
Large Software Component Repositories into Small Index Files

Marcos Paulo Paixão, Leila Silva

Computation Department

Federal University of Sergipe

Aracaju, Brazil

marcospsp@dcomp.ufs.br, leila@ufs.br

Talles Brito, Gledson Elias

Informatics Department

Federal University of Paraíba

João Pessoa, Brazil

talles@compose.ufpb.br, gledson@di.ufpb.br

Abstract—Software component repositories have adopted semi-
structured data models for representing syntactic and semantic
features of handled assets. Such models imply challenges to
search engines, which are related to the design of indexing
techniques that ought to be efficient in terms of storage space
requirements. In such a context, by applying clustering
techniques before indexing component repositories, this paper
proposes an approach for reducing the number of assets in the
repository, and consequently, the size of index files. Based on
an illustrative repository, outcomes indicate a significant
optimization in the number of assets to be indexed.

Keywords - Component repositories; indexing; clustering

techniques.

I. INTRODUCTION

By enabling different software developers to share
software assets, software component repositories have the
potential to improve software reuse level. However, reuse of
software assets is in general a hard task, particularly when
search and selection must be conducted over large-scale asset
collections. Therefore, in repository systems, it is important
the development of search engines that can help searching,
selecting and retrieving required software assets.

According to Orso et al. [11], the aim of a repository
system is not to store software assets only, but also metadata
describing them. Such metadata provides information
employed by search engines for indexing stored assets. In
such a direction, as endorsed by Vitharana [13], component
description models can adopt high level concepts for
describing component metadata, making possible to express
syntactic and semantic features, and so, facilitating
developers to search, select and retrieve assets. In practice,
currently available component description models have
adopted approaches based on semi-structured data, more
specifically XML, allowing structural relationships among
elements to aggregate semantic to textual values. As
examples, it can be mentioned RAS [10] and X-ARM [3].

However, indexing techniques based on textual
restrictions are not efficient for semi-structured data. Such
techniques are unable of indexing structural relationships
among terms, compromising query precision with false-
positives. Thus, the adoption of semi-structured data implies
challenges related to the design of indexing techniques that
ought to be efficient in terms of storage space requirements,
processing time and precision level of queries, which can be
constrained by textual and structural restrictions.

Several proposals can be found in the literature for
dealing with such problems. Despite their relevant
contributions, existing techniques do not meet storage space
and query processing time requirements [9], and also query
precision level [6]. In such a scenario, the proposal presented
by Brito et al. [1] represents a noticeable indexing technique
based on semi-structured data, which can be considered
precise and efficient in terms of query processing time, but
suffer from problems related to storage space requirements.
Such problems occur because generated index files are
bigger than the input database. Thus, in the context of large-
scale software component repositories, it is still a
challenging open issue to design indexing techniques that
minimize the storage space requirements without excessively
impacting on query processing time and precision.

In such a context, based on the adoption of clustering
techniques, this paper proposes an approach for reducing the
number of assets in the repository, and consequently,
optimizing the storage space requirements. Taking into
account a large-scale component repository, the proposed
approach identifies clusters (groups) of similar software
assets and generates new representative assets, which in turn
must be handled by the indexing technique supported by the
search engine of the repository. Each representative asset has
a simplified description, also based on semi-structured data,
which makes reference to all original assets that belong to its
cluster of similar assets. In order to do that, the paper also
proposes a similarity metric that has the aim of indicating the
set of assets that belongs to the same cluster. The bigger the
similarity among assets in the repository, the lesser is the
number of identified clusters, and as a result, the lesser is the
number of representative assets that must be indexed by the
search engine, enabling to save storage space.

The remainder of this paper is structured as follows.
Section II describes related techniques, evincing the original
initiative of applying clustering techniques in the context of
indexing software component repositories. The adopted
component description model, called X-ARM, is briefly
presented in Section III, identifying the main types of assets
and their relationships. Then, Section IV presents the
proposed clustering approach for reducing the number of
assets to be indexed, and so, optimizing storage space
requirements. After that, some outcomes observed in a
preliminary evaluation performance are presented in Section
V. In conclusion, Section VI presents some final remarks and
delineates future work.

122

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

II. RELATED TECHNIQUES

Taking into account that the problem of data clustering is
NP-hard, several heuristics have already been proposed. Xu
and Wunsch [15] present an interesting review of the
research field. In [4], Feng shows that clustering algorithms,
in particular, hierarchical algorithms and K-Means [7], are
equivalent to optimization algorithms of a fitness function.

In this paper, a two-stage, heuristic clustering approach is
proposed, based on the classical hierarchical algorithm and
K-Means. In order to validate the proposed approach, a
random database composed of 27.000 assets has been
generated and results indicate that there is a significant
optimization in terms of the number of assets to be indexed.

However, for the best knowledge of the authors,
clustering techniques have never been adopted in the context
of indexing software components repositories. Therefore, it
seems an original contribution to apply such techniques
when indexing component repositories. Despite the
mentioned originality, several other proposals have already
adopted clustering techniques in problems of the software
engineering. For instance, Wu et al. [14] compares several
clustering approaches proposed in the context of software
evolution. In [8], Li et al. proposes the adoption of clustering
techniques for encapsulating software requirements.
Chiricota et al. [2] investigates the application of clustering
techniques in the domain of reverse engineering, in
particular, adopting such techniques to recover the structure
of software systems.

III. X-ARM

In order to express syntactic and semantic features of
software components, Frakes [5] suggests the adoption of
component description models, which provide a set of
information that allows search systems to index and classify
all types of related assets. In such a direction, this paper
explores the X-ARM description model, which adopts a
XML-based semi-structured data model, expressing not only
syntactic information but also semantic properties [3].
Besides, X-ARM enables describing several types of
software assets, which can be produced in component-based
development processes, proving the required semantic for
representing their relationships.

As illustrated in Fig. 1, X-ARM allows describing
component and interface specifications, as well as
component implementations. The component and interface
specifications can be described in a way that is independent
or dependent of component model. On the one hand,
independent specifications do not take into account any
feature or property of component models, such as CCM,
JavaBeans, EJB and Web Services. On the other hand,
dependent specifications ought to consider features and
properties related to the adopted component models.

In X-ARM, both dependent and independent interface
specifications are described as a set of operations. Each
operation has a name, a set of input or output parameters and
a return value. In component-based development processes,
dependent interface specifications must be in conformance
with their independent counterparts. So, in Fig. 1, it can be

observed that dependent interface specifications must
reference to their respective independent interface
specifications.

Independent
Component

Specification

Dependent
Component
Specification

Component
Implementation

Independent
Interface

Specification

Dependent
Interface

Specification

required provided

Operation

1

1

Parameter

*

Return

1

1 ..*

1 ..* 1 ..*

*

required

*

provided

1 ..*

1

Figure 1. Relationships between artifacts.

Dependent and independent component specifications
can make reference to a set of provided and required
interface specifications. However, it must be noticed that
independent component specifications can refer to
independent interface specifications only. Similarly,
dependent component specifications can refer to dependent
interface specifications only. In component-based
development processes, dependent component specifications
must be in conformance with their respective independent
counterparts. Therefore, note that dependent component
specifications must make reference to their respective
independent component specifications.

In summary, dependent interface and component
specifications must be in conformance with their respective
independent specifications. Besides, for each independent
specification, several dependent specifications can be
described, each one in conformance with a given software
component model.

In a similar way, in component-based development
processes, component implementations must be in
conformance with their respective dependent component
specifications. So, in Fig. 1, note that component
implementations must refer to their correspondent dependent
component specifications. Besides, for each dependent
component specification, several component
implementations can be realized.

As an example of the description of an asset in X-ARM,
Fig. 2 illustrates a fragment of a dependent component
specification. In Fig. 2, all lines are numbered and many
details have been suppressed for didactic purposes. Line 1
represents the assed header, in which can be found the asset
identifier (id). Lines 2 to 4 make reference to the
independent component specification, from which the
described asset must be in conformance with. Then, Lines 5
to 14 refer to all dependent interface specifications, which
are provided by the described dependent component
specification. Although note illustrated in Fig. 2, required
interfaces can also be specified in a similar way.

123

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

01 <asset name=“dependentCompSpec-X”

id=“compose.dependentCompSpec-X-1.0-beta”>

02 <model-dependency>

03 <related-asset name=“independentCompSpec-Z”

id=“compose.independentCompSpec-Z-1.0-stable”

relationship-type=“independentComponentSpec”/>

04 </model-dependency>

05 <component-specification>

06 <interface>

07 <provided>

08 <related-asset name=“dependentInterface-A”

id=“compose.dependentIntSpec-A-2.0-stable”

relationship-type=“dependentInterfaceSpec”/>

09 </provided>

10 <provided>

11 <related-asset name=“dependentInterface-B”

id=“compose.dependentIntSpec-B-3.0-stable”

relationship-type=“dependentInterfaceSpec”/>

12 </provided>

13 </interface>

14 </component-specification>

15 </asset>

Figura 2. Component specification in X-ARM.

IV. A CLUSTERING BASED INDEXING APPROACH

As largely recognized in the literature, the task of
indexing repositories based on semi-structured data is a
relevant issue [1][6][9]. One of the major challenges is to
provide an indexing mechanism that reduces storage space
requirements, but without excessively impacting on query
processing time and precision level.

In such a context, this paper proposes a solution for
optimizing the storage space required by index files. To do
that, the proposed approach constructs a clustered repository,
which is composed of representative assets of the set of
software assets stored in the original repository. Therefore,
instead of indexing the original repository, the adopted
search service ought to index the reduced set of
representative assets, which make reference to the original
assets. In order to identify the groups of similar assets, and,
consequently, to construct the representative assets that
compose each group, the paper also proposes the adoption of
data clustering techniques.

Clustering techniques [7] consist of three basic phases:
(i) extraction of features that express the behavior of the
elements to be clustered; (ii) definition of the similarity
metric in order to compare evaluated elements; and (iii)
adoption of a clustering algorithm. The phase of extracting
features consists in defining what information is relevant to
express the evaluated element and how information is
quantified. Such information defines an attribute vector and
thus an element can be represented as a point in the
multidimensional space. The similarity metric expresses in
quantitative terms the similarity between elements. In
general, a function is defined for such a purpose, in which
the Euclidean distance [7] between two points (elements) is
one of the more common adopted metrics. Finally, the data
clustering algorithm is a heuristic that has the aim of
generating groups of elements, in which each group is
composed of similar elements, according to the adopted
similarity metric.

A. Relevant Features

The approach proposed herein applies the clustering
technique taking into account the five types of assets that can
be stored in the repository, that is: dependent and
independent component specifications, dependent and
independent interface specifications and component
implementations. The clustering technique is applied
separately for each type of asset. Therefore, each type has a
distinct attribute vector for representing its features.

For each component implementation, the relevant feature
is its referenced dependent component specification. Hence,
different implementations of the same dependent component
specification are considered similar.

In turn, for each dependent component specification, the
relevant features are its referenced independent component
specification as well as its set of provided dependent
interface specifications. Therefore, different dependent
component specifications are considered similar when they
refer to the same independent component specification or
have in common a considerable subset of provided
dependent interface specifications.

In relation to independent component implementations,
the relevant feature of each one is its set of provided
independent interface specifications. So, different
independent component specifications are considered similar
when they have in common a considerable subset of
provided independent interface specifications.

Taking into account dependent interface specifications,
the relevant features of each one are its referenced
independent interface specification together with their
operations. Thus, different dependent interface specifications
are considered similar when they refer to the same
independent interface specification or have in common a
considerable subset of defined operations.

Finally, for each independent interface specification, the
relevant features are its defined operations, considering their
names, input and output parameters and the return value.
Consequently, different independent interface specifications
are considered similar when they have in common a
considerable subset of defined operations.

As an example, Table I presents the attribute vector of
the asset illustrated before in Fig. 2. As can be noticed, the
asset is a dependent component specification. Therefore, the
attribute vector is composed of its referenced independent
component specification (lines 2 to 4) and its set of provided
dependent interface specifications (lines 5 to 14).

TABLE I. ATTRIBUTE VECTOR OF THE ASSET X.

ID compose.dependentCompSpec-X-1.0-beta

Independent

Component

Specification
compose.independentCompSpec-Z-1.0-stable

Dependent

Interface

Specification

compose.dependentIntSpec.A-2.0-stable
compose.dependentIntSpec.B-3.0-stable

124

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

B. Similarity Metric

The similarity metric is defined based on the attribute
vector of the asset. Since the attribute vector differs between
distinct types of assets, the similarity metric is also different
for each type of asset. Due to space limitation, the adopted
metrics are not completely described (see [12] for details). In
order to illustrate the composition of the metric, consider the
case of determining the similarity between two dependent
component specifications. In such a case, if two dependent
component specifications have the same reference to a given
independent component specification, then a certain value,
called distance, is assigned to the similarity among them.
Besides, the intersection and union sets of their provided
dependent interface specifications are calculated. A weight is
assigned to the ration among the size of the intersection and
union sets in such a way that dependent component
specifications are considered more similar when the ration is
closer to one, and considered more different when the ration
tends to zero.

As an example of calculating the similarity metric,
consider the dependent component specifications that have
the attribute vectors illustrated in Table I and II. The
similarity between them is established using their attribute
vectors. Such a similarity is expressed by a numeric value,
which can be calculated according the following equation:

 Df = Di – k – (intersection/union)*100. (1)

In Eq. (1), the terms have the following values. The term
Di is a default initial distance (Di = 300). In turn, the term k
can be the value 200, if both specifications make reference to
the same dependent component specification, or otherwise
the value 0. The term intersection expresses the number of
provided dependent interfaces that both specifications have
in common. Finally, the term union represents the number of
provided dependent interfaces that both specifications have
together. In the example, Di = 300, k = 0; intersection = 1
and union = 3. Thus, Df = 300 – 0 – 33 = 267.

TABLE II. ATTRIBUTE VECTOR OF THE ASSET Y.

ID compose.dependentCompSpec-Y-1.0-beta

Independent

Component

Specification
compose.independentCompSpec-W-1.0-beta

Dependent

Interface

Specification

compose.dependentIntSpec.A-2.0-stable
compose.dependentIntSpec.C-1.0-stable

C. Clustering Algorithm

The proposed clustering algorithm has two stages. In the
first stage, the classical hierarchical clustering algorithm [7]
is applied adopting the concept of threshold. Thus, the
clustering algorithm is performed until the distance between
the clusters is greater than the threshold, which is specified
by the user. For each identified cluster, a representative asset
is constructed and stored in nonvolatile memory. In order to
make the performance better, the implementation of the

algorithm loads the assets to be clustered in volatile memory,
until reaching its storage capacity. During such a stage, the
assets are randomly selected from the repository.

Fig. 3 illustrates the main steps of the first stage: (a)
assets are randomly selected from the repository; (b) clusters
composed of similar assets are constructed by applying the
hierarchical clustering algorithm; and (c) representative
assets are created for representing each cluster.

(a)

Asset

Randomly Selected Asset

Representative Asset

(b) (c)

Figura 3. The first stage.

In the second stage, a K-Means based algorithm [7] is
adopted. In general terms, representative elements are
considered centroids. However, differently from K-Means,
such centroids are not recalculated in the proposed approach.
Indeed, each asset, not yet clustered in the first stage, is
compared with each representative asset. The asset is
candidate to be included in a cluster when the distance
between the asset and the respective representative asset is
lesser than the threshold. Fig. 4 shows the second stage.

Asset Randomly Selected Asset Representative Asset

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4. The second stage.

125

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

As depicted in Figs. 4a, 4b, and 4c, considering all
candidate clusters, the asset is included in the cluster that has
the minor distance and then the representative element of the
cluster is reconstructed considering the features of the
included asset. Otherwise, as shown in Figs. 4d, 4e and 4f, if
the asset is not a candidate to any cluster, the own asset
becomes a new representative element and so a new cluster.

V. PERFORMANCE EVALUATION

In order to evaluate the proposed approach, it has been
developed a customizable script that automatically generates
a repository that stores the mentioned X-ARM assets. The
generated repository has 27.000 different types of assets.
After creating the repository, the proposed approach has
been applied for grouping the stored assets in clusters,
generating their respective representative assets. Fig. 5
presents the number of each type of asset in the original
repository and the clustered repositories after the application
of the proposed approach using the threshold of 175 and 150.

Indep. Int.

Spec.

Dep. Int.

Spec.

Indep. Comp.

Spec.

Dep. Comp.

Spec.
Comp. Imp. Total

1.000 2.500 2.500 6.000 15.000 27.000

750 511 1.000 325 321 2.907

861 575 1.000 330 328 3.094

0

5

10

15

20

25

30

Original Clustered (threshold 175) Clustered (threshold 150)

Figure 5. Number of Assets.

As can be noticed in Fig. 5 and Fig. 6, the proposed
approach significantly reduces the original repository. For
example, when the threshold is 175, the number of stored
assets in the original repository is reduced around 89,2%,
dropping from 27.000 original assets to 2.907 representative
assets. In terms of storage space, the proposed approach
reduces the storage space requirements around 43%,
dropping from 18 MB in the original repository to 10 MB in
the clustered one.

When the threshold is reduced, as expected, more
representative elements can be constructed because more
clusters are created. Thus, when the threshold is reduced
from 175 to 150, the number of original assets is reduced
from 27.000 to 3.094 representative assets, which still
represents a significant reduction in the number of stored
assets around 88,5%.

Consequently, as illustrated in Fig. 6, in terms of the
number of assets, the gains of applying the proposed
approach are significantly relevant, varying between 89,2%
and 88,5% for the thresholds of 175 and 150, respectively.

Figure 6. The total gain

However, as depicted in Fig. 7, the gains are different for
each type of asset. For independent interface specifications,
the gains are around 25% and 13,9% for thresholds of 175
and 150, respectively. Such lower gains can be explained by
the difficulty of finding two or more interfaces that has a
reasonable set of common operations, which are evaluated in
terms of their names, the types of their input and output
attributes, and also the type of their return values.

Figure 7. The gains for different types of assets

Considering dependent interface specifications, the gains
become more expressive, increasing to 79,6% and 77% when
thresholds are 175 and 150, respectively. Part of the reason
for that is that, during the generation of the original
repository, the adopted script creates 2 or 3 dependent
interfaces that refer to the same independent interface,
representing that each independent interface is specified for
at least 2 or 3 different component models in practice. So, as
the similarity metric for dependent interfaces is based on
their referenced independent interface together with their
operations, it is already expected such expressive gains, as
demonstrated in the experiments.

In relation to independent component specifications, the
gains are around 60% for both thresholds. Such gains are
relatively high and indeed not expected. However, as
mentioned before, independent component specifications are
considered similar when they have in common a
considerable subset of provided independent interfaces.
Considering that independent interfaces have expressive
clustering rates, such gains make possible to group several

126

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

interfaces in a unique representative interface, increasing the
likelihood of independent component specifications to refer
to the same provided interfaces, and consequently, justifying
the high gains for both thresholds.

In terms of dependent component specifications, the
gains become much more expressive, increasing to 94,6%
and 94,5% when thresholds are 175 and 150, respectively.
The rationale for that is that, during the generation of the
original repository, the adopted script creates 2 or 3
dependent components that refer to the same independent
component, representing that each independent component is
specified for at least 2 or 3 different component models in
practice. So, such better gains are understandable because the
similarity metric for dependent components is based on their
referenced independent components, which already have
expressive clustering rates.

Finally, for component implementations, the gains
become higher, around 97,9% and 97,8% when thresholds
are 175 and 150, respectively. Again, the rationale for that is
that, when generating the original repository, the adopted
script creates 2 or 3 component implementations for each
dependent component specification, representing that each
dependent component has at least 2 or 3 different
implementations in practice. So, such higher gains are
expected because the similarity metric for component
implementations is based on their referenced dependent
components, which already have expressive clustering rates.

As can be noticed, the clustering gains in independent
interfaces specifications impact on the gains in both
dependent interfaces specifications and independent
component specifications. Similarly, the clustering gains in
independent component specifications impact on the gains in
dependent component specifications, which in turn impact
on the gains in component implementations.

VI. CONCLUSION

Based on the preliminary results, it can be clearly
evinced as benefits the potential of the proposed approach in
significantly clustering an X-ARM repository and
consequently reducing storage space requirements. It must
be highlighted that, the bigger the original repository in
terms of the number of stored assets, the more expressive the
likelihood of clustering assets, and so the better the gain in
terms of storage space requirements.

Taking into account that the indexing technique proposed
by Brito et al. [1] will be adopted for indexing the clustered
repository, it is taken for granted that the reduction in the
size of the original repository implies in an expressive
reduction in the size of index files of the clustered repository.
Besides, considering that the technique proposed by Brito et
al. has an excellent performance in query processing time,
even in large-scale index files, it is expected a reasonable
gain in terms of query processing time due to the expressive
reduction in the size of index files. Therefore, the proposed
approach clearly makes possible to map large software
component repositories into small index files.

However, as often informally said, there is no free lunch.
That is, in formal words, such expressive gains in terms of
storage space requirements and query processing time,

almost certainly have an impact on the query precision level,
since the process of clustering assets introduces some degree
of information loss in representative assets. It must be
stressed that the tradeoff between the best threshold and the
query precision level has not yet been investigated. In such a
sense, the evaluation of the impact of the proposed approach
in terms of query processing time and precision level
constitutes future work. Besides, it is also under investigation
a comparative analysis contrasting the proposed approach
and other ones available in the literature, but applied in
different research fields.

ACKNOWLEDGMENT

This work was supported by the National Institute of
Science and Technology for Software Engineering (INES –
www.ines.org.br), funded by CNPq, grants 573964/2008-4.

REFERENCES

[1] T. Brito, T. Ribeiro, and G. Elias, “Indexing Semi-Structured Data for

Efficient Handling of Branching Path Expressions”, 2nd Inter. Conf.
on Advances in Databases, Knowledge, and Data Applications

(DBKDA 2010), France, 2010, pp. 197-203.

[2] Y. Chiricota, F. Jourdan, and G. Melançon, “Software Component

Capture using Graph Clustering”, Proc. IEEE International Workshop
on Program Comprehension, 2003.

[3] G. Elias, M. Schuenck, Y. Negócio, J. Dias, and S. Miranda, “X-

ARM: An Asset Representation Model for Component Repository”,
Proc. 21st ACM Symposium on Applied Computing (SAC 2006),

France, 2006, pp. 1690-1694.

[4] A. Feng, “Document Clustering – An Optimization Problem”, ACM
SIGIR 2007, pp. 819-820.

[5] W. Frakes and K. Kang, “Software Reuse Research: Status and
Future”, IEEE Transactions on Software Engineering, vol.31, issue 7,

July 2005, pp. 529-536.

[6] R. Goldman and J. Widom, “DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases”, Proc.

23rd Int. Conf. on Very Large Data Bases (VLDB 1997), Greece,
1997, pp. 436-445.

[7] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data, Prentice

Hall, 1984.

[8] Z. Li, Q.A. Rahman, and N.H. Madhavji, “An Approach to

Requirements Encapsulation with Clustering”, Proc. 10th Workshop
on Requirement Engineering, 2007, pp. 92-96.

[9] W. Meier, “eXist: An Open Source Native XML Database”, NODe

2002 Web and Database-Related Workshops on Web, Web-Services,
and Database Systems, 2002.

[10] OMG, Reusable Asset Specification: OMG Available Specification –

v2.2, 2005.

[11] A. Orso, M.J. Harrold, and D.S.Rosenblum, “Component Metadata

for Software Engineering Tasks”, Proc. 2nd Int. Workshop on
Engineering Distributed Objects, 2000, pp. 126-140.

[12] M.P.S. Paixão, T.B. Viana, L. Silva, and G. Elias, G. "Optimizing the

Search Space in Distributed Component Repositories", Technical
Report, June 2010. http://www.compose.ufpb. br/reports/component-

repository-cluster.pdf (in Portuguese).

[13] P. Vitharana, F. Zahedi, and H. Jain, "Knowledge-Based Repository
Scheme for Storing and Retrieving Business Components: A

Theoretical Design and an Empirical Analysis", IEEE Transactions
on Software Engineering., vol. 29, issue 7, July 2003, pp. 649-664.

[14] J. Wu, A.E. Hassan, and R.C. Holt, "Comparison of Clustering
Algorithms in the Context of Software Evolution", Proc. 21st Int.

Conf. on Software Maintenance, 2005, pp. 525-535.

[15] R. Xu and D. Wunsch, “Survey of Clustering Algorithms”, IEEE
Transactions on Networks, vol.16, issue 3, May, pp. 645-678.

127

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

