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Abstract— Database flexible querying is an alternative to the 

classic one for users.  The use of Formal Concepts Analysis 

(FCA) makes it possible to make approximate answers that 

those turned over by a classic DataBase Management System 

(DBMS). Some applications do not need exact answers. 

However, flexible querying can be expensive in response time. 

This time is more significant when the flexible querying require 

the calculation of aggregate functions (“Sum”, “Avg”, “Count”, 

“Var”, etc.). In this paper, we propose an approach which tries 

to solve this problem by using Approximate Query Processing 

(AQP).  

 

Keywords - Flexible Querying; Approximate Queries; Formal 

Concept Analysis; Sampling. 

I. INTRODUCTION  

A flexible querying technique is used to enhance access 
and human interaction with information systems and to make 
it easier for users to find what they are looking for. 

It tries to make the classic DB querying more flexible for 
users. To this effect, several approaches have been proposed 
in the literature such as additional criteria [1][2], preferences 
[3], distance and similarity [4][5], models based on the fuzzy-
sets theory [6][7], approaches based on Type Abstraction 
Hierarchies (TAH) and Multi-Attributes Type Abstraction 
Hierarchies (MTAH) [8], and recently approaches based on 
the FCA [9] and those based on fuzzification of the FCA 
[10]. These approaches have some limits. We can mention 
the following: 

1) No consideration of aggregate queries: they not 
support the aggregation functions such as Average, Count, 
Max, Min and Sum. 

2) Accuracy of the answer: in many applications, the 
accuracy of the answer to the last decimal is not required. 
The user wants approached answers as soon as possible 
instead of waiting more time for the exact response. 

3) Response time: in the case of large DB, the time taken 
to build the final response is enormous. 

For aggregation queries, we propose a way to data route 
using FCA to generate a hierarchy allowing the user to 
personalize these responses into several levels. 

For answer accuracy, we propose to use Approximate 
Query Processing (AQP) which consists of techniques that 
sacrifice accuracy to improve response time. 

To improve response time, we propose to adapt the online 
aggregation [11] whose objective is to gradually approximate 
answers when running the application. It consists of applying 
a sample on the initial data of the DB to minimize disk access 
and therefore improve response time. 

This paper is organized as follows. After the introduction, 
Section 2 presents a state of the art on flexible querying 
systems recently proposed and techniques of AQP. In Section 
3, we propose the architecture of our system. In Section 4, we 
detail the various steps of the proposed approach. In Section 
5, we present a general description of our approach by an 
illustrative example. In Section 6, we make a comparative 
study between the proposed approach and approaches similar 
to ours. In Section 7, we evaluate our approach. Finally, we 
summarize our work and propose future works in Section 8. 

II. STATE OF THE ART 

In this section, we present flexible querying systems and 
some AQP techniques. 

A. Flexible Querying Systems 

Flexible querying database try to extend the binary 

querying by introducing preferences in query criteria. These 

preferences allow for direct qualitative responses. Thus, data 

returned by a query will be “more or less relevant”, according 

to the preferences.  

Research on flexible querying investigates the handling 

of imperfectness of information (about queries), e.g., due to 

imprecision, uncertainty and/or incompleteness. Using 

traditional querying techniques, a record will only be part of 

the query result if it completely satisfies all the constraints 

imposed by the query. Due to imperfections, which often 

occur in reality, such an approach is too stringent. Also, in 

traditional querying a query is generally a complete 

specification of what is wanted. Flexible querying helps to 

relax this, making it possible that records that e.g., satisfy 

most (but not all) of the constraints will also be present in 

the query result –this is particularly useful when none of the 

records satisfies all constraints– and allowing query 

formulations to be invariably incomplete. 

In this section, we limit ourselves to the approaches close 

to our.   
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     Query relaxation approach proposed in [8] uses predicates 

with relaxing attributes. In this context, we use attributes with 

predicate for comparison with a linguistic term such as 

“Average” in place to say “Price between 200 and 300”. 

This approach present two main contributions compared 

to others especially that of Chu et al. [12]. These 

contributions are as follows: 
- Taking into account the interdependence of the search 

criteria query. 
- Detection of inconsistencies between the search criteria 

before executing the query. 
- Cooperation with the user by offering data near the query 

instead of empty answers. 
However, problems of storage and indexing TAH and 

MTAH structures constitute a handicap to their use in the 

querying process. 

In [10], fuzzification of the FCA in the process of flexible 

querying was introduced. The general principle of this 

approach is to organize data to optimize the query towards 

his given. The notion of concept application is used to allow 

verification of the query realisability. The returned answers 

were classified by satisfaction degree measured compared to 

the user query. 

Some limits arise with this approach. We can mention: i) 

the response time met for answers generation, and ii) the 

complexity of the used structures.  

A cooperative approach to flexible relational DB 

querying proposed in [9] based on fuzzy set theory to model 

the fuzzy predicates included in the query. It is based on the 

lattice concept to evaluate flexible queries submitted by 

users. 

Moreover, the approach generates query causes with no 

answers and offers sub-queries with approximate answers. 

However, the approach has several limitations such as: 
- Scheduling of sub-queries approximate taking into 

account preferences expressed by the user in the original 
complaint. 

- The inclusion of some widely used language modifiers 
like “most” and “approximately” in the query qualifiers. 
All these approaches do not take into account agregate 

queries and have a response time sufficiently high.   

B. Approximate Queries  Processing by sampling 

The AQP is an effective solution which consists of 

techniques that sacrifice accuracy to improve response time. 

It is used in aggregate queries (including SUM, COUNT, 

AVG, etc.), whose accuracy what the “last decimal” is not 

required. 

There are several techniques for the AQP, we can cite the 

sampling techniques [13], the use of histograms and 

Wavelets [14]. 

We are interested in sampling techniques. His principle 

is to build tables or views by selecting certain rows from the 

table to build an initial sample. It has a storage size smaller 

than the initial table, instead of questioning all the comics, 

the user asks a sample representing the DB and then gets an 

approximate answer. 

The basic architecture of AQP based on sampling as 

described in Figure 1. It consists of two phases: 
- Offline Phase: before executing the query, the sample is 

constructed from the DB tables. 
- Online Phase: queries are rewritten to be run on the 

sample. The result is then measured to give the 
approximate response also with an error rate. 

III. ARCHITECTURE OF THE PROPOSED SYSTEM 

Figure 1 describes the querying flexible system 
architecture called FLEXTRA. We have added several 
components to relational DBMS such as KB (Knowledge 
Base).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. System Architecture 
 

His system includes the following components: 
- Rewritable layer: it takes care of rewriting the aggregate 

query in its final form by adding aggregate functions and 
calculating the error rate depending on the confidence 
degree defined by user. The query becomes an 
approximate query. 

- Aggregation layer: it is responsible for transferring the 
user with different responses gradually during the query 
execution. It gives the error rate. 

- DB: it is a relational database where we store all 
permanent information in a relational model. 

- KB: it is a Knowledge Base that is generated from the DB 
and before the query execution. It contains information 
on the relaxing attributes (an attribute that describes a 
linguistic term). The schema is described in Table 1. 

TABLE 1.KB SCHEMA 

ID row Relaxing-Attribute1 Relaxing-Attribute 2 
… 

 
Relaxing-Attribute n 

 

… 
…. …. …. ….. 

IV. DESCRIPTION OF THE PROPOSED APPROACH 

Our approach is described in Figure 2. It is divided into 
two major phases: 

- Pre-treatment phase: in this phase we will generate the 
KB from the DB to contain the degrees of membership of 
each tuple relaxing attributes. 

- Post-treatment phase: when the user launches the 
application, the system searches for approximate answers, 
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and then calculates the aggregation and gradually sends to 
the user. 
 

Figure 2. The approach phases 

A. Building KB 

Clustering allows partitioning the data into clusters, the 

domain expert will assign linguistic terms (e.g., young age, 

low salary, etc.) to use it in the query and this constitutes the 

KB. 

A KB contains the membership degree of each tuple to 

relaxing attributes using the membership function. Zadeh 

proposes a series of fuzzy membership functions [15]; we 

include essentially the triangular function, the function 

singleton, L Function, Gamma function, and trapezoidal 

function. 

We use a trapezoidal function, it is defined by a lower 

limit a, an upper limit d. Moreover, it is characterized by a 

lower limit b and an upper limit c to the core. This function 

is defined as follows: 

𝑢𝐸  𝑥 =

 
 
 

 
 

1 𝑠𝑖 𝑐 ≤ 𝑥 ≤ 𝑏
𝑥 − 𝑎

𝑏 − 𝑎
 𝑠𝑖 𝑎 ≤ 𝑥 ≤ 𝑏 

𝑑 − 𝑥

𝑑 − 𝑐
 𝑠𝑖 𝑐 ≤ 𝑥 ≤ 𝑑

0 𝑠𝑖 𝑥 < 𝑎 𝑜𝑢 𝑥 > 𝑑

  

 

Example: Table 2 presents the membership matrix on 

“Age” attribute; it has two relievable attributes “young” and 

“adult”. 

TABLE 2. FUZZY CLUSTERING IN AGE ATTRIBUTE 

Id row  Young Age  Adult Age  
25  0.7 0.3 

30  0.2 0.8 

20  1 0 

If Age_Young= 0.7 to 1 then the row has a membership 

degree = 0.7 for the Young_Age cluster. 

B. Query Flexible Rewriting   

The first step of query execution consists of construct the 

approximate query through an interface in which it specifies 

the confidence degree, the target table, the aggregate 

function (SUM, AVG, COUNT, etc.), all attributes of the 

SELECT clause and all attributes of the WHERE clause. 

In this paper, we consider viewing a single table without 

using Group By knowing that it contains thousands of 

records. The approximate query as follows: 

Select function(attribute), confiance_degree  as confidenc ,  

functionInterval(confiance_degree)  from table  where 

attribuet1  IS flexible_ condition1 [and … attribute2  IS 

flexible_ condition2] 

Where function( ) and  functionInterval( ) [11] are user 

predefined functions and which can give online approximate 

answers depending on the confidence degree for aggregate 

AVG, SUM, COUNT, etc. 

C. Sampling 

The second step of our approach is to construct a sample 

from the KB. 

The sampling is made in online mode and the gain of 

time is due of treatment of small KB (not all KB where 

construction of context table in large KB takes a long time). 

Instead of querying the entire KB, we interview a sample 

of KB that is made up of hundreds of records which 

improves response time. 

Administrator (expert) sets the percentage of sampling 

depending on the size of KB (if s: Percentage of sampling 

and n = the size of KB then sample size p = (n * s)/100. 

We use the method of [11] for sampling; we randomly 

choose p lines from KB who have not been previously 

extracted. 

Our approach is to build the sample using the following 

algorithm: 
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Algorithm1 : Sampling 

Inputs: Query :Q 

              Knowledge base :KB  

              KB  size :n 

              Sample Percentage: s 

Output :Sample :E 

Begin 

Step 1: KB1:= KB-E. 

Step 2: E contains the 
𝑛∗𝑠

100
  lines extracted randomly from KB1.  

Step 3: Repeat steps 1 and 2 Until all rows have been processed. 

End 

D. Building sample concepts table 

The third step of our approach is to build the concepts 

table associated with sample building in the previous phase. 

The concepts table [16] is a tabular representation of a 

concept lattice and its construction is easier than the lattice. 

     The context table is a table structure but not a tree 

(concept lattice), and it is simple to use, modify, delete and 

generate concepts in the implementation step. 

The context table is simply the result of a clustering 

operation giving membership degrees of each data to each 

cluster. 

      This is described in Table 3, where the columns have the 

following meanings: 
- C# (context#): The name of the source context. 
- Niv#, N#(Level#, Node#) :These two columns store the 

identifier of the concept of context. The first is the level 
of the concept in the lattice while the second represents 
the sequence number of the concept at this level. 

- Int#, Ext# (Intention, Extension): These columns store for 
(respectively extension) of each concept. 

- L_s#,L_p#(Successors List, predecessors list): These two 
columns store the identifiers of successors (predecessors 
respectively) of the concept. 

- T_i,T_e (Size_Intension, Size_Extension): These two 
columns store the cardinality of a concept (respectively 
the number of attributes and the number of objects).  

TABLE 3.  SAMPLE CONCEPTS TABLE 

C# Niv# N# Int# Ext# L_s# L_p# T_i T_e 

….. …. … … … …. …. .. …. 

E. Coursing the sample concepts table and  calculating 

agregation 

In this step, we course the sample concepts table to 

extract approximate answers and to calculate the final result 

of approximate aggregation. 

 We use algorithm proposed in [16] to build a sample 

concepts table on the approximate query and then return the 

approximate answers. In order to improve the response time, 

we build the concepts table using only the query conditions. 

This reduces the table size and minimizes the complexity 

of the construction of the sample concepts table.  

We calculate the aggregation function (AVG, SUM and 

COUNT), using the algorithm 2 with the following 

descriptions: 
- value (t): represents the aggregate value of the tuple t. 
- degree (t): represents the membership degree of t. 

To calculate the aggregation, we use these functions: 
- For AVG( ) function : 

AVG= 
1

𝑛
 𝑑𝑒𝑔𝑟𝑒𝑒 ∗  𝑣 𝐿𝑖       𝑛

𝑖=1                              (1) 

- For SUM( ) function:  

SUM=degree *  𝑣(𝐿𝑖)𝑛
𝑖=1                  (2) 

- For COUNT( ) function:  

COUNT= 𝑑𝑒𝑔𝑟𝑒𝑒 ∗  1𝑛
𝑖=1                    (3) 

Where degree = 𝑀𝑖𝑛( 𝑈  𝑖1^𝑉  𝑖1^… . ^𝑍  𝑖1), and U, V, Z 

are the membership degrees on the query Q and n  is the 

sample size, v(Li) is the value of the tuple index i (Li is a 

random index). 

We calculate the error rate (Interval) associated with the 

aggregate function.  We use the method of conservative 

confidence intervals [11]: 

Error Rate =  𝑏 − 𝑎  
1

2𝑛
𝑙𝑛  

2

1−𝑝
   1/2 (4) 

      Where [a, b] is a predetermined interval, such that           

a ≤ v (i) ≤ b for all 1 ≤ i ≤ m, n = sample size, m = size 

of KB, p is the setting of confidence (example p = 0.95). 
 

Algorithm 2 : Calculate_function 

Inputs:  concepts table: TCX  

              Maximum value of attribute :max 

              Minimum value of attribue : min 

              Sample size :n  

             Aggregate function: f 

Outputs : result : res,   Error rate :rate  

Begin 

         D=1 

        som=0 

        card=0 

         For each  element E of the concept table TCX 

              if extension  ≠∅ then  

                     for each  objet t of the extension 

                               som=som+value(t) 

                               card=card+1 

                               if degre(t)< D then 

                                           D=degre(t)      

                               End if 

                    End for 

              End if 

        End for 

       If f= avg then  

                 res=(som/Card)*D 

       else if f=sum then 

                 res=som*D 

       else if f=count then  

                res=card*D 

       end if  

        rate=   
1,22∗(𝑚𝑎𝑥 −𝑚𝑖𝑛 )

 𝑛
 

End 

      

V. ILLUSTRATIVE  EXAMPLE 

Let a simple relational table “employee” (id, name, age, 

salary), which contains the following rows (see Table 4). 
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TABLE 4: EXAMPLE OF THE RELATIONNAL TABLE  EMPLOYEE 

ID Name Age  Salary 

1 MOHAMED 23 400 

2 ALI 30 550 

3 WALID 45 700 

…… …… ……. …….. 

10000 WAJDI 40 800 

 

  The relaxing attributes Age-Young, Age-Adult, age-

Low, Salary-Middle, Salary-High, and KB which contains 

rows as shown in Table 5: 

TABLE 5 : CLUSTERING DATA OF THE RELATION EMPLOYEE 

ID 

tuple 

Age-

Young 

Age-

Adult 

Salary-

Low 

Salary-

Middle 

Salary-

High 

1 0.7 0.3 0.6 0.4 0 

2 0.5 0.5 0 1 0 

3 0 1 0.1 0.6 0.3 

… …. …. ….. …. …. 

10000 0.1 0.9 0 0.3 0.7 

 

Then, we eliminate data with low membership degree by 

setting a user defined threshold, KB becomes as shown in 

Table 6: 

TABLE 6 : CLUSTERING DATA OF THE  RELATION EMPLOYÉE WITH A 

THRESHOLD 

ID 

tuple 

Age-

Young 

Age-

Adult 

Salary-

Low 

Salary-

Middle 

Salary-

High 

1 0.7 - 0.6 0.4 - 

2 0.5 0.5 - 1 - 

3 - 1 - 0.6 - 

… …. …. ….. …. …. 

10000 - 0.9 - - 0.7 

 

Consider the following query for finding the average 

salary for young employees and low salary with a 

confidence level = 95%. 
“Average Salary of Young employees and Low Salary with a degree of 

confidence= 95% “ 

“Select Avg(Salary) from employees where age IS  Young  and Salary 

IS  Low” 

The approximate query becomes: 
“Select AVG (Salary), 0.95 as confidence, ConsAvgInterval( 0.95) from 

employee where age IS Young   and Salary  IS Low” 

We construct the sample (Table 7) according to the KB 

at the time of query execution.  

TABLE 7. SAMPLE OF DATA 

ID row Age-Young Salary-Low Salary 

1 - 1 400 

20 0.8 - 900 

520 - 0.9 430 

32 - 0.8 460 

10 0.6 - 780 

…… …… …… …… 

130 - 0.5 550 

 

 

Then we generate a concepts table associated with the 

query as shown in Table 8. 
With each given extension contains two attributes: The 

first is the degree and the second is the aggregated value. 
Example: 20 (1, 380) the row 20, a degree is 1and its 

value is 380. 
We repeat these steps until all the KB is treated either we 

get an error rate is very low to say the exact result is very 
close to either the user is satisfied with the outcome and 
conclusion the query execution. 

TABLE 8 : SAMPLE CONCEPTS TABLE 

C# Niv # N# int# Ext# L_# L_p# 
1 1 1 Young_A 

low_S 
∅ (1,2,1) 

(1,2,2) 

0 

1 2 1 low_S 1(1 ;400) 

32(0,8 ;460) 

520(0,9;430) 

130(0,5;550) 

(1,3,1) (1,1,1) 

1 2 2 Young_A 10(0,6 ;780) 

20(0,8;900) 

(1,3,1) (1,1,1) 

1 3 1 ∅ 1(1 ;400), 

32(0,8;460), 

520(0,9;430) 

,130(0,5;550) 

10(0,6 ;780), 

20(0,8;900) 

0 (1,2,1) 

(1,2,2) 

 
In Table 9, we present an example of results returned 

after the calculation AVG and error rate functions. 

TABLE 9: RESULTS OF APPROXIMATE ANSWERS 

AVG Confidence Error rate 

400 95 % 0.06503 

402 95% 0.06500 

405 95% 0.06470 

…. … …… 

410 95% 0.0090 

VI. COMPARATIVE STUDY 

In this section, we present the essential idea of the main 

approaches to flexible querying the closest to ours. We 

specify each time different art studies conducted on these 

approaches. They differ mainly by the way used to find the 

values closest to those requested by the user and the 

formalism used to model uncertainty and imperfection of the 

real world. 
The contributions of the approach Ounelli et al. [8] are 

important, including the TAH and MTAH concepts for 
modeling generalization and specialization hierarchies of 
concepts. In this approach, no modification of SQL is 
required, what constitutes an asset for the implementation of 
this approach. The user does not apply during the relaxation 
to make choices that can be hazardous. 

In this approach, the relaxing attributes are set by the 
administrator of the DB. This is especially important that the 
proposed approach is aimed at end users with no specific and 
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detailed knowledge on the organization and the data they 
consult. It is easier for an expert to specify a price attribute of 
the DB table is relaxing and can be used with the terms 
“low”, “comfortable” or “high”. 

However, this approach has limitations in the structures it 
uses. We mainly include: i) incremental maintenance of the 
KB relaxing attributes, ii) clustering of relaxing attributes 
without fixing a priori the number of clusters, iii) the problem 
of  storage ,clustering and indexing MTAH, and iv)  not 
taking into account aggregate queries. 

In the approach of Sassi et al. [10], generated clusters for 
each relaxing attribute are not stored in the DBMS catalog. 
Thus, the maintainability of this meta-base is no longer a 
problem. Indeed, in order to draw the concept lattice, core of 
FCA, they must simply load an XML file that can retrieve all 
the information necessary to trace these lattices. 

However, this approach has limitations in the structures 
they use. We mainly include i) the number of concepts 
generated, ii) the response time used to generate approximate 
answers, and iii)  not taking into account aggregate queries. 

The approach of Chettaoui et al. [9] allows the treatment 
of empty response to a flexible query. Thus, it detects the 
causes of failure and allows the generation of sub-queries and 
approximate answers. 

Another advantage of this approach is that not changing 
the structure of SQL and thus benefit from the features of the 
DBMS. 

However, this approach does not allow the use of 
linguistic modifiers in the query. This test is interesting since 
users typically use such linguistic terms and it does not take 
into account the aggregate queries. 

The approach of Hass et al. [11] allows classical querying 
(Boolean) on broad comic returning relevant answers in the 
shortest time for aggregate queries. It aims to gradually give 
approximate results when the query execution until all data 
has been processed. Thus, the user observes the degree of 
progress of the response and controls the query execution. 
We are not obliged to wait several minutes for the query 
result. 

The approach proposed in this paper combines the 
advantages of those mentioned above while overcoming the 
limitations they present. 

Indeed, we can perform an aggregate query on large 
flexible DB while returning relevant answers in the short 
time and the error rate. 

Table 9 presents a comparative study between the 
approaches mentioned above and ours. 

 TABLE9. COMPARISON BETWEEN DIFFERENT APPROACHES 

 Agregation Sampling Flexibility Accuracy 

Query   
Relaxation 

- - X - 

Fuzzifica- 
tion of 

concepts 
lattice 

- - X - 

Online AQP X X - X 

Flexible 
interrogation 

by AQP 

X X X X 

 

VII. EVALUATION 

Figure 3 shows the main interface of the FLEXTRA 

system. 

The responses appear in the table when executing the 

query. In this case, the user does not have to wait until 

runtime to have the final result. Indeed, after a while, the 

initial response and the error rate is displayed, until the user 

stops the calculation or that KB has been completely treated. 

 

 
Figure 3. Display approximate answers 

A. Testing the  response time 

We started with the table employee (id, name, salary, 

age) and we increased the number of records from 789 to 

9498 records and calculate for each case the response time 

of FLEXTRA system and compare it with the case of AQ     

(approximate query) and classic querying(without AQ), as 

shown in Figure 4. 

For the employee table, it contains two relaxing 

attributes “age” and “salary”. 
The query is: “the average low salary of young 

employees”. 
“SELECT AVG (salary) FROM employee WHERE salary IS 

low AND age IS young”. 

 

 
 

Figure 4. Comparison between the two approaches 
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From Figure 4, we find that the response time is lower 
using the AQ than classing querying. 

For the classical query, the curve is exponential, while for 
interrogation with AQ, the curve is linear. 

If the size of the database exceeds 7000 records, the 
response time for classic querying, is about 2 minutes, so it is 
with the AQ, the order of 5 seconds. 

B. Testing the  accuracy response 

We will run the application in the table employee in both 

cases: with and without AQ, then check the quality of 

answers returned with AQ. 
For the table employee, the exact answer is 34.9 years to 

have when we execute the following query:  
“SELECT avg(age) FROM employee WHERE age IS adulte  

AND salary IS middle ”. 
Figure 5 shows the development of approximate answers 

to reach the exact answer: 
 

 
Figure 5. Evolution of approximate answers 

 
We note that approximate answers are near to the exact 

answer, the first approximate answer is 35.1 years + / - 1.2 
with 95% confidence level, whereas the correct answer 
(classic querying) is 34.9 years. 

VIII. CONCLUSION  

We proposed in this work a flexible querying approach 

of large DB while using AQ.   

It is about a field in strong expansion.  On the one hand, 

the DB are increasingly bulky.  In addition, the construction 

of querying systems able to satisfy flexible queries is more 

complex and expensive.   

We integrated the AQ techniques in a system using FCA 

in order to overcome limits of the existing approaches when 

we use aggregate queries (“Sum”, “Avg”, “Count”, “Var”, 

etc.) such as the response time and confidence rate of result 

answers.  

The type of query is “give the average of the low salary”.  

This system makes it possible to turn over quickly 

approximate answers while holding trying to improve the 

exactitude of the provided answers.   

Our approach comprises two steps:   

- Pre processing step in which the KB is generated starting 
from the DB so that it contains membership degrees of 
each tuple to the relievable attributes.  

- Post processing step during which the flexible query is 
rewritten so that it becomes an AQ.  The sampling of the 
KB consists in extracting some data (tuples).  The 
construction of a sample concepts table is made to release 
the approximate answer and the Error Rate.   
For the exactitude of the answer, we used AQ which 

support the response time to the detriment of the result 

exactitude.  

In order to improve the response time, we propose in this 

article to adapt online aggregation technique proposed in 

[11], whose objective is to gradually give approximate 

answers while executing the query.  

It consists to apply a sampling to the initial data of the 

DB in order to minimize the disc access and consequently to 

improve the response time.   

Our approach contributes several shares in particular:   
- The calculation of aggregation for flexible queries.  
- The improvement of response time by guaranteeing the 

exactitude of the answer.   
- The processing of the case of empty answers for a 

flexible query.  
- No modification of the structure of the DBMS and SQL 

language.  
- The use query execution control.   

To implement this approach, layers will be added to a 

conventional DBMS such as: 
- Rewritable layer: it takes care of rewriting the query 

aggregation for which an application becomes rough. 
- Aggregation layer: it is responsible for calculating the 

responses gradually during the query execution.  
As futures works, we propose: 

- The integration of complex and nested queries involving 
join operation. 

- The calculation of the aggregation functions on several 
attributes.   

- The inclusion of some widely used language modifiers 
like “very” and “approximately” in the query 
qualification. 

- The use of other sampling procedures in order to improve 
the confidence rate.   

 REFERENCES 

[1] Lacroix, M. and Lavency, P., “Preferences : Putting More 

Knowledge Into Queries”, 13th VLBD Conference, pp. 217-

225, 1987. 

[2] Chan, C.L., “Decision Support in an Imperfect World”, 

Research Report, pp. 100-102, 1982. 

[3] Rabitti, F., “Retrieval of Multimedia Documents by Imprecise 

Query Specification”, Lecture Notes in Computer Science, 

416, pp. 202-218, 1990. 

[4] Ichikawa, T. and Hirakawa, M., “ARES: A Relational 

Database with the Capability of Performing Flexible 

Interpretation of Queries”, IEEE Transactions on Software 

Engineering, pp. 624-634, 1986. 

134

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011              ISBN:978-1-61208-115-1



[5] Motro, A., “ VAGUE : A User Interface to Relational 

Database That Permits Vague Queries ”, ACM Transaction off 

Information Systems, 6(3), pp. 187-214, 1988. 

[6] Bosc, P., Liétard, L., and Pivert, O., “ Bases de Données et 

Flexibilité : Les Requêtes Graduelles ”, Techniques et 

Sciences Informatiques, 17(3), pp. 355-378, 1998. 

[7] Tahani, V., “A conceptual Framework for fuzzy Query 

Processing: A step Toward Very Intelligent Database 

Systems”, Information Processing and Management, 13, pp. 

289-303, 1977. 

[8] Ounalli, H. and Belhadjahmed, R.,  “ Interrogation flexible et 

coopérative d'une BD par abstraction conceptuelle 

hiérarchique ”, INFORSID 2004, pp. 41-56, 2004. 

[9] Chaettaoui, H., “ Les treillis de concepts dans l’interrogation 

flexible et coopérative des bases de données ”, Master, Faculty 

of Sciences of Tunis,  2008. 

[10] Sassi, M., “ Contribution à l'interrogation flexible des bases de 

données ”, Phd Thesis, National Engineering School of Tunis, 

2007. 

[11] Haas, P.J., Hellerstein, J.M. and Wang, H.J., “Online 

aggregation”. ACM-SIGMOD International Conference on 

Management of Data, pp. 171 - 182, 1997. 

[12] Chu, W.W., Yang, H., Chiang, K., Minock, M., Chow, G., and 

Larson, C., “CoBase : A Scalable and Extensible Cooperative 

Information System”, Journal of Intelligent Systems, Kluwer 

Academic Publishers, vol. 6, Issue 2-3,  pp. 223 – 259, 1996. 

[13] Olken, F., “Random sampling from databases”, PhD Thesis, 

University of California, Berkeley.1993. 

[14] Chakrabati, S., Garofalakis, M., Rastogi, R., and Shim, K., 

“Approximate query processing using wavelets”, Springer  

publisher, pp. 199 – 223, 2001. 

[15] Zadeh, L.A., “Fuzzy Sets”, Information and Control, 8, pp. 

338-353, 1965. 

[16] Gammoudi, M.M., “ Décomposition conceptuelle des 

relations binaires et ses applications”, Habilitation in computer 

science, Faculty of Sciences of Tunis, 2005. 

135

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011              ISBN:978-1-61208-115-1


