
An Algorithm for Clustering XML Data Stream Using Sliding Window

Guojun Mao

College of Information

Central University of Finance and Economics

Beijing, China

maximmao@hotmail.com

Mingxia Gao, Wenji Yao

School of Computer Science

Beijing University of Technology

Beijing, China

gaomx@bjut.edu.cn;yaowenji@gmail.com

Abstract—This paper proposes an algorithm for clustering

XML data stream using sliding window. It is a dynamic

clustering algorithm based on XML structure. Firstly, we use

level structure to represent XML document, which is based on

temporal clustering feature. This structure is suitable for

extracting information from XML document structure and

calculating similarity between XML documents. Secondly, we

use the sliding window technique, which adopts exponential

histogram of XML cluster feature as a micro-cluster of it. By

using the model, we can dynamically accept the new data and

get rid of the old data thereby getting a better distribution

feature of the current window. Finally, the experimental

results based on real and synthetic XML datasets show that

our algorithm not only achieves the real-time requirements of

the online clustering, but also gains better clustering quality

and faster processing speed.

Keywords-XML data stream; sliding window

I. INTRODUCTION

With the development of the Web applications, large
amount of information is created, exchanged and stored in
the form of Extensible Markup Language (XML) format.
XML has the nature of flexibility and self-describing. Users
can use XML documents to represent data according to their
own needs. Many modern applications, such as stock
information, real-time news subscription and release
detection, often generate a new data format, which we call
XML data stream. Discovering useful knowledge from XML
data stream is an important research topic and faces many
challenges. In order to discover more useful knowledge,
many researchers focused on clustering XML documents and
proposed a number of algorithms. However, the existing
algorithms of clustering XML documents are mainly aimed
for static datasets and generally need to repeatedly scan and
parse the documents many times. They did not pay much
attention to the time-varying online clustering context. The
methods of clustering XML documents can be divided into
two categories: (1) Researches based on semantics that
consider both the structure of each node and its semantic
information [13]. (2) Researches based on structure of XML
that do not take the semantic information of XML documents
into consideration [1].

In this paper, we propose an algorithm of clustering
XML data stream called SW-XSCLS, which is based on the
second strategy stated above. Our algorithm uses sliding
window technology and takes exponential histogram of
cluster feature as its summary of the data structure. It can

dynamically eliminate the outdated data and get a better
understanding of the data distribution in the current window.

The contribution of our algorithm can be stated as
follows: (1) we extend the conventional method of clustering
XML documents to clustering the XML data stream; (2) we
successfully apply sliding window technique to clustering
XML data stream and create the SW-XSCLS algorithm; (3)
the experimental results based on real and synthetic XML
datasets show that our algorithm not only achieves the real-
time requirements of online clustering, but also gains better
clustering quality and faster processing speed.

The rest of this paper is organized as follows. Section 2 is
about related work of processing XML documents and
clustering data stream. Section 3 is the problem statement
and Section 4 shows our method for clustering XML stream
using sliding window. In Section 5, we show the
experimental result and do some analysis from different
aspect. Section 6 is about the conclusion and future work.

II. RELATED WORK

The traditional way of calculating the similarity between
XML documents is the editing distance method. It computes
the minimum cost for converting one tree to another tree.
These operations include changing, inserting and deleting the
node name. Costa et al. [1] use the idea of editing distance
which converts each XML document to an ordered tree
structure. They also use the “Jaccard” coefficient to calculate
the similarity between XML documents. Wang et al. [2]
define a standard for calculating the similarity distance.
Their method need to analyze every XML document and use
a directed graph to achieve the evaluation of similarity
between XML documents. The accuracy of their method is
not precise enough, because many XML documents that
have different structures are possible to contain the same
elements. So the standard has some limitations that may
cause two different XML documents to be evaluated to have
the same structure. Nayak [3] defines a level structure to
represent the structure information of XML document and
gives a similarity calculation criterion for this structure. But
his method’s calculation result is related to the input order of
the XML documents. Changing the input order will change
the result.

There is also some work related to XML schema analysis.
Vincent et al. [12] address the problem of extending the
definition of functional dependencies in XML documents.
Balmin et al. [9] exhibit an incremental validation algorithm
for XML schemas and they show it is a significant

96

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

improvement over re-validation from scratch. Lu et al. [10]
formalize the notion of the consistency of DTDs and propose
a linear algorithm for checking the consistency. Elmasri et al.
[11] introduce a design method for XML schemas based on
well-understood conceptual modeling. They create XML
schemas from a hierarchical point of view and generate SQL
queries corresponding to the XML schemas.

In the clustering stream field, Zhang et al. [4] propose a
method named BIRCH which incrementally and dynamically
clusters incoming data points. Chang et al. [5] use two types
of exponential histogram and sliding windows to cluster
evolving data stream. Guha et al. [6] give constant-factor
approximation algorithms for the k-Median problem and
their method only need a single pass over the data. Zhou et al.
[7] give a density based M-Kernel method for estimating
data streams. Babcock et al. [8] present a novel technique for
solving maintaining variance and k-median problems in
sliding window model.

III. PROBLEM STATEMENT

A. XML Data Stream

In many researches XML data stream is defined as
sequence of nodes obtained by the pre-order walk of the tree
structure of XML. Processing XML data stream is analyzing
these sequential nodes. But in this paper we define an XML
data stream as follows:

Definition 1. An XML data stream is the sequence of
XML documents (X1, X2 ... Xn ...) with timestamps. For any i

(i ≥ 1), Xi represents an XML document. The timestamp for

each document is T1 ... Tj ... and Ti <Tj, given i < j.
That is the arrival of each XML document is strictly time

chronological. Since our study is based on the structural
information, there is no restriction about the XML content.

B. Level Structure

This section mainly introduces the definition of the level
structure of XML document and the process of analyzing
XML data. The document is represented as an ordered tree
with labels. Each tag (or element name) is denoted by a
distinct integer according to their appearance order. By doing
so, we eliminate the semantic information that can be
inferred from the tag name and only concern about the
structural information of the document. The level structure
contains the hierarchy and context of the document. The
multiple instances of values at same level are stored in an
element since the occurrence number of an element is
important for the clustering task.

The level structure of XML document contains the
following information: the name, occurrence number and
appear level of a node. Figure 1 shows an XML document
and its level structure information.

Two level structures can be merged into a single structure.
The principle is that merging the nodes at the same level. If
multiple nodes with same name appear at the same level, we
only save one of them. Figure 2 shows the merging process
of two level structures.

An XML document can be represented by its level
structure. The similarity between two XML documents is
measured by the occurrence number of common elements in
each corresponding level. Elements in different levels are
assigned to different weights. The higher level has greater
weight than the lower level. So documents with different root
elements can be assigned to different clusters. Due to the
page space limitation, the formula of calculating the
similarity of two level structures can be referenced from
Nayak [3].

C. Exponential histogram of cluster feature

Definition 2. Temporal Cluster Feature (TCF) is the
collection of level structure of the XML documents in size n
with the timestamp of T1, T2, ... Tn. TCF is denoted as (LS, n,
T). The LS is the result after merging these level structures.
The merging only occur between the same levels of two
XML documents. The n is the number of level structure and
T is the timestamp of the latest level structure in the temporal
cluster feature.

The temporal cluster feature used in this paper is the
extension of pseudo-time clustering features proposed in
Chang et al [5].

Definition 3. Exponential Histogram of Cluster Feature
(EHCF) is the collection of the TCFs. Given a set of
documents X1 ... Xn arrive at T1 .. Tn , and let Ti <Tj when i
<j. According to the order of arrival, these documents are
divided into several groups denoted by G1, G2 Given i <j,
all documents in group Gi arrive earlier than the documents
in group Gj.

Exponential histogram is the first method to generate the
summary information in the sliding window model which
builds buckets according to the appearance order of the
elements. The capacity of the bucket at different level
increases exponentially in base 2. The number of buckets at
the same level is no more than the number of barrels of a
pre-defined threshold.

97

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

Figure 1. XML document and its level structure.

Figure 2. Merging two level structures.

IV. ALGORITHM FOR CLUSTERING XML DATA

STREAM USING SLIDING WINDOW

This section focuses on the algorithm of clustering XML
data stream using sliding window (SW-XSCLS). This
algorithm can conduct clustering analysis for the XML data
stream in the sliding window, which is maintained by a
group of EHCF structures. This algorithm contains four
parameters: DB is the XML data stream; W (0 <W <1) is the
similarity coefficient; N is the size of the sliding window;
NC is the maximum number of EHCFs maintained by one
window.

In this algorithm, the count value represents the number
of EHCFs maintained in the current window. For each record
x in the data stream, the first step is calculating the similarity
(mostSimilaryValue) between x and the EHCF (h), which
has the minimum distance with x. Then we test whether the
mostSimilaryValue is greater than the similarity threshold W.
If it is greater than W, then x is added to the current EHCF.
Otherwise we will create a new EHCF, which only contains
the element x and increase count value by 1. If the number of
the EHCFs reaches NC, we need to merge the most recent
two EHCFs.

The next step is updating the EHCF which contains the
expire record. Since the operation is executed at arrival of
each new record, so at any time there is at most one EHCF
contains the expired elements. As we know that EHCF is the
collection of TCFs and each TCF contains a timestamp T, we
can find out the expired data by using TCF. If the timestamp
T of the TCF is not belonged to N, we can delete the TCF. If

the last TCF in an EHCF is deleted, then the whole EHCF is
deleted too. As a result, the count value, which is used to
denote the number of EHCFs in the current window, will be
decreased by 1.

We design two implementations for the calculating of the
similarity between XML documents:

1. Merging all of the TCFs as a TCF in the EHCF (called
allTCF) to calculate the similarity.

2. Using the latest TCF (called newestTCF) as the
representative of the EHCF to calculate the similarity.

In both implementations, the first method merges all of
the TCFs in the EHCF. So the accuracy of the calculating
result is relatively high. The second method, which uses the
latest TCF as a representative of the EHCF, has a faster
calculating speed. In practice, using which kind of these two
implementations is determined by the criteria that we
concern about, that is the accuracy or the efficiency.

The whole process of the algorithm is described in Figure
3 as follows.

98

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

DB: XML data stream

W(0 <W <1): similarity coefficient

N: window size

NC: the maximum EHCF number

GW-XSCLS (DB, W, NC, N)

begin

initial count to 0;

repeat each record x in DB

if x is the first record

generate an EHCF containing only

TCF(x);

add EHCF to current window;

else

get h, the most similar EHCF with

TCF(x);

get the mostSimilaryValue;

if mostSimilaryValue > W

Insert x into h;

else

generate an EHCF containing only

TCF(x);

increase count by 1;

if count > NC

merge the two similar EHCF;

decrease count by 1;

end

end

end
if sum(x) > N

get EHCF, the EHCF containing the

oldest TCF;

delete the Oldest TCF;

if EHCF is null

delete the EHCF;

decrease count by 1;

end

end

end

end

Figure 3. SW-XSCLS algorithm.

V. EXPERIMENTAL EVALUATION AND DISCUSSION

A. Datasets

We use both synthetic and real datasets in the
experiments. The synthetic dataset is automatically generated
by an XML generation tool called Oxygen. Because the
number of real classes, the number of nodes and node levels
of the artificial dataset can be controlled artificially, we can
use it to test the processing time. The real dataset XMLFiles
is the same as the dataset of static clustering algorithm XCLS
in [3]. This dataset is composed of 460 XML documents
from 23 natural areas, which includes 74 documents about
films, 22 documents about universities, 208 documents about
cars, 16 documents about literature, 38 documents about

companies, 24 documents about accommodation, 10
documents about tourism, 10 documents about orders, 4
documents about auction, 2 documents about stipulation, 15
documents about pages, 2 documents about books, 20
documents about games, 12 documents about associations, 2
documents about health care and 1 document about nutrition.
The labels of documents range from 10 to 100 and levels
from vary from 2 to 15.

B. Evaluation criteria

The performance of clustering XML documents is
evaluated using the standard criteria named intra- and inter-
cluster similarity. They are internal cluster quality evaluation
criteria.

The intra-cluster similarity measures the cohesion within
a cluster, how similar two documents in a cluster are. This is
calculated by measuring the level similarity between each
pair of documents in the cluster. The intra-cluster similarity
of a cluster Ci [3] is the average of all pair-wise level
similarities (between two trees) within the cluster, where n is
the number of documents in Ci.


,1 1

()
0.5 (1)

n n

i ji j i

i

LevelSim
IntraSim C

n n

  


  

 
 

The intra-cluster similarity of a clustering solution in the
window C= {C1, C2...Ck} [3] is the average of the intra-
cluster similarities of all clusters taking into consideration
the number of documents within each cluster, where ni is the
number of documents in Ci, N is the total number of
documents and k is the number of clusters in the solution.
The higher the intra-cluster similarity value is, the better the
clustering solution is.

 1
()

k

i ii
IntraSim C n

IntraSim
N





  

The inter-cluster similarity [3] measures the separation
among different clusters. It is calculated by measuring the
level similarity between two clusters. The inter-cluster
similarity of the clustering solution is the average of all pair-
wise level similarities of two clusters. The Level Similarity
between two clusters is defined as similar to two documents,
using the objects as clusters.

 ,1 1

0.5 (1)

k k

i ji j i
LevelSim

InterSim
k k

  


  

   

In the experiment, unless specified, the parameters are set
as follows: window size N = 100, similarity coefficient W =
0.8, the maximum number of histogram window NC = 50.

C. Experimental result and analysis

1) Quality evaluation: This section is the clustering
quality comparison between our proposed algorithm (SW-

99

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

XSCLS) and the XCLS algorithm. Both algorithms use the
real dataset. Since the clustering result of the algorithm
XCLS is related to the order of the input, we execute the
XCLS algorithm 5 times each with a different input order
and calculate the average result as the evaluation criteria.
Figure 4 shows the comparison of intra-cluster similarity.
Figure 5 shows the comparison of inter-cluster similarity.
From these figures we can see that the SW-XSCLS
algorithm gets a better clustering result than the XCLS
algorithm because the SW-XSCLS algorithm uses sliding
window technology, which reduces the impact of outdated
data in the result.

2) Parameters: Figure 6 shows the impact of execution
time along with the similarity coefficient. The impact can be
seen from the figure that with the increment of the similarity
coefficient W, the processing time decreases. Is is easy to
understand that the larger of the W value is, the less number
of EHCFs maintained in the window is. So the amount of
calculation will reduce and the processing time will become
less also. But this has a little effect. We can see from the
figure that when the similarity coefficient increases from 0.6
to 0.9, while the processing time is increased by only 20
seconds. This is a small percentage of the total processing
time. Figure 7 shows the window size and the impact on the
execution time.

3) Processing time: We use XML documents with
different levels and different number of nodes to evaluate
the processing time for our algorithm. In order to observe
the processing time, we introduce two concepts: the average
number of levels and the average number of nodes. Because
the synthetic dataset is available to get any number of

0.984
0.986
0.988
0.99
0.992
0.994
0.996
0.998
1

1.002

60 120 180 240 300 360 420 480 540

Time(s)

In
tr
aS
im

SW-XSCLS XCLS

Figure 4. Intra-cluster similarity.

0

0.01

0.02

0.03

0.04

0.05

0.06

60 120 180 240 300 360 420 480 540

Time(s)

It
er
Si
m

SW-XSCLS XCLS

Figure 5. Inter-cluster similarity.

combinations of levels and nodes, so we generate a series of
data sets. Figure 8 shows variation trend of the processing
time of the algorithm tested on a series datasets which
average number of levels changes and average number of
nodes is fixed. Figure 9 shows variation trend of the
processing time of the algorithm tested on a series datasets
which average number of nodes changes and average
number of levels is fixed.

VI. CONCLUSIONS

This paper proposed an algorithm for clustering XML
data stream using sliding window. The algorithm is a
dynamic algorithm based on level structure of XML
documents. It can get a better clustering quality and a faster
processing speed than traditional method. However, the
existing clustering feature only takes into account the level
structure information, ignores the semantic information of
the data element. The effect is not good when processing
XML documents with the same DTD or scheme. The future
work will expand the existing expression on the type of data
stream to meet the need for clustering data stream.

ACKNOWLEDGMENT

This research has been supported by Beijing Municipal
Key Laboratory of Multimedia and Intelligent Software
Technology and the National Science Foundation of China
under Grants No.60873145.

Figure 6. Changing the similarity coefficient.

Figure 7. Changing the window size.

100

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

Figure 8. Processing time with number of levels.

REFERENCES

[1] G. Costa, G. Manco, R. Ortale, and A. Tagarelli, "A tree-based
approach to clustering XML documents by structure," Proc. The 8th
European Conference on Principles and Practice of Knowledge
Discovery in Databases, Springer-Verlag Press, Sept. 2004, pp. 137-
148.

[2] L. Wang, W. Cheung, N. Marnoulis, and S.Yiu, "An efficient and
scalable algorithm for clustering XML documents by structure," IEEE
Transactions on Knowledge and Data Engineering, vol. 16, Jan. 2004,
pp. 82-96, doi:10.1109/TKDE.2004.1264824.

[3] R. Nayak, "Fast and effective clustering of XML data using structural
information," Knowledge and Information Systems, vol. 14, Feb.2008,
pp. 197-215, doi:10.1007/s10115-007-0080-8.

[4] T. Zhang, R. Ramakrishnan, and M.Livny, "BIRCH: an efficient data
clustering method for very large databases," Proc. ACM SIGMOD
International Conference on Management of Data, ACM Press, vol.
25, Jun. 1996, pp. 103-114.

[5] J. Chang, F. Cao, and A. Zhou, "Clustering evolving data streams
over sliding windows," Journal of Software, vo1. 18, Apr. 2007, pp.
905-918.

[6] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, "Clustering
data streams," Proc. The 41st Annual Symposium on Foundations of
Computer Science, IEEE Press, Nov.2000, pp. 359-366.

Figure 9. Processing time with number of nodes.

[7] A. Zhou, Z. Cai, L. Wei, and W. Qian, "M-kernel merging: towards
density estimation over data streams," Proc. The 8th International
Conference on Database Systems for Advanced Applications
(DASFAA 03), IEEE Comput. Soc Press, Mar. 2003, pp. 285-292,
doi:10.1109/DASFAA.2003.1192393.

[8] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan,
"Maintaining variance and k-medians over data stream windows,"
Proc. The 22nd ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS 03), ACM Press, Jun. 2003,
pp. 234-243.

[9] A. Balmin, Y. Papakonstantinou, and V. Vianu, "Incremental
validation of XML documents," ACM Transactions on Database
Systems, vol. 29, Dec.2004, pp. 710–751,
doi:10.1145/1042046.1042050.

[10] S. Lu, Y. Sun, M. Atay, and F. Fotouhi, "On the consistency of XML
DTDs," Data and Knowledge Engineering, vol. 52, Feb. 2005, pp.
231–247, doi:10.1016/j.datak.2004.05.007.

[11] R. Elmasri, Q. Li, J. Fu, Y. Wu, B. Hojabri, and S. Ande, "Conceptual
modeling for customized XML schemas," Data and Knowledge
Engineering, vol. 54, Jul. 2005, pp. 57–76,
doi:10.1016/j.datak.2004.10.003.

[12] M. Vincent, J. Liu, and C. Liu, "Strong functional dependencies and
their application to normal forms in XML," ACM Transactions on
Database Systems, vol. 29, Sept. 2004, pp. 445–462,
doi:10.1145/1016028.1016029.

[13] Y. Guo, D. Chen, and J. Le, “Clustering XML documents by
combining content and structure,” International Symposium on
Information Science and Engineering (ISISE 08), IEEE Press, vol. 1,
Dec. 2008, pp. 583-587, doi:10.1109/ISISE.2008.31.

101

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

