 
decision (classification) boundary of majority class 
tends to invade the decision boundary of the minority 
class, so that the decision boundary of majority class 
is gradually expanded while the decision boundary of 
minority class is gradually reduced. This problem 
eventually causes the decrease in the accuracy for 
minority class.  

For the alternatives to solve this problem, various 
methods have been proposed including under-
sampling, over-sampling, cost adaptive strategies, and 
boosting algorithms. Recently, various boosting 
algorithms have been proposed as alternatives for data 
imbalance problems including SMOTEBoost [3] and 
RUSBoost [22]. In particular, SMOTEBoost is an 
application of boosting techniques to over-sampled 
data generated by synthetic minority over-sampling 
technique (SMOTE) [2]. SMOTE effectively creates a 
new minority samples, while boosting algorithm 
proceeds training on over-sampled data through 
repetitive sampling process which focuses on 
misclassified observations. In this way, SMOTEBoost 
can reinforce the training over samples from minority 
class to be likely misclassified. However, the boosting 
algorithm can be inappropriate as for over-fitting 
problem because its objective function is still 
measured in terms of arithmetic accuracy and 
arithmetic errors. New minority class samples, which 
are generated from SMOTE, are likely to have the 
higher similarity than majority data samples. Most 
standard learning algorithms will tend to generate 
classifiers focusing on samples with higher similarity 
because that strategy is helpful to maximize the 
objective function, i.e. arithmetic accuracy. This 
drawback might increase generalization errors when 
classifiers are applied to new validation data set 
which is not trained. 

This paper proposes geometric mean based 
boosting (GM-Boost) which is a novel boosting 
algorithm applying the concept of geometric accuracy 
to AdaBoost algorithm [10]. It has the advantage of 
enabling balanced learning against both majority and 
minority classes. The proposed GM-Boost algorithm 
is applied to bankruptcy prediction task which is one 
of the typical data imbalance problems in business 
domains. Two different data samples, imbalanced 
data and balanced data samples, are constructed to 
verify the performance of GM-Boost algorithm.  

Experimental results show that GM-Boost has the 
advantages of high prediction power and robust 

15Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-247-9

DBKDA 2013 : The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications



learning capability in imbalanced data distribution as 
well as in balanced data distribution. 

II. DATA IMBALANCE PROBLEM IN BINARY 
CLASSIFICATION PROBLEMS 

A. Data Imbalance Problem 
Kang and Cho [13] constructed six sample groups 

according to different data balance rates (1:1, 1:3, 1:5, 
1:10, 1:30, and 1:50) in order to analyze the effects of 
data imbalance on classification accuracy of SVM. 
From their experimental results, it can be seen that, 
for the two sample groups with little or no data 
imbalance problem (1:1, and 1:3), the sizes of 
classification boundary areas of the two classes are 
similar to each other. However, for the sample groups 
with serious data imbalance problems (1:5, and 1:10), 
the area of minority class is reduced because the area 
of the majority class invades the area of minority 
class, and thus the classification accuracy for minority 
class samples is degraded. Especially, for the sample 
groups with extreme data imbalance (1:30, and 1:50), 
it is reported that the classification boundary area for 
minority class is excessively small, which makes the 
classification for minority class meaningless. Also, 
they report that, as the data imbalance is getting 
severe, arithmetic accuracy over total samples 
steadily increases due to the high accuracy over 
samples of majority class, while the arithmetic 
accuracy for minority class is dramatically reduced, 
and thereby geometric accuracy over total samples 
gradually decreases. They argue that these results 
demonstrate that arithmetic accuracy is not a suitable 
objective function for imbalanced data.  

Wu and Chang [24] assert two following results as 
a cause of skewed boundaries of SVM due to data 
imbalance. Firstly, data imbalance problem causes a 
tendency that samples of minority class do not reside 
in the boundary area of minority class. Secondly, as 
the data imbalance is getting severe, boundary area of 
majority class is expanded and boundary area of 
minority class is reduced due to the imbalance of 
support vectors. This problem causes the distortion of 
boundary area. Consequently, the possibility becomes 
very high that the classifier will classify a sample as a 
majority class. 

B. The Approaches to Resolve Performance Measure 
Problem 
Arithmetic accuracy is a proper performance 

measure for classifiers in balanced data set. However, 
under data imbalance, it is not a proper performance 
measure anymore because it is highly influenced by 
the classification accuracy of majority class [12, 13, 
23]. Geometric accuracy and ROC analysis are 
proposed to resolve this problem. The geometric 
accuracy is calculated as a square root of sensitivity 
multiplied by specificity [14] where sensitivity and 
specificity are TP/(TP+FN) and TN/(FP+TN) 
respectively. In ROC analysis, we usually plot and 
connect each sample to generate a polyline ordered by 
their classification score in two dimensional Cartesian 
coordinate system where x axis denotes 1- specificity 

and y axis denotes sensitivity. The accuracy of the 
classifier is calculated as an area under the ROC 
curve (AUROC). In a perfect model, AUROC is 1.0 
and in a random guess model, AUROC is 0.5. Most 
models generally have AUROC which is higher than 
0.5 and lower than 1.0. As AUROC becomes closer to 
1.0, the model is regarded as more accurate [7]. 

C. The Approaches to Resolve Data Distribution 
Problem 
The previously proposed methods to resolve data 

imbalance can be divided into twofold: data sampling 
and the assignments of weights (penalties) to 
misclassified instances [13].  

There have been two types of data sampling 
strategies, under-sampling and over-sampling, which 
is generally used to resolve data imbalance problems. 
Under-sampling removes a portion of majority class 
samples randomly or predefined rules in accordance 
with the number of minority class samples. Obviously 
this method incurs information loss of majority class 
samples. However, it has been shown that, if we 
adopt adequate rules to select and remove samples, it 
can successfully resolve data imbalance problems [11, 
15, 18]. Over-sampling increases the number of 
minority class samples using data duplication and 
data generation [3, 11]. This method is advantageous 
in that there is no information loss in the majority 
class, however, overall learning time will increase as 
the number of data samples increases. In particular, 
since it creates new samples based on the similarity 
among minority samples, it could trigger the over-
fitting problem and generalization error for novel data 
samples. 

In weights assignments methods, cost adaptive 
learning strategies are generally used to impose 
different penalties on misclassified patterns. That is, if 
a sample in minority class is misclassified, the higher 
penalty is imposed on the misclassification than the 
penalty when a sample in majority class is 
misclassified [6, 20]. Although this method does not 
have problems like information loss of under-
sampling or generalization error of over-sampling, it 
can cause to generate unstable classifiers due to the 
excessive sensitivity about the samples.  

Recently, the combinations of sampling and 
boosting algorithms such as SMOTEBoost [3], 
RUSBoost [21], etc. have been applied to data 
imbalance problem and shown successful results. 
Boosting algorithms sequentially generate ensemble 
of classifiers, assigning higher weights to 
misclassified observations than to correctly classified 
observations, and thereby it has an advantage that it 
can strengthen learning on minority class samples 
with the high probabilities of misclassification.  

III. GM-BOOST ALGORITHM 
In this section, we will explain SMOTE, 

AdaBoost, and GM-Boost algorithms which are used 
in this research.  
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A. SMOTE Algorithm 
SMOTE algorithm is used to generate new 

samples for minority class data. SMOTE algorithm 
combines a certain observation with k similar 
minority class samples to generate a new sample 
according to the following calculation: 
Xnew=X+rand(0,1)×(Xn-X)  where Xnew, X, and Xn 
respectively means newly generated sample, the 
original sample, and the nearest k samples to the 
original sample. SMOTE algorithm consists of three 
steps as followings; Firstly, the nearest k samples to 
the original sample is chosen, secondly the distances 
of the original sample and k samples is multiplied by 
a random number between zero and one, and finally, 
the average of the multiplied distances is added to the 
original sample in order to generate a new sample. In 
this way, we repeat SMOTE sampling to increase the 
samples of minority class until both the numbers of 
the minority class and majority class become same. 

B. AdaBoost 
To explain AdaBoost, we assume an ensemble 

𝐶 = {𝐶1,𝐶2, … ,𝐶𝐾} composed of K base classifiers 
from n training samples. Then the error rate for kth 
base classifier (ek) is calculated as an arithmetic mean, 
which is as follows. 

𝑒𝑘 = � 𝑤𝑘(𝑖)𝐿(𝐶𝑘(𝑥𝑖),𝑦𝑖)
𝑛

𝑖=1
  

where, 𝐿(𝐶𝑘(𝑥𝑖),𝑦𝑖) = �1 𝐶𝑘(𝑥𝑖) ≠ 𝑦𝑖
0 𝐶𝑘(𝑥𝑖) = 𝑦𝑖

 and  

   ∑ 𝑤𝑘(𝑖) = 1𝑖  
Note that xi is a vector of predictor variables for 

ith observation, yi is a category of ith observation, and 
Ck(xi) is a classification result of kth classifier on the 
predictor variable vector xi. For the (k+1)th classifier, 
the weight for ith observation is adjusted as follows, 
which impose higher weights on misclassified 
observations. 

𝑤𝑘+1(𝑖) =
𝑤𝑘(𝑖)𝑒𝑥𝑝(−𝛼𝑘𝐶𝑘(𝑥𝑖)𝑦𝑖)

𝑍𝑘
  

where 𝑍𝑘 =  �𝑤𝑘(𝑖)𝑒𝑥𝑝(−𝛼𝑘𝐶𝑘(𝑥𝑖)𝑦𝑖)
𝑖

 

Note that 𝛼𝑘  is conceptually interpreted as an 
importance or accuracy of the classifier, and 
calculated as 𝛼𝑘 = 1

2
𝑙𝑛�(1 − 𝑒𝑘)/𝑒𝑘� . When the 

training samples are constructed for (k+1)th classifier, 
since higher weights are assigned to misclassified 
observations, the boosting algorithm can proceed 
training focused on misclassified observations. The 
ensemble learning algorithm stops when ek > 0.5, and 
the classification result of the ensemble for ith 
observation is a weighted mean of base classifiers' 
classification expressed as follows:  

𝐶(𝑥𝑖) = 𝑠𝑖𝑔𝑛 �� 𝛼𝑘𝐶𝑘(𝑥𝑖)
𝐾

𝑘=1
� 

Because of the advantage that AdaBoost 
algorithm provides learning opportunity to minority 
class samples, various boosting algorithms based on 
AdaBoost are frequently applied to data imbalance 
problem as an alternative solution. As data imbalance 

is more severe, the error rate for minority class is 
higher whereas the error rate for majority class is 
lower. Since higher weights are assigned to minority 
class samples in the process of constructing training 
samples for new classifier, the new classifier will 
strengthen its learning for minority class. In this way, 
although learning algorithm is concentrated on 
majority class samples in the beginning stage of 
ensemble learning, gradually there become more 
learning opportunities for minority class samples. 
Because of this characteristic, those boosting 
algorithms have an advantage that it yields robust 
learning performance even under data imbalance.  

However, the boosting algorithms can exhibit the 
over-fitting and generalization problems because they 
try to maximize arithmetic accuracy. The error rate of 
the classifier ek and the performance of the classifier, 
ɑk, are measures based on arithmetic mean. As is 
mentioned before, measures based on arithmetic 
accuracy might not be valid as a useful objective 
function because the objective function based on 
arithmetic measures tends to generate a strongly 
biased classification function towards majority class 
or class with high similarity among samples. 
Especially, when the boosting algorithms are applied 
after SMOTE algorithm, which generates a new data 
sample from a group of adjacent data samples 
weighted with their inter-distances, it will increase the 
inductive bias due to the increased similarity among 
the group of data samples and will eventually 
aggravate the over-fitting effects. To alleviate these 
problems, we introduce a notion of accuracy based on 
geometric mean, which can consider predictive 
performances of both majority class and minority 
class, to machine learning algorithms. 

C. GM-Boost Algorithm 
In addition to the aforementioned assumptions for 

AdaBoost algorithm, we assume that, out of n training 
samples, n+ samples are in minority class and n- 

samples are in majority class. We let 𝑒𝑘+ be the error 
rate for minority class of kth classifier and 𝑒𝑘+ be the 
error rate for minority class of kth classifier. Then the 
geometric mean based error rate ek, can be defined as 
follows: 

𝑒𝑘 = �𝑒𝑘+ ∙ 𝑒𝑘−,  

where 𝑒𝑘+ =
∑ 𝑤𝑘(𝑖)𝐿(𝐶𝑘(𝑥𝑖),𝑦𝑖)𝑛+
𝑖=1

∑ 𝑤𝑘(𝑖)𝑛+
𝑖=1

 and 

 𝑒𝑘− =
∑ 𝑤𝑘(𝑖)𝐿(𝐶𝑘(𝑥𝑖),𝑦𝑖)𝑛−
𝑖=1

∑ 𝑤𝑘(𝑖)𝑛−
𝑖=1

 

Accordingly, 𝛼𝑘  which means classification 
accuracy of the classifier is calculated as a geometric 
mean based accuracy of classification accuracies of 
minority class and majority class.  

𝛼𝑘 = 𝑙𝑛 ��𝜇 ∙ 𝛼𝑘+ ∙ 𝛼𝑘−�,  

where 𝛼𝑘+ =
1 − 𝑒𝑘+

𝑒𝑘
 and 𝛼𝑘−

1 − 𝑒𝑘−

𝑒𝑘
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Note that 𝜇 is a weighting degree that controls 
the weight value multiplied to each instance. 
Following AdaBoost, the weight imposed on the 
samples for (k+1)th classifier is calculated as follows:  

𝑤𝑘+1(𝑖) =
𝑤𝑘(𝑖)exp(−𝛼𝑘𝐶𝑘(𝑥𝑖)𝑦𝑖)

𝑍𝑘
  

where 𝑍𝑘 =  �𝑤𝑘(𝑖)exp(−𝛼𝑘𝐶𝑘(𝑥𝑖)𝑦𝑖)
𝑖

 

And the final classification result for ith 
observation is calculated as a linear combination of 
ensemble results and 𝛼𝑘.  

𝐶(𝑥𝑖) = 𝑠𝑖𝑔𝑛 �� 𝛼𝑘𝐶𝑘(𝑥𝑖)
𝐾

𝑘=1
� 

Having an advantage of providing learning 
opportunity to minority class samples, various 
boosting algorithms based on AdaBoost are 
frequently applied to data imbalance problem as an 
alternative solution. As data imbalance is more severe, 
the error rate for minority class is higher whereas the 
error rate for majority class is lower. Since higher 
weights are assigned to minority class samples in the 
process of constructing training samples for new 
classifier, the new classifier will strengthen its 
learning for minority class. In this way, although 
learning algorithm is concentrated on majority class 
samples in the beginning stage of ensemble learning, 
gradually there become more learning opportunities 
for minority class samples. Upon such characteristic, 
AdaBoost has an advantage of yielding robust 
learning performance even under data imbalance.  

However, the boosting algorithms can exhibit the 
over-fitting and generalization problems because they 
try to maximize arithmetic accuracy. The error rate of 
the classifier ek and the performance of the classifier, 
ɑk, are measures based on arithmetic mean. As 
mentioned before, measures based on arithmetic 
accuracy might not be valid as a useful objective 
function because the objective function based on 
arithmetic measures tends to generate a strongly 
biased classification function towards majority class 
or class with high similarity among samples. 
Especially, when the boosting algorithms are applied 
after SMOTE algorithm, which generates a new data 
sample from a group of adjacent data samples 
weighted with their inter-distances, it will increase the 
inductive bias due to the increased similarity among 
the group of data samples and will eventually 
aggravate the over-fitting effects. The notion of 
geometric accuracy, which can consider predictive 
performances of both majority class and minority 
class, is introduced to alleviate these problems. 

IV. RESEARCH DESIGN 
We collected the experimental data used for this 

research from a Korean commercial bank. The 
bankrupt companies are 500 audited manufacturing 
companies during year 2002 to year 2005, while the 
non-bankrupt companies are 2,500 audited 
manufacturing companies during 2002-2005. For the 
non-bankrupt companies, we collected 10,000 firm-
year financial statements during 2001-2004. In this 

way, we collected a total of 10,000 financial 
statements based on firms-year standard, and the 
average bankrupt rate for the four years is about five 
percent, which falls in the expected range of 
bankruptcy rate (three to five percent) estimated by 
professional credit rating agencies.  

As for the financial ratios for bankruptcy 
prediction, we collected seven thirty financial ratios, 
which have been usefully applied in the previous 
corporate bankruptcy prediction researches. The 
collected ratios are divided into seven financial ratio 
groups including profitability, debt coverage, leverage, 
capital structure, liquidity, activity, and size. 
Consequently, the seven final input variables, each of 
which has the highest AUROC in each group, are 
selected. 

Variance information factor (VIF) analysis is 
performed to check for multicollinearity among the 
seven financial ratios. Table 1 shows the AUROC and 
VIF of the seven final input variables. We can see that 
the chosen variables do not exhibit any substantial 
multicollinearity because all the VIFs are below four.   

TABLE 1. THE RESULT OF VARIANCE INFLATION FACTOR ANALYSIS 
ON THE CHOSEN VARIABLES.  

Variables AUROC VIF 

Ordinary income to total assets 51.7 1.36 
EBITDA to Interest expenses 51.2 2.11 
Total debt to total assets 50.9 1.77 
Retained earning to total assets 52.5 2.53 
Cash ratio 45.5 1.34 
Inventory to sales 30.5 1.59 

V. RESEARCH RESULTS 
Sequential minimal optimization (SMO) is used as 

a SVM base classifier and the radial basis function 
(RBF) is used as as a kernel function. There are two 
parameters in RBF kernels: acceptable error C and 
kernel parameter δ2. We made up various 
configurations of the two parameters: varying C from 
1 to 250, and δ2 from 1 to 200. 

We prepared samples through two stages. At the 
first stage, we chose samples from the total of 10,500 
cases, with the ratio of bankrupt companies to normal 
companies as 1:1(A), 1:3(B), 1:5(C), 1:10(D), and 
1:20(E). Then we set 60% of each of them as training 
samples, and the rest 40% of each of them as test 
samples. Table 2 shows these configurations of 
samples. We repeated these steps of the first stage 
fifty times to generate fifty training sample sets and 
fifty test sample sets for each of the five 
configurations (A, B, C, D, and E). 

TABLE 2. CONFIGURATIONS OF IMBALANCED DATA SAMPLES 

Set 
Training  Validation  

Bankr
upt 

Norm
al 

Total Bankr
upt 

Norm
al 

Total 

A 1:1 300 300 600 200 200 400 
B 1:3 300 900 1,200 200 600 800 
C 1:5 300 1,500 1,800 200 1,000 1,200 
D 1:10 300 3,000 3,300 200 2,000 2,200 
E 1:20 300 6,000 6,300 200 4,000 4.200 
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At the second stage, we used SMOTE algorithm, 
where k is set to five, to generate new bankrupt 
companies, so that we obtained the number of 
bankrupt companies same with that of normal 
companies. Table 3 shows these configurations of 
samples. We repeated the same sampling process fifty 
times to generate fifty training sample sets and fifty 
test sample sets for each of four configurations (B, C, 
D, and E). 

TABLE 3. CONFIGURATIONS OF BALANCED DATA SAMPLES. 

Set 
Training  Validation  

Bankr
upt 

Norm
al 

Total Bankr
upt 

Norm
al 

Total 

A 1:1 300 300 600 200 200 400 
B 1:3 900 900 1,200 200 600 800 
C 1:5 1,500 1,500 1,800 200 1,000 1,200 
D 1:10 3,000 3,000 3,300 200 2,000 2,200 
E 1:20 6,000 6,000 6,300 200 4,000 4.200 

A. Experimental Results in Imbalanced Data 
Table 4 shows the results of average accuracy of 

fifty validations. In case of AdaBoost, as the data 
imbalance is getting severe, arithmetic accuracy over 
total samples is steadily increased due to the high 
accuracy over samples of majority class, while the 
arithmetic accuracy for minority class is dramatically 
reduced, and thereby geometric accuracy over total 
samples is gradually decreased. In particular, average 
accuracy for minority class of sample groups C, D, 
and E is 7%, 4.5%, and 3.5%, respectively. It 
indicates that the classification for minority class is 
meaningless. Those results are caused by arithmetic 
error and accuracy calculation of AdaBoost. 

Comparing to AdaBoost, however, GM-Boost 
shows stable arithmetic accuracy for minority class 
and geometric accuracy over total samples. T-test is 
performed to analyze the difference of geometric 
accuracy between both boosting algorithms for the 
five configurations (A, B, C, D, and E). The results of 
T-test show that the prediction accuracy between two 
training algorithms for sample group A is 
significantly different at 5% level and for sample 
group B, C, D, and E is different at 1% level, 
respectively. The difference in geometric accuracies 

becomes higher, as the data imbalance becomes more 
severe. 

B. Experimental Results in Balanced Data 
We apply the final sampled sets generated from 

SMOTE to AdaBoost and GM-Boost experiments. 
Table 5 shows the results of average accuracy of fifty 
validations. As noted, the higher is the proportion of 
new generated samples in minority class, the higher is 
the similarity among minority class samples. SVM, 
the base classifier of AdaBoost, will tend to learn 
focusing on minority samples with high similarity 
because this strategy is helpful maximizing arithmetic 
accuracy. Boosting algorithms also try to modify the 
weight of each instance based on misclassification, 
but do not try to balance majority class error and 
minority class error. This problem leads to over-
fitting problem and deteriorates the performance of 
SMOTEBoost in the perspectives of generalization 
and prediction for novel samples. 

In our case, since data set E has the higher 
proportion of new generated samples and the higher 
similarity among data samples than any other data 
sets, it is likely to show the lower prediction 
performance for novel samples. Hence, while the 
accuracy of AdaBoost for majority class samples 
consistently lies on the interval between 0.750 and 
0.830, its accuracy for minority class samples 
becomes lower as the degree of data imbalance is 
higher. Thus, arithmetic accuracy of AdaBoost stably 
lies between 0.750 and 0.798, but geometric accuracy 
continues to deprecate from 0.797 to 0.734. On the 
contrary, GM-Boost, that employs geometric 
accuracy, systematically avoids this over-fitting 
problem because it considers both accuracies of 
majority class category and minority class category. 
Consequently, GM-Boost exhibits more robustness 
and generalization than AdaBoost does for novel test 
samples. T-test is performed to compare the 
prediction accuracy between AdaBoost and GM-
Boost for the five configurations (A, B, C, D, and E). 
The results show that significant difference between 
two algorithms in classification accuracies for all 
configurations except the configuration A. 

TABLE 4. PREDICTION ACCURACY AND THE T-TEST FOR THE FIVE CONFIGURATIONS OF IMBALANCED DATA SAMPLES 

Set SVM GM-Boost t-value Majority Minority Arithmetic Geometric Majority Minority Arithmetic Geometric 
A 0.820 0.755 0.788 0.787 0.820 0.780 0.800 0.800 1.851* 
B 0.960 0.330 0.803 0.563 0.893 0.630 0.828 0.750 2.435** 
C 0.990 0.070 0.837 0.263 0.891 0.610 0.844 0.737 2.704** 
D 0.999 0.045 0.912 0.212 0.916 0.505 0.879 0.680 3.291** 
E 0.998 0.035 0.952 0.187 0.912 0.420 0.889 0.619 3.557** 

** and * represent significance levels at 1% and 5%, respectively. 

TABLE 5. PREDICTION ACCURACY AND THE T-TEST FOR THE FIVE CONFIGURATIONS OF BALANCED DATA SAMPLES 

Set AdaBoost GM-Boost t-value Majority Minority Arithmetic Geometric Majority Minority Arithmetic Geometric 
A 0.830 0.765 0.798 0.797 0.820 0.780 0.800 0.800 0.152 
B 0.750 0.750 0.750 0.750 0.747 0.770 0.753 0.758 1.852* 
C 0.775 0.720 0.766 0.747 0.808 0.745 0.798 0.776** 2.438** 
D 0.755 0.720 0.751 0.737 0.775 0.765 0.774 0.770* 3.257*** 
E 0.775 0.695 0.771 0.734 0.776 0.785 0.776 0.780* 3.997*** 

***, **, and * represent significance levels at 1%, 5%, and 10%, respectively. 
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VI. CONCLUSION AND FUTURE RESEARCH 
DIRECTIONS 

Data imbalance problem has received a lot of 
attention in machine learning community because it is 
one of the causes that degrade the performance of 
classifiers or predictors. In our research, we proposed 
GM-Boost algorithm to resolve data imbalance 
problem. The proposed GM-Boost algorithm is 
applied to bankruptcy prediction task to verify the 
performance of GM-Boost algorithm. At the first 
stage, five sample groups are constructed according to 
different data balance rates (1:1, 1:3, 1:5, 1:10, and 
1:20) and classification experiments using AdaBoost 
and GM-Boost are performed against those 
imbalanced data sets. At the second stage, SMOTE 
algorithm is used to generate new bankrupt company 
data sets and the newly sampled sets is applied to 
AdaBoost and GM-Boost experiments for the 
performance verification of GM-Boost in balanced 
data. Experimental results show that GM-Boost has 
the advantages of high prediction power and robust 
learning capability in imbalanced data distribution as 
well as balanced data distribution. 

We expect the following future researches to be 
conducted to cope with the limitations of GM-Boost. 
Firstly, boosting algorithms have drawbacks that 
degrade classification accuracy when outliers are 
included in the learning samples or when there is high 
correlation between the classifiers in the ensemble. 
Various methods have been proposed to compensate 
these shortcomings [4,5,20], and we plan to conduct 
researches to develop algorithms coupled with those 
methods. Secondly, the ensemble algorithm we 
propose in this research is a modification of a 
boosting algorithm to solve data imbalance problem. 
However, it can be possible to solve the data 
imbalance problem by combining our results with 
SVM kernel management [11,26], so we anticipate 
future researches in this direction.  
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