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Abstract—This paper proposes an algorithm for clustering 

XML data stream using sliding window. It is a dynamic 

clustering algorithm based on XML structure. Firstly, we use 

level structure to represent XML document, which is based on 

temporal clustering feature. This structure is suitable for 

extracting information from XML document structure and 

calculating similarity between XML documents. Secondly, we 

use the sliding window technique, which adopts exponential 

histogram of XML cluster feature as a micro-cluster of it. By 

using the model, we can dynamically accept the new data and 

get rid of the old data thereby getting a better distribution 

feature of the current window. Finally, the experimental 

results based on real and synthetic XML datasets show that 

our algorithm not only achieves the real-time requirements of 

the online clustering, but also gains better clustering quality 

and faster processing speed. 

Keywords-XML data stream; sliding window 

I.  INTRODUCTION 

With the development of the Web applications, large 
amount of information is created, exchanged and stored in 
the form of Extensible Markup Language (XML) format. 
XML has the nature of flexibility and self-describing. Users 
can use XML documents to represent data according to their 
own needs. Many modern applications, such as stock 
information, real-time news subscription and release 
detection, often generate a new data format, which we call 
XML data stream. Discovering useful knowledge from XML 
data stream is an important research topic and faces many 
challenges. In order to discover more useful knowledge, 
many researchers focused on clustering XML documents and 
proposed a number of algorithms. However, the existing 
algorithms of clustering XML documents are mainly aimed 
for static datasets and generally need to repeatedly scan and 
parse the documents many times. They did not pay much 
attention to the time-varying online clustering context. The 
methods of clustering XML documents can be divided into 
two categories: (1) Researches based on semantics that 
consider both the structure of each node and its semantic 
information [13]. (2) Researches based on structure of XML 
that do not take the semantic information of XML documents 
into consideration [1].  

In this paper, we propose an algorithm of clustering 
XML data stream called SW-XSCLS, which is based on the 
second strategy stated above. Our algorithm uses sliding 
window technology and takes exponential histogram of 
cluster feature as its summary of the data structure. It can 

dynamically eliminate the outdated data and get a better 
understanding of the data distribution in the current window. 

The contribution of our algorithm can be stated as 
follows: (1) we extend the conventional method of clustering 
XML documents to clustering the XML data stream; (2) we 
successfully apply sliding window technique to clustering 
XML data stream and  create the SW-XSCLS algorithm; (3) 
the experimental results based on real and synthetic XML 
datasets show that our algorithm not only achieves the real-
time requirements of online clustering, but also gains better 
clustering quality and faster processing speed. 

The rest of this paper is organized as follows. Section 2 is 
about related work of processing XML documents and 
clustering data stream. Section 3 is the problem statement 
and Section 4 shows our method for clustering XML stream 
using sliding window. In Section 5, we show the 
experimental result and do some analysis from different 
aspect. Section 6 is about the conclusion and future work. 

II. RELATED WORK 

The traditional way of calculating the similarity between 
XML documents is the editing distance method. It computes 
the minimum cost for converting one tree to another tree. 
These operations include changing, inserting and deleting the 
node name. Costa et al. [1] use the idea of editing distance 
which converts each XML document to an ordered tree 
structure. They also use the “Jaccard” coefficient to calculate 
the similarity between XML documents. Wang et al. [2] 
define a standard for calculating the similarity distance. 
Their method need to analyze every XML document and use 
a directed graph to achieve the evaluation of similarity 
between XML documents. The accuracy of their method is 
not precise enough, because many XML documents that 
have different structures are possible to contain the same 
elements. So the standard has some limitations that may 
cause two different XML documents to be evaluated to have 
the same structure. Nayak [3] defines a level structure to 
represent the structure information of XML document and 
gives a similarity calculation criterion for this structure. But 
his method’s calculation result is related to the input order of 
the XML documents. Changing the input order will change 
the result. 

There is also some work related to XML schema analysis. 
Vincent et al. [12] address the problem of extending the 
definition of functional dependencies in XML documents. 
Balmin et al. [9] exhibit an incremental validation algorithm 
for XML schemas and they show it is a significant 
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improvement over re-validation from scratch. Lu et al. [10] 
formalize the notion of the consistency of DTDs and propose 
a linear algorithm for checking the consistency. Elmasri et al. 
[11] introduce a design method for XML schemas based on 
well-understood conceptual modeling. They create XML 
schemas from a hierarchical point of view and generate SQL 
queries corresponding to the XML schemas. 

In the clustering stream field, Zhang et al. [4] propose a 
method named BIRCH which incrementally and dynamically 
clusters incoming data points. Chang et al. [5] use two types 
of exponential histogram and sliding windows to cluster 
evolving data stream. Guha et al. [6] give constant-factor 
approximation algorithms for the k-Median problem and 
their method only need a single pass over the data. Zhou et al. 
[7] give a density based M-Kernel method for estimating 
data streams. Babcock et al. [8] present a novel technique for 
solving maintaining variance and k-median problems in 
sliding window model. 

III. PROBLEM STATEMENT 

A. XML Data Stream 

In many researches XML data stream is defined as 
sequence of nodes obtained by the pre-order walk of the tree 
structure of XML. Processing XML data stream is analyzing 
these sequential nodes. But in this paper we define an XML 
data stream as follows: 

Definition 1. An XML data stream is the sequence of 
XML documents (X1, X2 ... Xn ...) with timestamps. For any i 

(i ≥ 1), Xi represents an XML document. The timestamp for 

each document is T1 ... Tj ... and Ti <Tj, given i < j.  
That is the arrival of each XML document is strictly time 

chronological. Since our study is based on the structural 
information, there is no restriction about the XML content. 

B. Level  Structure 

This section mainly introduces the definition of the level 
structure of XML document and the process of analyzing 
XML data. The document is represented as an ordered tree 
with labels. Each tag (or element name) is denoted by a 
distinct integer according to their appearance order. By doing 
so, we eliminate the semantic information that can be 
inferred from the tag name and only concern about the 
structural information of the document. The level structure 
contains the hierarchy and context of the document. The 
multiple instances of values at same level are stored in an 
element since the occurrence number of an element is 
important for the clustering task. 

The level structure of XML document contains the 
following information: the name, occurrence number and 
appear level of a node. Figure 1 shows an XML document 
and its level structure information. 

Two level structures can be merged into a single structure. 
The principle is that merging the nodes at the same level. If 
multiple nodes with same name appear at the same level, we 
only save one of them. Figure 2 shows the merging process 
of two level structures. 

An XML document can be represented by its level 
structure. The similarity between two XML documents is 
measured by the occurrence number of common elements in 
each corresponding level. Elements in different levels are 
assigned to different weights. The higher level has greater 
weight than the lower level. So documents with different root 
elements can be assigned to different clusters. Due to the 
page space limitation, the formula of calculating the 
similarity of two level structures can be referenced from 
Nayak [3]. 

C. Exponential histogram of cluster feature 

Definition 2. Temporal Cluster Feature (TCF) is the 
collection of level structure of the XML documents in size n 
with the timestamp of T1, T2, ... Tn. TCF is denoted as (LS, n, 
T). The LS is the result after merging these level structures. 
The merging only occur between the same levels of two 
XML documents. The n is the number of level structure and 
T is the timestamp of the latest level structure in the temporal 
cluster feature. 

The temporal cluster feature used in this paper is the 
extension of pseudo-time clustering features proposed in 
Chang et al [5]. 

Definition 3. Exponential Histogram of Cluster Feature 
(EHCF) is the collection of the TCFs. Given a set of 
documents X1 ... Xn arrive at T1 .. Tn , and let Ti <Tj when i 
<j. According to the order of arrival, these documents are 
divided into several groups denoted by G1, G2 .... Given i <j, 
all documents in group Gi arrive earlier than the documents 
in group Gj. 

Exponential histogram is the first method to generate the 
summary information in the sliding window model which 
builds buckets according to the appearance order of the 
elements. The capacity of the bucket at different level 
increases exponentially in base 2. The number of buckets at 
the same level is no more than the number of barrels of a 
pre-defined threshold. 
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Figure 1.  XML document and its level structure. 

 
Figure 2.  Merging two level structures. 

IV. ALGORITHM FOR CLUSTERING XML DATA 

STREAM USING SLIDING WINDOW 

This section focuses on the algorithm of clustering XML 
data stream using sliding window (SW-XSCLS). This 
algorithm can conduct clustering analysis for the XML data 
stream in the sliding window, which is maintained by a 
group of EHCF structures. This algorithm contains four 
parameters: DB is the XML data stream; W (0 <W <1) is the 
similarity coefficient; N is the size of the sliding window; 
NC is the maximum number of EHCFs maintained by one 
window. 

In this algorithm, the count value represents the number 
of EHCFs maintained in the current window. For each record 
x in the data stream, the first step is calculating the similarity 
(mostSimilaryValue) between x and the EHCF (h), which 
has the minimum distance with x. Then we test whether the 
mostSimilaryValue is greater than the similarity threshold W. 
If it is greater than W, then x is added to the current EHCF. 
Otherwise we will create a new EHCF, which only contains 
the element x and increase count value by 1. If the number of 
the EHCFs reaches NC, we need to merge the most recent 
two EHCFs. 

The next step is updating the EHCF which contains the 
expire record. Since the operation is executed at arrival of 
each new record, so at any time there is at most one EHCF 
contains the expired elements. As we know that EHCF is the 
collection of TCFs and each TCF contains a timestamp T, we 
can find out the expired data by using TCF. If the timestamp 
T of the TCF is not belonged to N, we can delete the TCF. If 

the last TCF in an EHCF is deleted, then the whole EHCF is 
deleted too. As a result, the count value, which is used to 
denote the number of EHCFs in the current window, will be 
decreased by 1. 

We design two implementations for the calculating of the 
similarity between XML documents: 

1. Merging all of the TCFs as a TCF in the EHCF (called 
allTCF) to calculate the similarity. 

2. Using the latest TCF (called newestTCF) as the 
representative of the EHCF to calculate the similarity. 

In both implementations, the first method merges all of 
the TCFs in the EHCF. So the accuracy of the calculating 
result is relatively high. The second method, which uses the 
latest TCF as a representative of the EHCF, has a faster 
calculating speed. In practice, using which kind of these two 
implementations is determined by the criteria that we 
concern about, that is the accuracy or the efficiency. 

The whole process of the algorithm is described in Figure 
3 as follows. 
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DB: XML data stream 

W(0 <W <1): similarity coefficient 

N: window size 

NC: the maximum EHCF number 

GW-XSCLS (DB, W, NC, N) 

begin 

initial count to 0; 

repeat each record x in DB  

if x is the first record 

generate an EHCF containing only 

TCF(x); 

add EHCF to current window; 

else 

get h, the most similar EHCF with 

TCF(x); 

get the mostSimilaryValue; 

if mostSimilaryValue > W  

Insert x into h; 

else 

generate an EHCF containing only 

TCF(x); 

increase count by 1; 

if count > NC 

merge the two similar EHCF; 

decrease count by 1; 

end 

end 

end 
if sum(x) > N 

get EHCF, the EHCF containing the 

oldest TCF; 

delete the Oldest TCF; 

if EHCF is null 

delete the EHCF; 

decrease count by 1; 

end 

end 

end 

end 

Figure 3.  SW-XSCLS algorithm. 

V. EXPERIMENTAL EVALUATION AND DISCUSSION 

A. Datasets 

We use both synthetic and real datasets in the 
experiments. The synthetic dataset is automatically generated 
by an XML generation tool called Oxygen. Because the 
number of real classes, the number of nodes and node levels 
of the artificial dataset can be controlled artificially, we can 
use it to test the processing time. The real dataset XMLFiles 
is the same as the dataset of static clustering algorithm XCLS 
in [3]. This dataset is composed of 460 XML documents 
from 23 natural areas, which includes 74 documents about 
films, 22 documents about universities, 208 documents about 
cars, 16 documents about literature, 38 documents about 

companies, 24 documents about accommodation, 10 
documents about tourism, 10 documents about orders, 4 
documents about auction, 2 documents about stipulation, 15 
documents about pages, 2 documents about books, 20 
documents about games, 12 documents about associations, 2 
documents about health care and 1 document about nutrition. 
The labels of documents range from 10 to 100 and levels 
from vary from 2 to 15. 

B. Evaluation criteria 

The performance of clustering XML documents is 
evaluated using the standard criteria named intra- and inter-
cluster similarity. They are internal cluster quality evaluation 
criteria. 

The intra-cluster similarity measures the cohesion within 
a cluster, how similar two documents in a cluster are. This is 
calculated by measuring the level similarity between each 
pair of documents in the cluster. The intra-cluster similarity 
of a cluster Ci [3] is the average of all pair-wise level 
similarities (between two trees) within the cluster, where n is 
the number of documents in Ci. 


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The intra-cluster similarity of a clustering solution in the 
window C= {C1, C2...Ck} [3] is the average of the intra-
cluster similarities of all clusters taking into consideration 
the number of documents within each cluster, where ni is the 
number of documents in Ci, N is the total number of 
documents and k is the number of clusters in the solution. 
The higher the intra-cluster similarity value is, the better the 
clustering solution is. 
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The inter-cluster similarity [3] measures the separation 
among different clusters. It is calculated by measuring the 
level similarity between two clusters. The inter-cluster 
similarity of the clustering solution is the average of all pair-
wise level similarities of two clusters. The Level Similarity 
between two clusters is defined as similar to two documents, 
using the objects as clusters. 
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In the experiment, unless specified, the parameters are set 
as follows: window size N = 100, similarity coefficient W = 
0.8, the maximum number of histogram window NC = 50. 

C. Experimental result and analysis 

1) Quality evaluation: This section is the clustering 
quality comparison between our proposed algorithm (SW-

99

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011              ISBN:978-1-61208-115-1



XSCLS) and the XCLS algorithm. Both algorithms use the 
real dataset. Since the clustering result of the algorithm 
XCLS is related to the order of the input, we execute the 
XCLS algorithm 5 times each with a different input order 
and calculate the average result as the evaluation criteria. 
Figure 4 shows the comparison of intra-cluster similarity. 
Figure 5 shows the comparison of inter-cluster similarity. 
From these figures we can see that the SW-XSCLS 
algorithm gets a better clustering result than the XCLS 
algorithm because the SW-XSCLS algorithm uses sliding 
window technology, which reduces the impact of outdated 
data in the result. 

2) Parameters: Figure 6 shows the impact of execution 
time along with the similarity coefficient. The impact can be 
seen from the figure that with the increment of the similarity 
coefficient W, the processing time decreases. Is is easy to 
understand that the larger of the W value is, the less number 
of EHCFs maintained in the window is. So the amount of 
calculation will reduce and the processing time will become 
less also. But this has a little effect. We can see from the 
figure that when the similarity coefficient increases from 0.6 
to 0.9, while the processing time is increased by only 20 
seconds. This is a small percentage of the total processing 
time. Figure 7 shows the window size and the impact on the 
execution time. 

3) Processing time: We use XML documents with 
different levels and different number of nodes to evaluate 
the processing time for our algorithm. In order to observe 
the processing time, we introduce two concepts: the average 
number of levels and the average number of nodes. Because 
the synthetic dataset is available to get any number of  
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Figure 4.  Intra-cluster similarity. 
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Figure 5.  Inter-cluster similarity. 

combinations of levels and nodes, so we generate a series of 
data sets. Figure 8 shows variation trend of the processing 
time of the algorithm tested on a series datasets which 
average number of levels changes and average number of 
nodes is fixed. Figure 9 shows variation trend of the 
processing time of the algorithm tested on a series datasets 
which average number of nodes changes and average 
number of levels is fixed. 

VI. CONCLUSIONS 

This paper proposed an algorithm for clustering XML 
data stream using sliding window. The algorithm is a 
dynamic algorithm based on level structure of XML 
documents. It can get a better clustering quality and a faster 
processing speed than traditional method. However, the 
existing clustering feature only takes into account the level 
structure information, ignores the semantic information of 
the data element. The effect is not good when processing 
XML documents with the same DTD or scheme. The future 
work will expand the existing expression on the type of data 
stream to meet the need for clustering data stream. 
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Figure 6.  Changing the similarity coefficient. 

 
Figure 7.  Changing the window size. 
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Figure 8.  Processing time with number of levels. 
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