
MAXCLIQUE Problem Solved Using SQL

Jose Torres-Jimenez,
Nelson Rangel-Valdez,

Loreto Gonzalez-Hernandez
Information Technology Laboratory

CINVESTAV-Tamaulipas, Victoria Tamps., MEXICO
Email: jtj@cinvestav.mx,

nrangel@tamps.cinvestav.mx,
agonzalez@tamps.cinvestav.mx

Himer Avila-George
Departamento de Sistemas Informáticos y Computación (DSIC)

Universidad Polit́ecnica de Valencia
Valencia, Spain

Email: hiavgeo@posgrado.upv.es

Abstract—This paper aims to show that SQL queries can
be used to solve a well-known combinatorial optimization
problem, the Maximum Clique Problem (MAXCLIQUE). This
problem arises in many real world applications as computer
vision and pattern recognition or coding theory to mention
some of them. A clique of a graph is a complete subgraph,
i.e., a graph where every pair of vertices is an edge. The
MAXCLIQUE problem searches for the clique of the largest
cardinality in a graph (the one with the greatest number of
nodes). We propose a model based on SQL queries to solve this
problem. We test our models in 62 random instances. Results
show that the use of simple queries can yield solutions for the
MAXCLIQUE problem in an easy and accessible form.

Keywords- Optimization; MAXCLIQUE; SQL query.

I. I NTRODUCTION

Combinatorial optimization is a branch of applied mathe-
matics and computer science that is used to solve problems
like circuit design [1], scheduling [2], software testing
[3], [4] and many other problems related with real world
applications. A lot of problems presented in combinatorial
optimization are best understood when they are abstracted in
mathematical structures like graphs. Graph theory is the field
of mathematics and computer sciences that studies all the
aspects related with graphs. The importance of studying the
combinatorial optimization problems is the wide application
it has in real world problems.

One of the basic problems in graph theory is the MAXI-
MUM CLIQUE problem (MAXCLIQUE). This problem can
be defined as the search of a complete subgraph of maximum
cardinality, i.e. it contains the maximum number of vertices.
Applications of this problem arises in coding theory [5],
computer vision and pattern recognition [6], fault diagnosis
[7] and protein structure similarity [8].

Several methods have been used to solve the MAX-
CLIQUE problem. In the literature can be found exact and
non-exact approaches. A survey about this problem can be
found in [9].

Most of the techniques used to solve the MAXCLIQUE
problem rely in the use of a high level procedural language

like C [10], [11]. In this paper we propose two models to
solve this problem using a well known non-procedural data
access sublanguage, the Structured Query Language (SQL)
[12]. SQL is easy to use and allows the users to express the
desired results of a query in a high-level data sublanguage.

To the best of our knowledge, there is no reported
approach that uses SQL queries to solve MAXCLIQUE
instances. Moreover, we found no approach that solves
any combinatorial optimization problem using SQL queries.
The simplicity of the SQL language and the availability
of database manager systems that allow the use of SQL
motivate us to design a new approach that, based on SQL
queries, could solve instances of the MAXCLIQUE problem.
Basically, we present a query model which can be used to
determine if a given graph has a clique of sizek or smaller.
The model was tested in a set of random generated instances.

The rest of the paper is organized as follows: section 2
presents the notation and formal definition of the MAX-
CLIQUE problem. Section 3 describes the optimization
model based on SQL that solves this problem. Section 4
shows the experimental design used to test the proposed
solution. Section 5 presents the conclusions derived from
the results obtained when solving MAXCLIQUE instances
through SQL queries.

II. M AXIMUM CLIQUE PROBLEM

In this section we give a formal definition for the MAX-
CLIQUE problem. After that, we show the solution of an
instance of the MAXCLIQUE problem. Finally, we end the
section analyzing the search space of the problem.

A. Formal Definition of the Maximum Clique Problem
(MAXCLIQUE)

A graphG = (V,E) is described by a setV of nodes
and a setE of edges (or links between pair of nodes). The
number of nodes of the setV represents the order of the
graphG (denoted by|G|). A graphG is calledcliquewhen
every pair of nodesi, j ∈ V , where i 6= j, is an edge

83

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011              ISBN:978-1-61208-115-1



(i, j) ∈ E. The size of a clique is its order. From now
on, a clique will be denoted byK and its size by|K|.

The MAXCLIQUE problem can be defined as follows:
given a graphG, which subgraphK∗ ⊆ G is the clique
with the maximum possible cardinality|K∗|? The set of
subgraphs ofG that answers this question is defined by the
Equation 1. The subgraphK∗ is any of the subgraphs ofG
found inK∗

all
.

K∗
all

= {K : K ⊆ G, |K| = max{|K| : K ⊆ G}} (1)

B. Example of a MAXCLIQUE instance

Following the definition already given, an instance of the
MAXCLIQUE problem is a graphG. Figure 1 shows an
instance of the MAXCLIQUE problem. This instance has 5
nodes and 5 edges.

1

3

54

2

Figure 1. Instance of the MAXCLIQUE problem. The graph
G = (V,E) has the setV = {1, 2, 3, 4, 5} and the setE =
{(1, 3), (2, 3), (2, 5), (3, 4), (3, 5)}.

Figure 2 shows the SQL instance of the graphG = (V,E)
shown in Figure 1. The the set of nodesV is represented in
the tablenodes; the fieldv is used to label the nodes of the
graph and the fields to assign a weight to the nodes. The set
of edgesE is represented in the tableedges; this table has
two fields used to represent each edge of the graph as pair
of nodes. In order to find clique graphs of size smaller than
the predefined valuek, a virtual node0 and virtual edges
between it and the original nodes are added to the graph
instance; this will result in a participation of the node0 in
every clique found, but this node will not count in the size
of the clique because its value in the fields is zero.

A SQL query can be used to solve the instance of
MAXCLIQUE shown in Figure 2. First of all, this query
involves a subset of sizek. The query will try to find the
greatest subset of size equal to or smaller thank that be a
clique; it is possible because when there is no subset of size
k the query looks by a subset of sizek − 1 by including
one time the zero node in the solution. Moreover, smaller
subsets are possible by including as much zero nodes to the
solutions as it is necessary.

The SQL query is shown in Table I. TheFROM clause
generates all the possible combinations of five copies of
table nodes. The WHERE clause filters the combinations
allowing only those in which a clique exists. TheORDER
BY clause is used because the results of the query will give
all the possible combinations of nodes that yields a clique.

edges

n1 n2

0 0
0 1
0 2
0 3
0 4
0 5
1 3
2 3
2 5
3 4
3 5

(a)

nodes

v s

0 0
1 1
2 1
3 1
4 1
5 1

(b)

Figure 2. SQL tables encoding the instance of the MAXCLIQUE problem
shown in Figure 1.

The evaluation of the existence of a clique is made by the
clausesEXISTSwhich ask for the existence of all the edges
required to form a clique. The descending order will give
the maximum clique at the first entry of the results of the
SQL query and the keywordsLIMIT 1 specify that we only
want the first result (in case there is more than one solution).
The name of the nodes that forms the clique and the size of
the clique is specified in theSELECTclause.

Table I
SQL QUERY THAT SOLVES THEMAXCLIQUE PROBLEM INSTANCE

SHOWN IN FIGURE 2.

SELECT
V1.v, V2.v, V3.v, V4.v,V5.v,
(V1.s+ V2.s+ V3.s+ V4.s+ V5.s)

FROM
nodes asV1, nodes asV2, nodes asV3, nodes asV4, nodes asV5

WHERE
EXISTS(SELECT * FROMedges asE WHERE (E.n1 = V1.v AND E.n2 = V2.v)
AND EXISTS(SELECT * FROMedges asE WHERE (E.n1 = V1.v AND E.n2 = V3.v)
AND EXISTS(SELECT * FROMedges asE WHERE (E.n1 = V1.v AND E.n2 = V4.v)
AND EXISTS(SELECT * FROMedges asE WHERE (E.n1 = V1.v AND E.n2 = V5.v)
AND EXISTS(SELECT * FROMedges asE WHERE (E.n1 = V2.v AND E.n2 = V3.v)
AND EXISTS(SELECT * FROMedges asE WHERE (E.n1 = V2.v AND E.n2 = V4.v)
AND EXISTS(SELECT * FROMedges asE WHERE (E.n1 = V2.v AND E.n2 = V5.v)
AND EXISTS(SELECT * FROMedges asE WHERE (E.n1 = V3.v AND E.n2 = V4.v)
AND EXISTS(SELECT * FROMedges asE WHERE (E.n1 = V3.v AND E.n2 = V5.v)
AND EXISTS(SELECT * FROMedges asE WHERE (E.n1 = V4.v AND E.n2 = V5.v)

ORDER BY 6 DESC LIMIT 1

The solution of the SQL query presented in Table I is
shown in the Table II. The maximum clique size is3. The
columns represent the combination of the maximum clique
and its size. Given that we search for a clique of sizek, the
number of columns in the solution will bek+1, the firstk
columns are nodes that form the clique (a zero indicates a
virtual node and must be ignored), the size of the clique is
given in the last column.

Table II
SOLUTION OF THE MAXCLIQUE INSTANCE SHOWN INFIGURE 2.

Clique
V1.v V2.v V3.v V4.v V5.v size

0 0 2 3 5 3

84

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011              ISBN:978-1-61208-115-1



C. Complexity Analysis of the MAXCLIQUE Problem

For a MAXCLIQUE instance, the search space in the SQL
query is defined by the cartesian product performed in the
clauseFROM. Given that this product is betweenk tables
of size N + 1 (the size of the clique and the number of
nodes plus 1, respectively), the set of possible solutions for
the problem has a cardinality of(N + 1)k.

Several exact approaches have been proposed in the
literature that solve the MAXCLIQUE problem [9]. These
approaches generally work in the search space defined by
all the subsets of sizek or less of the set of nodesV of
a graphG = (V,E). This search space is equivalent to the
cardinality of the power set of the set of nodesV , denoted
by |P(V )| and defined in Equation 2.

|P(V )| =
N
∑

i=0

(

N

i

)

(2)

A comparison between the search space that potentially
is searched by the SQL query is greater than the real search
space. We present experimental evidence that the solution for
smaller instances of the MAXCLIQUE problem are worth of
attention through a SQL approach, taking into account that
the high level of SQL avoids the programming of complex
routines in low level languages.

Next section presents the generalization of the solution for
the particular instance of the MAXCLIQUE problem already
presented.

III. SQL APPROACH FOR SOLVING THEMAXCLIQUE
PROBLEM

Given an instance of the MAXCLIQUE Problem as a
graph G = (V,E) and an integerk, 1 ≤ k ≤ N , we
propose an exact approach that finds a clique of sizek or
smaller inG. The approach consists on generating a query
in the Standard Query Language (SQL). Once that the query
has been created, it is executed in a database management
system so that the solution is obtained.

The query shown in Table I presents the SQL query re-
quired to solve the particular MAXCLIQUE instance shown
in Figure 2. Table III shows the generalization of that query
such that any MAXCLIQUE instance defined according with
the definition given at Section II-A can be solved using a
SQL query and a database management. The query is given
using the BNF notation [13]. The query uses the tablesedges

andnodes. The tableedges contains the nodes of the graph
V been solved; an extra virtual node called0 is added to
this set. A column associates the value 1 with each node in
the original setV and the value0 with the node0. The table
edges is the set of edges of the instance; this set includes
extra virtual edges between node0 and the rest of the nodes.
The existence of edges between node0 and the rest of the
nodes allows this node to participate in any existing clique,
but its contribution to the size of the clique is0 so that

cliques formed by nodes of the original graph are preferred.
In general, the inclusion of the node0 and the edges with
this node will enable the query to give as answer cliques of
size smaller thank when a clique of sizek does not exist.
The solution of this query reports the nodes in the maximum
clique found and the size of such clique.

Table III
BNF FORMAT OF THE GENERALSQL QUERY THAT SOLVES THE

MAXCLIQUE PROBLEM.

SELECT
<subset of nodes>,
<size of clique>

FROM
<subset definition>

WHERE
<constraint definition>

ORDER BY < k + 1 > DESC LIMIT 1

<subset of nodes> ::=
V1.v, . . . , VK .v

<size of clique> ::=
(V1.s+ V2.s+ . . .+ VK .s)

<subset definition> ::=
nodes asV1, nodes asV2, . . ., nodes asVK

<constraint definition> ::=
EXISTS(SELECT ∗ FROM edges WHERE

edges.n1 = V1.v AND edges.n2 = V2.v)
AND . . .

The structure of the query shown in Table III can be
described as follows: given the graphG = (V,E) as the
SQL tablesedges, nodes with fields n1 and n2 in edges

andv, s in nodes, theFROM clause indicates the cartesian
product ofk tables as the nodes in the maximum clique of
the instance that is going to be solved. TheSELECTclause
indicates the subset of maximum size that is a clique in
the instanceG. In addition, theSELECTclause include an
extra field that represents the size of the clique found in
the solution process. TheWHEREclause will contain the
condition that must be met so that a clique is formed by the
SQL query; these instructions are logical ANDs of query’s
asking for the existence of every possible edge that must
be contained in the clique, i.e., the query will ask for the
existence of

(

k

2

)

edges in this clause. Finally, the SQL query
will sort the results by the extra field representing the size
of the cliques. The descending order in combination with
the clauseLIMIT 1 allow to identify a solution returned by
the query; the descending order on the size of the cliques
makes that the largest cliques appear as the first rows in the
results, the clauseLIMIT 1 extracts only the first of them.
Note that a convenient use of the clauseLIMIT 1 allows
an extension in the results reported by the query, i.e. the
query can report thec largest cliques found in the instance
by specifying it in this clause (something likeLIMIT c).
In this way, if different cliques of the same size exists, they
will be reported in the following tuples of the results.

In the next section is presented an experimental design to
solve random instances of the MAXCLIQUE problem.

85

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011              ISBN:978-1-61208-115-1



IV. EXPERIMENTAL DESIGN

In this section we present the experimental design done
to test the model based on a SQL query to solve the MAX-
CLIQUE problem. In order to test the performance of the
query we solved 62 random instances of the MAXCLIQUE
problem. The generators of the instances are described in
the next subsection.

A. Random Instance Generators

Two models were considered for the generation of random
instances of the MAXCLIQUE problem. The first model, or
modelA, is the well known Erdös-Rényi model [14]. This
model works as follow: given the number of nodesn and
a probabilityp, each edge(i, j) ∈ E of the resulting graph
G = {V,E} is selected with a probabilityp, i.e., a random
number is generated for each of the

(

n

2

)

possible edges that
a graph can have, and those edges with a random number
smaller thanp will belong to the graph.

Algorithm IV.1 shows the pseudocode of the modelA for
generation of random graphs. This algorithm takes as input
the number of nodesn and the densityp and gives as output
a graphG = (V,E), where |V | = n and |E| ≈ p ·

(

n

2

)

.
Each edge(i, j) ∈ E is selected with a probabilityp.

Algorithm IV.1: MODELA(n, p)

comment:Output : Graph G

for i← 1 to n

do























for j ← 1 to n

do















q ← RANDOMNUMBER(0, 1)
if q ≤ p

then
{

ADD(G, i, j)
return (G)

A MAXCLIQUE instance using the algorithm previously
described is shown in Figure 3. This instance has an number
of nodes 6 and a value ofp equal to0.4.

1

6

2

3 4

5

Figure 3. Random Instance of the MAXCLIQUE problem with 6 nodes
and p = 0.4. The set of nodes isV = {1, 2, 3, 4, 5, 6} and the set of
edges isE = {(1, 6), (2, 3), (2, 4), (2, 5), (3, 5), (4, 5)}. A clique of size
3 is formed with the nodes2, 3 and5.

A disadvantage of using only the Erdös-Rényi model is
that it doesn’t model well the systems where the MAX-

CLIQUE problem finds its applications. While the Erdös-
Rényi model is characterized by small clustering of the
nodes with small average length paths, most of the systems
that are found in the nature are best represented by highly
clustered nodes with small average length paths (or as
they are commonly refered, by small-world graphs). Due
to this fact, we propose a second set of instances of the
MAXCLIQUE problem to test the SQL query. The second
model (or modelB) is one of most widely used models
for the generation of random small-world graphs, the Watts-
Strogatz model [15].

The modelB starts with a regular lattice and progressively
rewires the edges with a probabilityp. The rewiring process
means that every edge(i, j) ∈ E is disconnected with a
probability p (the rewiring probability) from one of its end
points and reconnected to another one. A regular lattice is
a graph where each node has an edge with itsz nearest
neighbors, wherez is called the coordination number. The
pseudocode for the modelB is shown in the Algorithm IV.2;
this algorithm takes as input the number of nodesn, the
coordination numberz and the rewiring probabilityp and
returns a random graph based on that values.

Algorithm IV.2: MODELB(n, z, p)

comment:Output : Graph G = (V,E)

G← BUILD REGULARLATTICE(n, z)
for i← 1 to n

do































for j ← 1 to n

do























if (i, j) ∈ E

then






q ← RANDOMNUMBER(0, 1)
if q ≤ p

then REWIRE(G, i, j)
return (G)

1

2

3

7

8 4

5

6

(a)

1

2

5

7

3

4

6

8

(b)

Figure 4. Random graph generated by modelB: a) initial regular lattice
with 8 nodes and coordination numberz = 2; b) random graph generated
after rewiring the edges with a probabilityp = 0.50.

Figure 4 shows an instance generated by the modelB.
Figure 4(a) presents the initial regular lattice of8 nodes with
coordination numberz = 2. Figure 4(b) shows the resulting

86

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011              ISBN:978-1-61208-115-1



graph after applying the generation modelB with a rewiring
probability of p = 0.50.

The next section presents the experimental results ob-
tained from solving the random instances generated by the
two models presented in this section. The instances were
solved using, the SQL query described in Section III.

B. Computational Experiments

In this section we present the general overview of the
experimentation, the instances solved by the SQL query and
the features of the hardware and the database management
system used in our experimentation. The results are sum-
marized in several tables that contain information about the
size of the clique found and the time spent by our approach
to find it.

1) Features of the hardware and software:The random
instances generator was implemented in C language and
compiled with gcc. The instances were generated in a
Desktop Computer with an Intel(R) Core(TM) 2 CPU 2400
6400 @ 2.13 Ghz processor, 3Gb of RAM and Ubuntu 8.10
Intrepid Ibex Operating System, and the query resulting from
each instance was executed in MySQL 5.0.67.

2) Instances:The experiment was carried out using 62
instances which were created by the random instance gen-
erators described in the Section IV-A. Two sets of instances
are included in the experiment. The first set (or setS1) is
shown in Table IV; this set is of small instances created
using the modelA and includes 14 instances with less than
30 nodes. The number of nodes and density of each instance
is shown in columns2 and3, respectively.

The second set of instancesS2 includes larger instances
created using the modelB. Table V lists in columns 1
and 4 the different values forn, z, p used to create each of
the 48 instances of the set. Basically, the number of nodes
considered weren = {50, 70}, the coordination valuez was
varied from5 to 15 and the rewiring probability values were
p = {0.20, 0.30, 0.40, 0.50}.

3) Parameters of the test cases:The parameter required
for the experiments was the size of the maximum clique
(or k). The experiments were done in 2 different stages.
In the first step the setS1 was considered and tested with
k = 15, the results from solving these cases are shown in
the Table IV. The column 1 shows the instance. The column
2 shows the set of nodes that form the clique (a zero value
represents a virtual node, for cliques of size smaller thank).
The column 3 contains the size of the maximum clique. The
column 4 shows the time consumed by the query.

According with the results shown in Table IV, the SQL
query solved almost all the instances with less than 30 nodes
and found cliques of size in the range from 3 to 15.

In the second step of the experimentation the setS2 was
considered. Also, in this experiment the value of the clique
size was set tok = 15. The results from this experiment are
shown in Table V. The first three columns shows the results

Table IV
RESULTS FROM SOLVING THE SETS1 OF RANDOM MAXCLIQUE

INSTANCES. THE CLIQUE SIZE WAS SET TOk = 15.

Time
Cases n p K∗ ω (sec.)

1 10 0.30 0 0 0 0 0 0 0 0 0 0 0 0 3 7 9 3 0.10
2 10 0.45 0 0 0 0 0 0 0 0 0 0 0 0 4 6 7 3 0.15
3 10 0.60 0 0 0 0 0 0 0 0 0 0 3 4 6 7 9 5 0.30
4 10 0.75 0 0 0 0 0 0 0 0 0 3 4 5 6 7 8 6 0.63
5 10 0.90 0 0 0 0 0 0 0 0 1 3 4 6 7 8 10 7 1.68
6 20 0.30 0 0 0 0 0 0 0 0 0 0 0 8 10 14 18 4 1.40
7 20 0.45 0 0 0 0 0 0 0 0 0 0 4 6 11 15 20 5 2.99
8 20 0.60 0 0 0 0 0 0 0 0 2 5 9 12 14 18 19 7 9.86
9 20 0.75 0 0 0 0 0 0 5 7 9 12 14 16 17 18 19 9 68.96
10 20 0.90 1 2 3 4 6 7 8 10 13 14 15 16 18 19 20 15 1222.83
11 30 0.30 0 0 0 0 0 0 0 0 0 0 1 12 14 22 25 5 6.28
12 30 0.45 0 0 0 0 0 0 0 0 1 12 14 20 22 25 28 7 19.10
13 30 0.60 0 0 0 0 0 0 1 6 8 14 17 22 23 25 27 9 86.22
14 30 0.75 0 0 0 2 5 8 14 15 17 20 22 23 27 28 30 12 815.30

for the instances withn = 50 nodes. The last three columns
shows the results for the instances withn = 70 nodes. For
each instance is listed de size of the maximum clique found
|K∗| and the time in seconds spent by the query to find it.

Table V
RESULTS FROM SOLVING THE SET OF LARGE RANDOMMAXCLIQUE

INSTANCES WITH THESQL QUERY. THE VALUE OF THE MAXIMUM
CLIQUE SIZE TO BE SEARCHED WAS SET TOk = 5.

Instance Time Instance Time
(n, z, p) |K∗| (sec.) (n, z, p) |K∗| (sec.)

(50, 5, 0.20) 6 7.80 (70, 10, 0.20) 8 335.51
(50, 5, 0.30) 6 6.24 (70, 10, 0.30) 9 209.38
(50, 5, 0.40) 4 5.36 (70, 10, 0.40) 6 151.12
(50, 5, 0.50) 4 5.04 (70, 10, 0.50) 6 126.88
(50, 6, 0.20) 6 10.73 (70, 11, 0.20) 9 504.95
(50, 6, 0.30) 5 8.68 (70, 11, 0.30) 7 235.76
(50, 6, 0.40) 5 8.10 (70, 11, 0.40) 7 165.93
(50, 6, 0.50) 5 8.30 (70, 11, 0.50) 7 168.17
(50, 7, 0.20) 7 18.72 (70, 12, 0.20) 9 637.30
(50, 7, 0.30) 7 14.56 (70, 12, 0.30) 9 377.82
(50, 7, 0.40) 6 14.02 (70, 12, 0.40) 7 280.25
(50, 7, 0.50) 5 12.20 (70, 12, 0.50) 7 229.70
(50, 8, 0.20) 8 31.33 (70, 13, 0.20) 10 819.89
(50, 8, 0.30) 7 18.99 (70, 13, 0.30) 9 569.04
(50, 8, 0.40) 6 16.90 (70, 13, 0.40) 8 428.36
(50, 8, 0.50) 5 15.30 (70, 13, 0.50) 7 331.47
(50, 9, 0.20) 8 35.06 (70, 14, 0.20) 10 1423.51
(50, 9, 0.30) 7 25.50 (70, 14, 0.30) 8 737.20
(50, 9, 0.40) 6 23.87 (70, 14, 0.40) 8 550.05
(50, 9, 0.50) 6 21.83 (70, 14, 0.50) 7 458.02
(50, 10, 0.20) 9 62.15 (70, 15, 0.20) 11 2081.27
(50, 10, 0.30) 7 38.39 (70, 15, 0.30) 8 719.54
(50, 10, 0.40) 7 38.07 (70, 15, 0.40) 8 617.33
(50, 10, 0.50) 6 32.21 (70, 15, 0.50) 7 512.06

The results shown in Table V show instances with an
average small clique size (modelA generated instances with
greater cliques in graph with less nodes). The performance
of the SQL query over the setS2 is better than in the set
S1, i.e. in some instances from the setS1 the SQL query
spent more time to find a clique of almost the same size
than in the larger instances found in the setS2. A natural
explanation of this behavior is that small-world graphs tend
to be sparse, which weaken the possibility of finding large
cliques, and the nodes are highly clustered, which affects the
number of different subgraphs that could be a clique; these
two characteristic can improves the performance of the SQL

87

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011              ISBN:978-1-61208-115-1



query in the sense that the cartesian product exclude a large
number of solution during the solution of the instance.

In general, the time spent by the SQL approach to solve
the random instances varies from a few seconds to almost
two hours. Note that this amount of time consumed by the
query to find the maximum cliques is relatively small in
comparison with the theoretical search space. For example,
the instance10 shown in Table IV have a clique of size
k = 15 and the query only spent1222.83 seconds to find it
among the3115 possible solutions. This performance can be
mainly explained by the fact that the cartesian product is not
done at once, instead it starts with two tables and continue
adding them one by one until it is completed. Each time
that two tables are combined, those tuples that do not match
the conditions specified are left out from the rest of the
operation; this action results in a considerable reductionin
the search space that contributes to a quick localization of
the wished result.

Finally, according with the results showed in this section,
we can conclude that the model based on SQL queries
can solve instances of the MAXCLIQUE problem when the
number of nodes and/or the size of the clique searched are
not too large.

V. CONCLUSIONS

This paper presents a novel approach for solving the
MAXCLIQUE problem using a SQL query. The query was
tested in a set of 62 random MAXCLIQUE instances created
through the Erdös-Rényi and Watts-Strogatz models. The
query performs well in small sparse instances, or instances
where the maximum clique is small. The limitations of the
model are given by the database management system used
to solve the query.

The simplicity of the SQL approach makes it easier to use
than procedural languages approaches, in the sense that it
does not require complex structures nor programming skills
to solve the problem. The performance of the SQL approach
depends on the query optimization tools implemented in the
database managements system. The results shown that it is
possible to solve an important optimization problem using a
high level non-procedural languages without coding a line.

Currently we are trying to extend the range in which a
SQL query approach for the MAXCLIQUE problem works
in reasonable time.

ACKNOWLEDGEMENTS

This research was partially funded by the following projects:
CONACyT 58554-Cálculo de Covering Arrays, 51623-
Fondo Mixto CONACyT y Gobierno del Estado de Tamauli-
pas.

REFERENCES

[1] S. N. Bhatt and F. T. Leighton, “A framework for solving
VLSI graph layout problems,”J. Comput. Sytem Sci., vol. 28,
no. 2, pp. 300 – 343, 1984.

[2] Y. N. Sotskov, V. S. Tanaev, and F. Werner, “Scheduling
problems and mixed graph colorings,”Optimization, vol. 51,
no. 3, pp. 597–624, 2002.

[3] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton, “The
combinatorial design approach to automatic test generation,”
IEEE Softw., vol. 13, no. 5, pp. 83–88, 1996.

[4] C. C. Michael, G. E. McGraw, M. A. Schatz, and C. C. Wal-
ton, “Genetic algorithms for dynamic test data generation,” in
Automated Software Engineering, 1997. Proceedings., 12th
IEEE International Conference. Washington, DC, USA:
IEEE Computer Society, 1997, pp. 307–308.

[5] V. Ustimenko and T. Shaska, “On some applications of graphs
to cryptography and turbocoding,”Albanian J. Math., vol. 2,
no. 3, pp. 249–255, 2008.

[6] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Graph
matching applications in pattern recognition and image pro-
cessing,” inImage Processing, 2003. ICIP 2003. Proceedings.
2003 International Conference on, 2003, pp. II–21–4 vol.3.

[7] P. Berman and A. Pelc, “Distributed probabilistic faultdi-
agnosis for multiprocessor systems,” inFault-Tolerant Com-
puting, 1990. FTCS-20. Digest of Papers., 20th International
Symposium, 1990, pp. 340 –346.

[8] N. Malod-Dognin, R. Andonov, and N. Yanev,
“Solving maximum clique problem for pro-
tein structure similarity,” 2009. [Online]. Available:
http://www.citebase.org/abstract?id=oai:arXiv.org:0901.4833

[9] I. Bomze, M. Budinich, P. Pardalos, and M. Pelillo, “The
Maximum Clique Problem,” inHandbook of Combinatorial
Optimization, D.-Z. Du and P. M. Pardalos, Eds. Kluwer
Academic Publishers, 1999, vol. A, pp. 1–74.

[10] G. Mulligan and D. G. Corneil, “Corrections to bierstone’s
algorithm for generating cliques,”J. ACM, vol. 19, no. 2, pp.
244–247, 1972.

[11] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa, “A new
algorithm for generating all the maximal independent sets,”
SIAM J. Comput., vol. 6, no. 3, pp. 505–517, 1977.

[12] C. Ordonez, “Programming the K-means clustering algorithm
in SQL,” in KDD ’04: Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data
mining. New York, NY, USA: ACM, 2004, pp. 823–828.

[13] J. Friedman, “A computer system for transformational gram-
mar,” Commun. ACM, vol. 12, no. 6, pp. 341–348, 1969.

[14] P. Erdös and A. Rényi, “On random graphs,”Publ. Math.
Debrecen, vol. 6, pp. 290–297, 1959.

[15] D. J. Watts and S. H. Strogatz, “Collective dynamics of
’small-world’ networks,”Nature, vol. 393, no. 6684, pp. 440–
442, 1998.

88

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011              ISBN:978-1-61208-115-1


