
Intelligent Database Flexible Querying System by Approximate Query Processing

Oussama Tlili

Faculty of Sciences of Tunis

Campus Universitaire, 1060 Tunis, Tunisia

tlili.oussama@gmail.com

Minyar Sassi

National Engineering School of Tunis

BP. 37, Le Belvédère, 1002 Tunis, Tunisia

minyar.sassi@enit.rnu.tn

Habib Ounelli
Faculty of Sciences of Tunis

Campus Universitaire, 1060Tunis, Tunisia

habib.ounelli@fst.rnu.tn

Abstract— Database flexible querying is an alternative to the

classic one for users. The use of Formal Concepts Analysis

(FCA) makes it possible to make approximate answers that

those turned over by a classic DataBase Management System

(DBMS). Some applications do not need exact answers.

However, flexible querying can be expensive in response time.

This time is more significant when the flexible querying require

the calculation of aggregate functions (“Sum”, “Avg”, “Count”,

“Var”, etc.). In this paper, we propose an approach which tries

to solve this problem by using Approximate Query Processing

(AQP).

Keywords - Flexible Querying; Approximate Queries; Formal

Concept Analysis; Sampling.

I. INTRODUCTION

A flexible querying technique is used to enhance access
and human interaction with information systems and to make
it easier for users to find what they are looking for.

It tries to make the classic DB querying more flexible for
users. To this effect, several approaches have been proposed
in the literature such as additional criteria [1][2], preferences
[3], distance and similarity [4][5], models based on the fuzzy-
sets theory [6][7], approaches based on Type Abstraction
Hierarchies (TAH) and Multi-Attributes Type Abstraction
Hierarchies (MTAH) [8], and recently approaches based on
the FCA [9] and those based on fuzzification of the FCA
[10]. These approaches have some limits. We can mention
the following:

1) No consideration of aggregate queries: they not
support the aggregation functions such as Average, Count,
Max, Min and Sum.

2) Accuracy of the answer: in many applications, the
accuracy of the answer to the last decimal is not required.
The user wants approached answers as soon as possible
instead of waiting more time for the exact response.

3) Response time: in the case of large DB, the time taken
to build the final response is enormous.

For aggregation queries, we propose a way to data route
using FCA to generate a hierarchy allowing the user to
personalize these responses into several levels.

For answer accuracy, we propose to use Approximate
Query Processing (AQP) which consists of techniques that
sacrifice accuracy to improve response time.

To improve response time, we propose to adapt the online
aggregation [11] whose objective is to gradually approximate
answers when running the application. It consists of applying
a sample on the initial data of the DB to minimize disk access
and therefore improve response time.

This paper is organized as follows. After the introduction,
Section 2 presents a state of the art on flexible querying
systems recently proposed and techniques of AQP. In Section
3, we propose the architecture of our system. In Section 4, we
detail the various steps of the proposed approach. In Section
5, we present a general description of our approach by an
illustrative example. In Section 6, we make a comparative
study between the proposed approach and approaches similar
to ours. In Section 7, we evaluate our approach. Finally, we
summarize our work and propose future works in Section 8.

II. STATE OF THE ART

In this section, we present flexible querying systems and
some AQP techniques.

A. Flexible Querying Systems

Flexible querying database try to extend the binary

querying by introducing preferences in query criteria. These

preferences allow for direct qualitative responses. Thus, data

returned by a query will be “more or less relevant”, according

to the preferences.

Research on flexible querying investigates the handling

of imperfectness of information (about queries), e.g., due to

imprecision, uncertainty and/or incompleteness. Using

traditional querying techniques, a record will only be part of

the query result if it completely satisfies all the constraints

imposed by the query. Due to imperfections, which often

occur in reality, such an approach is too stringent. Also, in

traditional querying a query is generally a complete

specification of what is wanted. Flexible querying helps to

relax this, making it possible that records that e.g., satisfy

most (but not all) of the constraints will also be present in

the query result –this is particularly useful when none of the

records satisfies all constraints– and allowing query

formulations to be invariably incomplete.

In this section, we limit ourselves to the approaches close

to our.

128

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

 Query relaxation approach proposed in [8] uses predicates

with relaxing attributes. In this context, we use attributes with

predicate for comparison with a linguistic term such as

“Average” in place to say “Price between 200 and 300”.

This approach present two main contributions compared

to others especially that of Chu et al. [12]. These

contributions are as follows:
- Taking into account the interdependence of the search

criteria query.
- Detection of inconsistencies between the search criteria

before executing the query.
- Cooperation with the user by offering data near the query

instead of empty answers.
However, problems of storage and indexing TAH and

MTAH structures constitute a handicap to their use in the

querying process.

In [10], fuzzification of the FCA in the process of flexible

querying was introduced. The general principle of this

approach is to organize data to optimize the query towards

his given. The notion of concept application is used to allow

verification of the query realisability. The returned answers

were classified by satisfaction degree measured compared to

the user query.

Some limits arise with this approach. We can mention: i)

the response time met for answers generation, and ii) the

complexity of the used structures.

A cooperative approach to flexible relational DB

querying proposed in [9] based on fuzzy set theory to model

the fuzzy predicates included in the query. It is based on the

lattice concept to evaluate flexible queries submitted by

users.

Moreover, the approach generates query causes with no

answers and offers sub-queries with approximate answers.

However, the approach has several limitations such as:
- Scheduling of sub-queries approximate taking into

account preferences expressed by the user in the original
complaint.

- The inclusion of some widely used language modifiers
like “most” and “approximately” in the query qualifiers.
All these approaches do not take into account agregate

queries and have a response time sufficiently high.

B. Approximate Queries Processing by sampling

The AQP is an effective solution which consists of

techniques that sacrifice accuracy to improve response time.

It is used in aggregate queries (including SUM, COUNT,

AVG, etc.), whose accuracy what the “last decimal” is not

required.

There are several techniques for the AQP, we can cite the

sampling techniques [13], the use of histograms and

Wavelets [14].

We are interested in sampling techniques. His principle

is to build tables or views by selecting certain rows from the

table to build an initial sample. It has a storage size smaller

than the initial table, instead of questioning all the comics,

the user asks a sample representing the DB and then gets an

approximate answer.

The basic architecture of AQP based on sampling as

described in Figure 1. It consists of two phases:
- Offline Phase: before executing the query, the sample is

constructed from the DB tables.
- Online Phase: queries are rewritten to be run on the

sample. The result is then measured to give the
approximate response also with an error rate.

III. ARCHITECTURE OF THE PROPOSED SYSTEM

Figure 1 describes the querying flexible system
architecture called FLEXTRA. We have added several
components to relational DBMS such as KB (Knowledge
Base).

Figure 1. System Architecture

His system includes the following components:
- Rewritable layer: it takes care of rewriting the aggregate

query in its final form by adding aggregate functions and
calculating the error rate depending on the confidence
degree defined by user. The query becomes an
approximate query.

- Aggregation layer: it is responsible for transferring the
user with different responses gradually during the query
execution. It gives the error rate.

- DB: it is a relational database where we store all
permanent information in a relational model.

- KB: it is a Knowledge Base that is generated from the DB
and before the query execution. It contains information
on the relaxing attributes (an attribute that describes a
linguistic term). The schema is described in Table 1.

TABLE 1.KB SCHEMA

ID row Relaxing-Attribute1 Relaxing-Attribute 2
…

Relaxing-Attribute n

…
…. …. …. …..

IV. DESCRIPTION OF THE PROPOSED APPROACH

Our approach is described in Figure 2. It is divided into
two major phases:

- Pre-treatment phase: in this phase we will generate the
KB from the DB to contain the degrees of membership of
each tuple relaxing attributes.

- Post-treatment phase: when the user launches the
application, the system searches for approximate answers,

User

inter-

face

Rewri-

ting
layer

Aggrega-

tion layer

DBMS

Quercy

Approximate

answers

DB

KB

129

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

and then calculates the aggregation and gradually sends to
the user.

Figure 2. The approach phases

A. Building KB

Clustering allows partitioning the data into clusters, the

domain expert will assign linguistic terms (e.g., young age,

low salary, etc.) to use it in the query and this constitutes the

KB.

A KB contains the membership degree of each tuple to

relaxing attributes using the membership function. Zadeh

proposes a series of fuzzy membership functions [15]; we

include essentially the triangular function, the function

singleton, L Function, Gamma function, and trapezoidal

function.

We use a trapezoidal function, it is defined by a lower

limit a, an upper limit d. Moreover, it is characterized by a

lower limit b and an upper limit c to the core. This function

is defined as follows:

𝑢𝐸 𝑥 =

1 𝑠𝑖 𝑐 ≤ 𝑥 ≤ 𝑏
𝑥 − 𝑎

𝑏 − 𝑎
 𝑠𝑖 𝑎 ≤ 𝑥 ≤ 𝑏

𝑑 − 𝑥

𝑑 − 𝑐
 𝑠𝑖 𝑐 ≤ 𝑥 ≤ 𝑑

0 𝑠𝑖 𝑥 < 𝑎 𝑜𝑢 𝑥 > 𝑑

Example: Table 2 presents the membership matrix on

“Age” attribute; it has two relievable attributes “young” and

“adult”.

TABLE 2. FUZZY CLUSTERING IN AGE ATTRIBUTE

Id row Young Age Adult Age
25 0.7 0.3

30 0.2 0.8

20 1 0

If Age_Young= 0.7 to 1 then the row has a membership

degree = 0.7 for the Young_Age cluster.

B. Query Flexible Rewriting

The first step of query execution consists of construct the

approximate query through an interface in which it specifies

the confidence degree, the target table, the aggregate

function (SUM, AVG, COUNT, etc.), all attributes of the

SELECT clause and all attributes of the WHERE clause.

In this paper, we consider viewing a single table without

using Group By knowing that it contains thousands of

records. The approximate query as follows:

Select function(attribute), confiance_degree as confidenc ,

functionInterval(confiance_degree) from table where

attribuet1 IS flexible_ condition1 [and … attribute2 IS

flexible_ condition2]

Where function() and functionInterval() [11] are user

predefined functions and which can give online approximate

answers depending on the confidence degree for aggregate

AVG, SUM, COUNT, etc.

C. Sampling

The second step of our approach is to construct a sample

from the KB.

The sampling is made in online mode and the gain of

time is due of treatment of small KB (not all KB where

construction of context table in large KB takes a long time).

Instead of querying the entire KB, we interview a sample

of KB that is made up of hundreds of records which

improves response time.

Administrator (expert) sets the percentage of sampling

depending on the size of KB (if s: Percentage of sampling

and n = the size of KB then sample size p = (n * s)/100.

We use the method of [11] for sampling; we randomly

choose p lines from KB who have not been previously

extracted.

Our approach is to build the sample using the following

algorithm:

130

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

Algorithm1 : Sampling

Inputs: Query :Q

 Knowledge base :KB

 KB size :n

 Sample Percentage: s

Output :Sample :E

Begin

Step 1: KB1:= KB-E.

Step 2: E contains the
𝑛∗𝑠

100
 lines extracted randomly from KB1.

Step 3: Repeat steps 1 and 2 Until all rows have been processed.

End

D. Building sample concepts table

The third step of our approach is to build the concepts

table associated with sample building in the previous phase.

The concepts table [16] is a tabular representation of a

concept lattice and its construction is easier than the lattice.

 The context table is a table structure but not a tree

(concept lattice), and it is simple to use, modify, delete and

generate concepts in the implementation step.

The context table is simply the result of a clustering

operation giving membership degrees of each data to each

cluster.

 This is described in Table 3, where the columns have the

following meanings:
- C# (context#): The name of the source context.
- Niv#, N#(Level#, Node#) :These two columns store the

identifier of the concept of context. The first is the level
of the concept in the lattice while the second represents
the sequence number of the concept at this level.

- Int#, Ext# (Intention, Extension): These columns store for
(respectively extension) of each concept.

- L_s#,L_p#(Successors List, predecessors list): These two
columns store the identifiers of successors (predecessors
respectively) of the concept.

- T_i,T_e (Size_Intension, Size_Extension): These two
columns store the cardinality of a concept (respectively
the number of attributes and the number of objects).

TABLE 3. SAMPLE CONCEPTS TABLE

C# Niv# N# Int# Ext# L_s# L_p# T_i T_e

….. …. … … … …. …. .. ….

E. Coursing the sample concepts table and calculating

agregation

In this step, we course the sample concepts table to

extract approximate answers and to calculate the final result

of approximate aggregation.

 We use algorithm proposed in [16] to build a sample

concepts table on the approximate query and then return the

approximate answers. In order to improve the response time,

we build the concepts table using only the query conditions.

This reduces the table size and minimizes the complexity

of the construction of the sample concepts table.

We calculate the aggregation function (AVG, SUM and

COUNT), using the algorithm 2 with the following

descriptions:
- value (t): represents the aggregate value of the tuple t.
- degree (t): represents the membership degree of t.

To calculate the aggregation, we use these functions:
- For AVG() function :

AVG=
1

𝑛
 𝑑𝑒𝑔𝑟𝑒𝑒 ∗ 𝑣 𝐿𝑖 𝑛

𝑖=1 (1)

- For SUM() function:

SUM=degree * 𝑣(𝐿𝑖)𝑛
𝑖=1 (2)

- For COUNT() function:

COUNT= 𝑑𝑒𝑔𝑟𝑒𝑒 ∗ 1𝑛
𝑖=1 (3)

Where degree = 𝑀𝑖𝑛(𝑈 𝑖1^𝑉 𝑖1^… . ^𝑍 𝑖1), and U, V, Z

are the membership degrees on the query Q and n is the

sample size, v(Li) is the value of the tuple index i (Li is a

random index).

We calculate the error rate (Interval) associated with the

aggregate function. We use the method of conservative

confidence intervals [11]:

Error Rate = 𝑏 − 𝑎
1

2𝑛
𝑙𝑛

2

1−𝑝
 1/2 (4)

 Where [a, b] is a predetermined interval, such that

a ≤ v (i) ≤ b for all 1 ≤ i ≤ m, n = sample size, m = size

of KB, p is the setting of confidence (example p = 0.95).

Algorithm 2 : Calculate_function

Inputs: concepts table: TCX

 Maximum value of attribute :max

 Minimum value of attribue : min

 Sample size :n

 Aggregate function: f

Outputs : result : res, Error rate :rate

Begin

 D=1

 som=0

 card=0

 For each element E of the concept table TCX

 if extension ≠∅ then

 for each objet t of the extension

 som=som+value(t)

 card=card+1

 if degre(t)< D then

 D=degre(t)

 End if

 End for

 End if

 End for

 If f= avg then

 res=(som/Card)*D

 else if f=sum then

 res=som*D

 else if f=count then

 res=card*D

 end if

 rate=
1,22∗(𝑚𝑎𝑥 −𝑚𝑖𝑛)

 𝑛

End

V. ILLUSTRATIVE EXAMPLE

Let a simple relational table “employee” (id, name, age,

salary), which contains the following rows (see Table 4).

131

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

TABLE 4: EXAMPLE OF THE RELATIONNAL TABLE EMPLOYEE

ID Name Age Salary

1 MOHAMED 23 400

2 ALI 30 550

3 WALID 45 700

…… …… ……. ……..

10000 WAJDI 40 800

 The relaxing attributes Age-Young, Age-Adult, age-

Low, Salary-Middle, Salary-High, and KB which contains

rows as shown in Table 5:

TABLE 5 : CLUSTERING DATA OF THE RELATION EMPLOYEE

ID

tuple

Age-

Young

Age-

Adult

Salary-

Low

Salary-

Middle

Salary-

High

1 0.7 0.3 0.6 0.4 0

2 0.5 0.5 0 1 0

3 0 1 0.1 0.6 0.3

… …. …. ….. …. ….

10000 0.1 0.9 0 0.3 0.7

Then, we eliminate data with low membership degree by

setting a user defined threshold, KB becomes as shown in

Table 6:

TABLE 6 : CLUSTERING DATA OF THE RELATION EMPLOYÉE WITH A

THRESHOLD

ID

tuple

Age-

Young

Age-

Adult

Salary-

Low

Salary-

Middle

Salary-

High

1 0.7 - 0.6 0.4 -

2 0.5 0.5 - 1 -

3 - 1 - 0.6 -

… …. …. ….. …. ….

10000 - 0.9 - - 0.7

Consider the following query for finding the average

salary for young employees and low salary with a

confidence level = 95%.
“Average Salary of Young employees and Low Salary with a degree of

confidence= 95% “

“Select Avg(Salary) from employees where age IS Young and Salary

IS Low”

The approximate query becomes:
“Select AVG (Salary), 0.95 as confidence, ConsAvgInterval(0.95) from

employee where age IS Young and Salary IS Low”

We construct the sample (Table 7) according to the KB

at the time of query execution.

TABLE 7. SAMPLE OF DATA

ID row Age-Young Salary-Low Salary

1 - 1 400

20 0.8 - 900

520 - 0.9 430

32 - 0.8 460

10 0.6 - 780

…… …… …… ……

130 - 0.5 550

Then we generate a concepts table associated with the

query as shown in Table 8.
With each given extension contains two attributes: The

first is the degree and the second is the aggregated value.
Example: 20 (1, 380) the row 20, a degree is 1and its

value is 380.
We repeat these steps until all the KB is treated either we

get an error rate is very low to say the exact result is very
close to either the user is satisfied with the outcome and
conclusion the query execution.

TABLE 8 : SAMPLE CONCEPTS TABLE

C# Niv # N# int# Ext# L_# L_p#
1 1 1 Young_A

low_S
∅ (1,2,1)

(1,2,2)

0

1 2 1 low_S 1(1 ;400)

32(0,8 ;460)

520(0,9;430)

130(0,5;550)

(1,3,1) (1,1,1)

1 2 2 Young_A 10(0,6 ;780)

20(0,8;900)

(1,3,1) (1,1,1)

1 3 1 ∅ 1(1 ;400),

32(0,8;460),

520(0,9;430)

,130(0,5;550)

10(0,6 ;780),

20(0,8;900)

0 (1,2,1)

(1,2,2)

In Table 9, we present an example of results returned

after the calculation AVG and error rate functions.

TABLE 9: RESULTS OF APPROXIMATE ANSWERS

AVG Confidence Error rate

400 95 % 0.06503

402 95% 0.06500

405 95% 0.06470

…. … ……

410 95% 0.0090

VI. COMPARATIVE STUDY

In this section, we present the essential idea of the main

approaches to flexible querying the closest to ours. We

specify each time different art studies conducted on these

approaches. They differ mainly by the way used to find the

values closest to those requested by the user and the

formalism used to model uncertainty and imperfection of the

real world.
The contributions of the approach Ounelli et al. [8] are

important, including the TAH and MTAH concepts for
modeling generalization and specialization hierarchies of
concepts. In this approach, no modification of SQL is
required, what constitutes an asset for the implementation of
this approach. The user does not apply during the relaxation
to make choices that can be hazardous.

In this approach, the relaxing attributes are set by the
administrator of the DB. This is especially important that the
proposed approach is aimed at end users with no specific and

132

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

detailed knowledge on the organization and the data they
consult. It is easier for an expert to specify a price attribute of
the DB table is relaxing and can be used with the terms
“low”, “comfortable” or “high”.

However, this approach has limitations in the structures it
uses. We mainly include: i) incremental maintenance of the
KB relaxing attributes, ii) clustering of relaxing attributes
without fixing a priori the number of clusters, iii) the problem
of storage ,clustering and indexing MTAH, and iv) not
taking into account aggregate queries.

In the approach of Sassi et al. [10], generated clusters for
each relaxing attribute are not stored in the DBMS catalog.
Thus, the maintainability of this meta-base is no longer a
problem. Indeed, in order to draw the concept lattice, core of
FCA, they must simply load an XML file that can retrieve all
the information necessary to trace these lattices.

However, this approach has limitations in the structures
they use. We mainly include i) the number of concepts
generated, ii) the response time used to generate approximate
answers, and iii) not taking into account aggregate queries.

The approach of Chettaoui et al. [9] allows the treatment
of empty response to a flexible query. Thus, it detects the
causes of failure and allows the generation of sub-queries and
approximate answers.

Another advantage of this approach is that not changing
the structure of SQL and thus benefit from the features of the
DBMS.

However, this approach does not allow the use of
linguistic modifiers in the query. This test is interesting since
users typically use such linguistic terms and it does not take
into account the aggregate queries.

The approach of Hass et al. [11] allows classical querying
(Boolean) on broad comic returning relevant answers in the
shortest time for aggregate queries. It aims to gradually give
approximate results when the query execution until all data
has been processed. Thus, the user observes the degree of
progress of the response and controls the query execution.
We are not obliged to wait several minutes for the query
result.

The approach proposed in this paper combines the
advantages of those mentioned above while overcoming the
limitations they present.

Indeed, we can perform an aggregate query on large
flexible DB while returning relevant answers in the short
time and the error rate.

Table 9 presents a comparative study between the
approaches mentioned above and ours.

 TABLE9. COMPARISON BETWEEN DIFFERENT APPROACHES

 Agregation Sampling Flexibility Accuracy

Query
Relaxation

- - X -

Fuzzifica-
tion of

concepts
lattice

- - X -

Online AQP X X - X

Flexible
interrogation

by AQP

X X X X

VII. EVALUATION

Figure 3 shows the main interface of the FLEXTRA

system.

The responses appear in the table when executing the

query. In this case, the user does not have to wait until

runtime to have the final result. Indeed, after a while, the

initial response and the error rate is displayed, until the user

stops the calculation or that KB has been completely treated.

Figure 3. Display approximate answers

A. Testing the response time

We started with the table employee (id, name, salary,

age) and we increased the number of records from 789 to

9498 records and calculate for each case the response time

of FLEXTRA system and compare it with the case of AQ

(approximate query) and classic querying(without AQ), as

shown in Figure 4.

For the employee table, it contains two relaxing

attributes “age” and “salary”.
The query is: “the average low salary of young

employees”.
“SELECT AVG (salary) FROM employee WHERE salary IS

low AND age IS young”.

Figure 4. Comparison between the two approaches

0

50000

100000

150000

200000

250000

5
0

0

7
9

8

1
5

96

2
3

94

3
1

92

3
9

90

4
7

88

5
5

86

6
3

84

7
1

82

7
9

80R
es

p
o

n
se

 t
im

e
in

 m
s

Number of tuples

Classic querying

Qurying with AQQuerying with AQ

133

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

From Figure 4, we find that the response time is lower
using the AQ than classing querying.

For the classical query, the curve is exponential, while for
interrogation with AQ, the curve is linear.

If the size of the database exceeds 7000 records, the
response time for classic querying, is about 2 minutes, so it is
with the AQ, the order of 5 seconds.

B. Testing the accuracy response

We will run the application in the table employee in both

cases: with and without AQ, then check the quality of

answers returned with AQ.
For the table employee, the exact answer is 34.9 years to

have when we execute the following query:
“SELECT avg(age) FROM employee WHERE age IS adulte

AND salary IS middle ”.
Figure 5 shows the development of approximate answers

to reach the exact answer:

Figure 5. Evolution of approximate answers

We note that approximate answers are near to the exact

answer, the first approximate answer is 35.1 years + / - 1.2
with 95% confidence level, whereas the correct answer
(classic querying) is 34.9 years.

VIII. CONCLUSION

We proposed in this work a flexible querying approach

of large DB while using AQ.

It is about a field in strong expansion. On the one hand,

the DB are increasingly bulky. In addition, the construction

of querying systems able to satisfy flexible queries is more

complex and expensive.

We integrated the AQ techniques in a system using FCA

in order to overcome limits of the existing approaches when

we use aggregate queries (“Sum”, “Avg”, “Count”, “Var”,

etc.) such as the response time and confidence rate of result

answers.

The type of query is “give the average of the low salary”.

This system makes it possible to turn over quickly

approximate answers while holding trying to improve the

exactitude of the provided answers.

Our approach comprises two steps:

- Pre processing step in which the KB is generated starting
from the DB so that it contains membership degrees of
each tuple to the relievable attributes.

- Post processing step during which the flexible query is
rewritten so that it becomes an AQ. The sampling of the
KB consists in extracting some data (tuples). The
construction of a sample concepts table is made to release
the approximate answer and the Error Rate.
For the exactitude of the answer, we used AQ which

support the response time to the detriment of the result

exactitude.

In order to improve the response time, we propose in this

article to adapt online aggregation technique proposed in

[11], whose objective is to gradually give approximate

answers while executing the query.

It consists to apply a sampling to the initial data of the

DB in order to minimize the disc access and consequently to

improve the response time.

Our approach contributes several shares in particular:
- The calculation of aggregation for flexible queries.
- The improvement of response time by guaranteeing the

exactitude of the answer.
- The processing of the case of empty answers for a

flexible query.
- No modification of the structure of the DBMS and SQL

language.
- The use query execution control.

To implement this approach, layers will be added to a

conventional DBMS such as:
- Rewritable layer: it takes care of rewriting the query

aggregation for which an application becomes rough.
- Aggregation layer: it is responsible for calculating the

responses gradually during the query execution.
As futures works, we propose:

- The integration of complex and nested queries involving
join operation.

- The calculation of the aggregation functions on several
attributes.

- The inclusion of some widely used language modifiers
like “very” and “approximately” in the query
qualification.

- The use of other sampling procedures in order to improve
the confidence rate.

 REFERENCES

[1] Lacroix, M. and Lavency, P., “Preferences : Putting More

Knowledge Into Queries”, 13th VLBD Conference, pp. 217-

225, 1987.

[2] Chan, C.L., “Decision Support in an Imperfect World”,

Research Report, pp. 100-102, 1982.

[3] Rabitti, F., “Retrieval of Multimedia Documents by Imprecise

Query Specification”, Lecture Notes in Computer Science,

416, pp. 202-218, 1990.

[4] Ichikawa, T. and Hirakawa, M., “ARES: A Relational

Database with the Capability of Performing Flexible

Interpretation of Queries”, IEEE Transactions on Software

Engineering, pp. 624-634, 1986.

134

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

[5] Motro, A., “ VAGUE : A User Interface to Relational

Database That Permits Vague Queries ”, ACM Transaction off

Information Systems, 6(3), pp. 187-214, 1988.

[6] Bosc, P., Liétard, L., and Pivert, O., “ Bases de Données et

Flexibilité : Les Requêtes Graduelles ”, Techniques et

Sciences Informatiques, 17(3), pp. 355-378, 1998.

[7] Tahani, V., “A conceptual Framework for fuzzy Query

Processing: A step Toward Very Intelligent Database

Systems”, Information Processing and Management, 13, pp.

289-303, 1977.

[8] Ounalli, H. and Belhadjahmed, R., “ Interrogation flexible et

coopérative d'une BD par abstraction conceptuelle

hiérarchique ”, INFORSID 2004, pp. 41-56, 2004.

[9] Chaettaoui, H., “ Les treillis de concepts dans l’interrogation

flexible et coopérative des bases de données ”, Master, Faculty

of Sciences of Tunis, 2008.

[10] Sassi, M., “ Contribution à l'interrogation flexible des bases de

données ”, Phd Thesis, National Engineering School of Tunis,

2007.

[11] Haas, P.J., Hellerstein, J.M. and Wang, H.J., “Online

aggregation”. ACM-SIGMOD International Conference on

Management of Data, pp. 171 - 182, 1997.

[12] Chu, W.W., Yang, H., Chiang, K., Minock, M., Chow, G., and

Larson, C., “CoBase : A Scalable and Extensible Cooperative

Information System”, Journal of Intelligent Systems, Kluwer

Academic Publishers, vol. 6, Issue 2-3, pp. 223 – 259, 1996.

[13] Olken, F., “Random sampling from databases”, PhD Thesis,

University of California, Berkeley.1993.

[14] Chakrabati, S., Garofalakis, M., Rastogi, R., and Shim, K.,

“Approximate query processing using wavelets”, Springer

publisher, pp. 199 – 223, 2001.

[15] Zadeh, L.A., “Fuzzy Sets”, Information and Control, 8, pp.

338-353, 1965.

[16] Gammoudi, M.M., “ Décomposition conceptuelle des

relations binaires et ses applications”, Habilitation in computer

science, Faculty of Sciences of Tunis, 2005.

135

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

