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Abstract—Software component repositories have adopted semi-
structured data models for representing syntactic and semantic 
features of handled assets. Such models imply challenges to 
search engines, which are related to the design of indexing 
techniques that ought to be efficient in terms of storage space 
requirements. In such a context, by applying clustering 
techniques before indexing component repositories, this paper 
proposes an approach for reducing the number of assets in the 
repository, and consequently, the size of index files. Based on 
an illustrative repository, outcomes indicate a significant 
optimization in the number of assets to be indexed. 

Keywords - Component repositories; indexing; clustering 

techniques. 

I.  INTRODUCTION 

By enabling different software developers to share 
software assets, software component repositories have the 
potential to improve software reuse level. However, reuse of 
software assets is in general a hard task, particularly when 
search and selection must be conducted over large-scale asset 
collections. Therefore, in repository systems, it is important 
the development of search engines that can help searching, 
selecting and retrieving required software assets. 

According to Orso et al. [11], the aim of a repository 
system is not to store software assets only, but also metadata 
describing them. Such metadata provides information 
employed by search engines for indexing stored assets. In 
such a direction, as endorsed by Vitharana [13], component 
description models can adopt high level concepts for 
describing component metadata, making possible to express 
syntactic and semantic features, and so, facilitating 
developers to search, select and retrieve assets. In practice, 
currently available component description models have 
adopted approaches based on semi-structured data, more 
specifically XML, allowing structural relationships among 
elements to aggregate semantic to textual values. As 
examples, it can be mentioned RAS [10] and X-ARM [3]. 

However, indexing techniques based on textual 
restrictions are not efficient for semi-structured data. Such 
techniques are unable of indexing structural relationships 
among terms, compromising query precision with false-
positives. Thus, the adoption of semi-structured data implies 
challenges related to the design of indexing techniques that 
ought to be efficient in terms of storage space requirements, 
processing time and precision level of queries, which can be 
constrained by textual and structural restrictions. 

Several proposals can be found in the literature for 
dealing with such problems. Despite their relevant 
contributions, existing techniques do not meet storage space 
and query processing time requirements [9], and also query 
precision level [6]. In such a scenario, the proposal presented 
by Brito et al. [1] represents a noticeable indexing technique 
based on semi-structured data, which can be considered 
precise and efficient in terms of query processing time, but 
suffer from problems related to storage space requirements. 
Such problems occur because generated index files are 
bigger than the input database. Thus, in the context of large-
scale software component repositories, it is still a 
challenging open issue to design indexing techniques that 
minimize the storage space requirements without excessively 
impacting on query processing time and precision.  

In such a context, based on the adoption of clustering 
techniques, this paper proposes an approach for reducing the 
number of assets in the repository, and consequently, 
optimizing the storage space requirements. Taking into 
account a large-scale component repository, the proposed 
approach identifies clusters (groups) of similar software 
assets and generates new representative assets, which in turn 
must be handled by the indexing technique supported by the 
search engine of the repository. Each representative asset has 
a simplified description, also based on semi-structured data, 
which makes reference to all original assets that belong to its 
cluster of similar assets. In order to do that, the paper also 
proposes a similarity metric that has the aim of indicating the 
set of assets that belongs to the same cluster. The bigger the 
similarity among assets in the repository, the lesser is the 
number of identified clusters, and as a result, the lesser is the 
number of representative assets that must be indexed by the 
search engine, enabling to save storage space. 

The remainder of this paper is structured as follows. 
Section II describes related techniques, evincing the original 
initiative of applying clustering techniques in the context of 
indexing software component repositories. The adopted 
component description model, called X-ARM, is briefly 
presented in Section III, identifying the main types of assets 
and their relationships. Then, Section IV presents the 
proposed clustering approach for reducing the number of 
assets to be indexed, and so, optimizing storage space 
requirements. After that, some outcomes observed in a 
preliminary evaluation performance are presented in Section 
V. In conclusion, Section VI presents some final remarks and 
delineates future work. 
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II. RELATED TECHNIQUES 

Taking into account that the problem of data clustering is 
NP-hard, several heuristics have already been proposed. Xu 
and Wunsch [15] present an interesting review of the 
research field.  In [4], Feng shows that clustering algorithms, 
in particular, hierarchical algorithms and K-Means [7], are 
equivalent to optimization algorithms of a fitness function. 

In this paper, a two-stage, heuristic clustering approach is 
proposed, based on the classical hierarchical algorithm and 
K-Means. In order to validate the proposed approach, a 
random database composed of 27.000 assets has been 
generated and results indicate that there is a significant 
optimization in terms of the number of assets to be indexed. 

However, for the best knowledge of the authors, 
clustering techniques have never been adopted in the context 
of indexing software components repositories. Therefore, it 
seems an original contribution to apply such techniques 
when indexing component repositories. Despite the 
mentioned originality, several other proposals have already 
adopted clustering techniques in problems of the software 
engineering. For instance, Wu et al. [14] compares several 
clustering approaches proposed in the context of software 
evolution. In [8], Li et al. proposes the adoption of clustering 
techniques for encapsulating software requirements. 
Chiricota et al. [2] investigates the application of clustering 
techniques in the domain of reverse engineering, in 
particular, adopting such techniques to recover the structure 
of software systems. 

III. X-ARM 

In order to express syntactic and semantic features of 
software components, Frakes [5] suggests the adoption of 
component description models, which provide a set of 
information that allows search systems to index and classify 
all types of related assets. In such a direction, this paper 
explores the X-ARM description model, which adopts a 
XML-based semi-structured data model, expressing not only 
syntactic information but also semantic properties [3]. 
Besides, X-ARM enables describing several types of 
software assets, which can be produced in component-based 
development processes, proving the required semantic for 
representing their relationships. 

As illustrated in Fig. 1, X-ARM allows describing 
component and interface specifications, as well as 
component implementations.  The component and interface 
specifications can be described in a way that is independent 
or dependent of component model. On the one hand, 
independent specifications do not take into account any 
feature or property of component models, such as CCM, 
JavaBeans, EJB and Web Services. On the other hand, 
dependent specifications ought to consider features and 
properties related to the adopted component models.  

In X-ARM, both dependent and independent interface 
specifications are described as a set of operations. Each 
operation has a name, a set of input or output parameters and 
a return value. In component-based development processes, 
dependent interface specifications must be in conformance 
with their independent counterparts. So, in Fig. 1, it can be 

observed that dependent interface specifications must 
reference to their respective independent interface 
specifications.  
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Figure 1. Relationships between artifacts. 

Dependent and independent component specifications 
can make reference to a set of provided and required 
interface specifications. However, it must be noticed that 
independent component specifications can refer to 
independent interface specifications only. Similarly, 
dependent component specifications can refer to dependent 
interface specifications only. In component-based 
development processes, dependent component specifications 
must be in conformance with their respective independent 
counterparts. Therefore, note that dependent component 
specifications must make reference to their respective 
independent component specifications. 

In summary, dependent interface and component 
specifications must be in conformance with their respective 
independent specifications. Besides, for each independent 
specification, several dependent specifications can be 
described, each one in conformance with a given software 
component model. 

In a similar way, in component-based development 
processes, component implementations must be in 
conformance with their respective dependent component 
specifications. So, in Fig. 1, note that component 
implementations must refer to their correspondent dependent 
component specifications.  Besides, for each dependent 
component specification, several component 
implementations can be realized. 

As an example of the description of an asset in X-ARM, 
Fig. 2 illustrates a fragment of a dependent component 
specification. In Fig. 2, all lines are numbered and many 
details have been suppressed for didactic purposes. Line 1 
represents the assed header, in which can be found the asset 
identifier (id). Lines 2 to 4 make reference to the 
independent component specification, from which the 
described asset must be in conformance with. Then, Lines 5 
to 14 refer to all dependent interface specifications, which 
are provided by the described dependent component 
specification. Although note illustrated in Fig. 2, required 
interfaces can also be specified in a similar way. 
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01 <asset name=“dependentCompSpec-X”

id=“compose.dependentCompSpec-X-1.0-beta”>

02     <model-dependency>

03         <related-asset name=“independentCompSpec-Z”

id=“compose.independentCompSpec-Z-1.0-stable”

relationship-type=“independentComponentSpec”/>

04     </model-dependency>

05     <component-specification>

06         <interface>

07             <provided>

08                 <related-asset name=“dependentInterface-A”

id=“compose.dependentIntSpec-A-2.0-stable”

relationship-type=“dependentInterfaceSpec”/>

09             </provided>

10             <provided>

11                 <related-asset name=“dependentInterface-B”

id=“compose.dependentIntSpec-B-3.0-stable”

relationship-type=“dependentInterfaceSpec”/>

12             </provided>

13         </interface>

14     </component-specification>

15 </asset>

Figura 2. Component specification in X-ARM. 

IV. A CLUSTERING BASED INDEXING APPROACH 

As largely recognized in the literature, the task of 
indexing repositories based on semi-structured data is a 
relevant issue [1][6][9]. One of the major challenges is to 
provide an indexing mechanism that reduces storage space 
requirements, but without excessively impacting on query 
processing time and precision level. 

In such a context, this paper proposes a solution for 
optimizing the storage space required by index files. To do 
that, the proposed approach constructs a clustered repository, 
which is composed of representative assets of the set of 
software assets stored in the original repository. Therefore, 
instead of indexing the original repository, the adopted 
search service ought to index the reduced set of 
representative assets, which make reference to the original 
assets. In order to identify the groups of similar assets, and, 
consequently, to construct the representative assets that 
compose each group, the paper also proposes the adoption of 
data clustering techniques. 

Clustering techniques [7] consist of three basic phases: 
(i) extraction of features that express the behavior of the 
elements to be clustered; (ii) definition of the similarity 
metric in order to compare evaluated elements; and (iii) 
adoption of a clustering algorithm. The phase of extracting 
features consists in defining what information is relevant to 
express the evaluated element and how information is 
quantified. Such information defines an attribute vector and 
thus an element can be represented as a point in the 
multidimensional space. The similarity metric expresses in 
quantitative terms the similarity between elements. In 
general, a function is defined for such a purpose, in which 
the Euclidean distance [7] between two points (elements) is 
one of the more common adopted metrics. Finally, the data 
clustering algorithm is a heuristic that has the aim of 
generating groups of elements, in which each group is 
composed of similar elements, according to the adopted 
similarity metric. 

A. Relevant Features 

The approach proposed herein applies the clustering 
technique taking into account the five types of assets that can 
be stored in the repository, that is: dependent and 
independent component specifications, dependent and 
independent interface specifications and component 
implementations. The clustering technique is applied 
separately for each type of asset. Therefore, each type has a 
distinct attribute vector for representing its features. 

For each component implementation, the relevant feature 
is its referenced dependent component specification. Hence, 
different implementations of the same dependent component 
specification are considered similar. 

In turn, for each dependent component specification, the 
relevant features are its referenced independent component 
specification as well as its set of provided dependent 
interface specifications. Therefore, different dependent 
component specifications are considered similar when they 
refer to the same independent component specification or 
have in common a considerable subset of provided 
dependent interface specifications. 

In relation to independent component implementations, 
the relevant feature of each one is its set of provided 
independent interface specifications. So, different 
independent component specifications are considered similar 
when they have in common a considerable subset of 
provided independent interface specifications. 

Taking into account dependent interface specifications, 
the relevant features of each one are its referenced 
independent interface specification together with their 
operations. Thus, different dependent interface specifications 
are considered similar when they refer to the same 
independent interface specification or have in common a 
considerable subset of defined operations. 

Finally, for each independent interface specification, the 
relevant features are its defined operations, considering their 
names, input and output parameters and the return value. 
Consequently, different independent interface specifications 
are considered similar when they have in common a 
considerable subset of defined operations. 

As an example, Table I presents the attribute vector of 
the asset illustrated before in Fig. 2.  As can be noticed, the 
asset is a dependent component specification. Therefore, the 
attribute vector is composed of its referenced independent 
component specification (lines 2 to 4) and its set of provided 
dependent interface specifications (lines 5 to 14). 

TABLE I.  ATTRIBUTE VECTOR OF THE ASSET X. 

ID compose.dependentCompSpec-X-1.0-beta 

Independent 

Component 

Specification 
compose.independentCompSpec-Z-1.0-stable 

Dependent 

Interface 

Specification 

compose.dependentIntSpec.A-2.0-stable 
compose.dependentIntSpec.B-3.0-stable 
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B. Similarity Metric 

The similarity metric is defined based on the attribute 
vector of the asset. Since the attribute vector differs between 
distinct types of assets, the similarity metric is also different 
for each type of asset. Due to space limitation, the adopted 
metrics are not completely described (see [12] for details). In 
order to illustrate the composition of the metric, consider the 
case of determining the similarity between two dependent 
component specifications. In such a case, if two dependent 
component specifications have the same reference to a given 
independent component specification, then a certain value, 
called distance, is assigned to the similarity among them. 
Besides, the intersection and union sets of their provided 
dependent interface specifications are calculated. A weight is 
assigned to the ration among the size of the intersection and 
union sets in such a way that dependent component 
specifications are considered more similar when the ration is 
closer to one, and considered more different when the ration 
tends to zero. 

As an example of calculating the similarity metric, 
consider the dependent component specifications that have 
the attribute vectors illustrated in Table I and II. The 
similarity between them is established using their attribute 
vectors. Such a similarity is expressed by a numeric value, 
which can be calculated according the following equation: 

 Df = Di – k – (intersection/union)*100. (1) 

In Eq. (1), the terms have the following values. The term 
Di is a default initial distance (Di = 300). In turn, the term k 
can be the value 200, if both specifications make reference to 
the same dependent component specification, or otherwise 
the value 0. The term intersection expresses the number of 
provided dependent interfaces that both specifications have 
in common. Finally, the term union represents the number of 
provided dependent interfaces that both specifications have 
together.  In the example, Di = 300, k = 0; intersection = 1 
and union = 3. Thus, Df = 300 – 0 – 33 = 267. 

TABLE II.  ATTRIBUTE VECTOR OF THE ASSET Y. 

ID compose.dependentCompSpec-Y-1.0-beta 

Independent 

Component 

Specification 
compose.independentCompSpec-W-1.0-beta 

Dependent 

Interface 

Specification 

compose.dependentIntSpec.A-2.0-stable 
compose.dependentIntSpec.C-1.0-stable 

 

C. Clustering Algorithm 

The proposed clustering algorithm has two stages. In the 
first stage, the classical hierarchical clustering algorithm [7] 
is applied adopting the concept of threshold. Thus, the 
clustering algorithm is performed until the distance between 
the clusters is greater than the threshold, which is specified 
by the user. For each identified cluster, a representative asset 
is constructed and stored in nonvolatile memory. In order to 
make the performance better, the implementation of the 

algorithm loads the assets to be clustered in volatile memory, 
until reaching its storage capacity. During such a stage, the 
assets are randomly selected from the repository. 

Fig. 3 illustrates the main steps of the first stage: (a) 
assets are randomly selected from the repository; (b) clusters 
composed of similar assets are constructed by applying the 
hierarchical clustering algorithm; and (c) representative 
assets are created for representing each cluster. 

(a)

Asset

Randomly Selected Asset

Representative Asset

(b) (c)
 

Figura 3. The first stage. 

In the second stage, a K-Means based algorithm [7] is 
adopted. In general terms, representative elements are 
considered centroids. However, differently from K-Means, 
such centroids are not recalculated in the proposed approach. 
Indeed, each asset, not yet clustered in the first stage, is 
compared with each representative asset. The asset is 
candidate to be included in a cluster when the distance 
between the asset and the respective representative asset is 
lesser than the threshold. Fig. 4 shows the second stage. 

Asset                Randomly Selected Asset                Representative Asset

(a)

(b)

(c)

(d)

(e)

(f)
 

Figure 4. The second stage. 
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As depicted in Figs. 4a, 4b, and 4c, considering all 
candidate clusters, the asset is included in the cluster that has 
the minor distance and then the representative element of the 
cluster is reconstructed considering the features of the 
included asset. Otherwise, as shown in Figs. 4d, 4e and 4f, if 
the asset is not a candidate to any cluster, the own asset 
becomes a new representative element and so a new cluster.  

V. PERFORMANCE EVALUATION 

In order to evaluate the proposed approach, it has been 
developed a customizable script that automatically generates 
a repository that stores the mentioned X-ARM assets. The 
generated repository has 27.000 different types of assets. 
After creating the repository, the proposed approach has 
been applied for grouping the stored assets in clusters, 
generating their respective representative assets. Fig. 5 
presents the number of each type of asset in the original 
repository and the clustered repositories after the application 
of the proposed approach using the threshold of 175 and 150. 

Indep. Int. 

Spec.

Dep. Int.   

Spec.

Indep. Comp. 

Spec.

Dep. Comp. 

Spec.
Comp. Imp. Total

1.000 2.500 2.500 6.000 15.000 27.000

750 511 1.000 325 321 2.907

861 575 1.000 330 328 3.094

0

5

10

15

20

25

30

Original Clustered (threshold 175) Clustered (threshold 150)

 
Figure 5. Number of Assets. 

As can be noticed in Fig. 5 and Fig. 6, the proposed 
approach significantly reduces the original repository. For 
example, when the threshold is 175, the number of stored 
assets in the original repository is reduced around 89,2%, 
dropping from 27.000 original assets to 2.907 representative 
assets. In terms of storage space, the proposed approach 
reduces the storage space requirements around 43%, 
dropping from 18 MB in the original repository to 10 MB in 
the clustered one. 

When the threshold is reduced, as expected, more 
representative elements can be constructed because more 
clusters are created. Thus, when the threshold is reduced 
from 175 to 150, the number of original assets is reduced 
from 27.000 to 3.094 representative assets, which still 
represents a significant reduction in the number of stored 
assets around 88,5%. 

Consequently, as illustrated in Fig. 6, in terms of the 
number of assets, the gains of applying the proposed 
approach are significantly relevant, varying between 89,2% 
and 88,5% for the thresholds of 175 and 150, respectively. 

 

Figure 6. The total gain 

However, as depicted in Fig. 7, the gains are different for 
each type of asset. For independent interface specifications, 
the gains are around 25% and 13,9% for thresholds of 175 
and 150, respectively. Such lower gains can be explained by 
the difficulty of finding two or more interfaces that has a 
reasonable set of common operations, which are evaluated in 
terms of their names, the types of their input and output 
attributes, and also the type of their return values. 

 

Figure 7. The gains for different types of assets 

Considering dependent interface specifications, the gains 
become more expressive, increasing to 79,6% and 77% when 
thresholds are 175 and 150, respectively. Part of the reason 
for that is that, during the generation of the original 
repository, the adopted script creates 2 or 3 dependent 
interfaces that refer to the same independent interface, 
representing that each independent interface is specified for 
at least 2 or 3 different component models in practice. So, as 
the similarity metric for dependent interfaces is based on 
their referenced independent interface together with their 
operations, it is already expected such expressive gains, as 
demonstrated in the experiments. 

In relation to independent component specifications, the 
gains are around 60% for both thresholds. Such gains are 
relatively high and indeed not expected. However, as 
mentioned before, independent component specifications are 
considered similar when they have in common a 
considerable subset of provided independent interfaces. 
Considering that independent interfaces have expressive 
clustering rates, such gains make possible to group several 
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interfaces in a unique representative interface, increasing the 
likelihood of independent component specifications to refer 
to the same provided interfaces, and consequently, justifying 
the high gains for both thresholds. 

In terms of dependent component specifications, the 
gains become much more expressive, increasing to 94,6% 
and 94,5% when thresholds are 175 and 150, respectively. 
The rationale for that is that, during the generation of the 
original repository, the adopted script creates 2 or 3 
dependent components that refer to the same independent 
component, representing that each independent component is 
specified for at least 2 or 3 different component models in 
practice. So, such better gains are understandable because the 
similarity metric for dependent components is based on their 
referenced independent components, which already have 
expressive clustering rates. 

Finally, for component implementations, the gains 
become higher, around 97,9% and 97,8% when thresholds 
are 175 and 150, respectively. Again, the rationale for that is 
that, when generating the original repository, the adopted 
script creates 2 or 3 component implementations for each 
dependent component specification, representing that each 
dependent component has at least 2 or 3 different 
implementations in practice. So, such higher gains are 
expected because the similarity metric for component 
implementations is based on their referenced dependent 
components, which already have expressive clustering rates. 

As can be noticed, the clustering gains in independent 
interfaces specifications impact on the gains in both 
dependent interfaces specifications and independent 
component specifications. Similarly, the clustering gains in 
independent component specifications impact on the gains in 
dependent component specifications, which in turn impact 
on the gains in component implementations. 

VI. CONCLUSION 

Based on the preliminary results, it can be clearly 
evinced as benefits the potential of the proposed approach in 
significantly clustering an X-ARM repository and 
consequently reducing storage space requirements. It must 
be highlighted that, the bigger the original repository in 
terms of the number of stored assets, the more expressive the 
likelihood of clustering assets, and so the better the gain in 
terms of storage space requirements. 

Taking into account that the indexing technique proposed 
by Brito et al. [1] will be adopted for indexing the clustered 
repository, it is taken for granted that the reduction in the 
size of the original repository implies in an expressive 
reduction in the size of index files of the clustered repository. 
Besides, considering that the technique proposed by Brito et 
al. has an excellent performance in query processing time, 
even in large-scale index files, it is expected a reasonable 
gain in terms of query processing time due to the expressive 
reduction in the size of index files. Therefore, the proposed 
approach clearly makes possible to map large software 
component repositories into small index files. 

However, as often informally said, there is no free lunch. 
That is, in formal words, such expressive gains in terms of 
storage space requirements and query processing time, 

almost certainly have an impact on the query precision level, 
since the process of clustering assets introduces some degree 
of information loss in representative assets. It must be 
stressed that the tradeoff between the best threshold and the 
query precision level has not yet been investigated. In such a 
sense, the evaluation of the impact of the proposed approach 
in terms of query processing time and precision level 
constitutes future work. Besides, it is also under investigation 
a comparative analysis contrasting the proposed approach 
and other ones available in the literature, but applied in 
different research fields.  
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