
Exploring the Essence of an Object-Relational Impedance Mismatch

- A novel technique based on Equivalence in the context of a Framework

Christopher Ireland, David Bowers, Michael Newton, Kevin Waugh

Department of Maths and Computing

The Open University

Milton Keynes, UK

{cji26@student.open.ac.uk, D.S.Bowers@open.ac.uk, M.A.Newton@open.ac.uk, K.G.Waugh@open.ac.uk }

Abstract- During the development of an object-relational

application we combine technologies that make use of object

and relational artefacts because each is suited to a particular

role. However such a combination of technologies gives rise

to problems of an object-relational impedance mismatch. In

this paper we highlight these problems arise not just because

of differences in language or design objective, but because

the semantics and data of an object and a relational artefact

are not equivalent. We introduce a novel technique based on

equivalence, and use this to explore one problem of an

object-relational impedance mismatch. We show that

strategies for dealing with the problem of identity should not

focus on a correspondence between the two identity systems

but on a correspondence between the different ways in

which the identity of an entity has been represented.

Keywords- object-relational; impedance mismatch; ORIM;

silo; equivalence

I. INTRODUCTION

Object and relational technologies have proven popular
for the development, respectively, of applications and
databases, but there are problems that occur when we
attempt to combine them in a software system. Each such
problem is commonly referred to as an object-relational
impedance mismatch (ORIM) [1].

In [2] we explore problems of an ORIM and conclude
that there are four kinds of mismatch (conceptual,
representation, emphasis and instance), each reflecting a
different abstraction (respectively, concept, language,
schema and instance). Our framework (Figure 1)
recognises two collections of concepts, each provides the
basis for a silo. A silo comprises artefacts from an
abstraction at each level of our framework. The object silo
is the left side of Figure 1 and the relational silo is the right
side. A level provides a context for the level below.

Our framework highlights that an object and a
relational artefact are based on different conceptual
frameworks. At the language level an artefact in a silo is
described using a particular language. This language is
different between silos, for example Java may be used in
the object silo and SQL-92 in the relational silo. At the
schema level an artefact is created based on a particular
design objective. These objectives differ between silos.
For example, the design of a program may focus on
efficient processing whereas the design of a database may
focus on an efficient data structure.

Figure 1. Our Conceptual Framework1

During the development of an object-relational
application, we combine technologies that make use of
these artefacts because each is suited to a particular role. In
this paper we highlight that problems of an ORIM arise
not just because of differences in language or design
objective, but because the semantics and data of an object
and a relational artefact are not equivalent.

We develop the idea of equivalence in the context of
ORIM and our framework. We provide an example based
on the concept of identity and find that there is very little
in common between object and relational artefacts. We
show that current pattern-based strategies to map identity
between object and relational artefacts (e.g. Blaha [3],
p420 and Keller [4], p21) have focused on mapping the
wrong things. They draw a correspondence between two
identity systems but these serve to identify different things.
We show that a correspondence should be made between
the ways the identity of an entity from a universe of
discourse has been modelled, because such an identity is
common to both representations. Finally we explore the
consequences of equivalence in terms of our framework
and propose a new silo.

The paper is structured as follows. Section II sets the
context for our work. In Section III we describe the

1 We have chosen to use the label concept rather than paradigm because

we understand that a paradigm underpins a conceptual framework

Object and relational are the names of two conceptual frameworks.

65

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

schema level of our framework. In Section IV we begin
our exploration of equivalence. In Section V we explain
our novel idea of equivalence and introduce an
equivalence diagram as a mechanism for exploring a
problem of an ORIM. In Section VI we provide an
example based on a small case study. In Section VII we
explore the options for describing an entity and in Section
VIII we highlight the consequences of equivalence for our
framework. We present a summary and our conclusions in
Section IX and describe future work in Section X.

II. PROBLEMS OF AN ORIM

In [2] we catalogued a number of different kinds of
problem of an ORIM. These problems arise because there
are differences between the artefacts in each silo.
Differences are those of data representation, language
syntax and semantics, design approach and conceptual
framework.

Object-relational mapping (ORM) strategies have been
developed to overcome these differences ([3], [4], and [5]).
Each such strategy is based on a correspondence between
artefacts in the two technologies. At the language level for
example, the definition of a class is used as the basis for
the definition of a table.

The rationale for such a correspondence may be that
artefacts in different silos appear to be the same
abstraction because they have the same name. For example
we can name a table ORDER and a class ORDER, or a
column QUANTITY and an attribute QUANTITY. Using
the same name for two artefacts may appear to endow
them with the same semantics, but this is a correspondence
that is not justified because they are different abstractions.

A strategy may arise because of a perceived need to
represent all of the semantics of an object model in a
relational database. One such example is the representation
of the semantics of a class hierarchy using SQL-92 (a
language that has no such explicit semantics [6]).
However using SQL-92, it is not necessary to represent all
the semantics of a class hierarchy in order to realise the
benefits of a class hierarchy in the design of a relational
database.

We argue that a singular focus on correspondence
between language artefacts is incorrect. The focus should
be on the data and semantics of that which is being
represented. In particular the way these data and semantics
have been represented using those artefacts.

III. THE SCHEMA LEVEL

We start at the schema level of our framework because
it relates directly to the work of those involved in the
design of an object-relational application. At this level we
are concerned with design artefacts that comprise
respectively an object-oriented application and a relational
database. We consider the design of each to be a form of
schema.

At the schema level of our framework, an object model
and a relational model describe aspects of a universe of
discourse ([7], p2-1). Whilst a schema uses a particular

conceptual framework, language and structure(s) to
describe that universe, each schema is a partial
representation of the same universe. A universe of
discourse therefore provides a point of reference common
to both an object and a relational schema. These schemata
must be equivalent descriptions of that universe, if we are
not to lose information (data and semantics) in a round-trip
transformation between an object-oriented application and
a relational database. In the next few sections we explore
what we mean by an equivalent description at the schema
level of our framework.

IV. TWO REPRESENTATIONS OF AN ENTITY

The design of an object-relational application
comprises two schemata: one based on the concept of an
object and the other on the concept of a relation. Each
schema is an abstraction of the same universe of discourse
because it is part of the same system. Each schema is also
a correct and valid representation of that universe.

The two schemata are also different. Each schema
should be based on a collection of concepts, phrased in a
particular language and influenced by a design objective.
We make the distinction between the formal prescriptive
nature of the concepts that underpin the relational model
and the relatively descriptive nature of those that underpin
an object model. An SQL-92 schema is prescriptive
insofar as its language dictates the form of structure into
which a representation must fit. An object schema is
relatively more descriptive because the semantics and
structure of a class are not prescribed in the same way as
those of a table. A different person may also produce and
therefore influence each schema ([8], p111).

Figure 2. Two Representations of an Entity (type) at the Schema Level

Figure 2 shows an object and a relational
representation of the same entity (or entity type) at the
schema level. The object representation is formed using
artefacts from the Java language. The relational
representation is formed using artefacts from SQL-92. We
assume that each representation is as complete a
representation of the data and semantics of an entity as are
possible within a silo.

An entity forms part of a universe of discourse and the
description of its data and semantics provides a common

66

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

point of reference for both representations. An entity may
also be understood as a generalisation of an object and a
relational representation. It represents the data and
semantics of some thing from a universe of discourse with
which we may compare an object and a relational
representation.

V. EQUIVALENCE

We consider two representations to be equivalent if
they each describe both the same data and the same
semantics of an entity. Only those data and semantics that
are equivalent can form part of a non-loss transformation
between an object and a relational schema. If all the data
and semantics of an entity are described in both an object
and a relational schema, then none of the data and
semantics of that entity should be lost in a round-trip
transfer between an application and a database. There may
still be differences but these should not impact on the
representation of data or semantics. Where there are data
or semantics that cannot be preserved in a round-trip
transformation between an application and a database, then
one schema is able to describe more (or a different subset)
of the data or semantics of an entity than the other. Such
differences at the schema level are the essence of the kind
of object-relational impedance mismatch we label an
emphasis mismatch [2].

In both an object and a relational schema one or more
artefacts may be used to describe an entity. We use an
equivalence diagram to explore differences in the data and
semantics of an entity as represented by these artefacts.

An equivalence diagram embodies our notion of
equivalence and focuses attention on the essential aspect
of Figure 2: that each schema is a description of the same
entity. By equivalence at the schema level we mean
equivalent descriptions of the same data and semantics of
an entity from a universe of discourse.

An equivalence diagram is a Venn diagram comprising
two sets. Each set contains the semantics and data of
artefacts used to describe an entity in a particular
representation. The intersection of these two sets is those
data and semantics of an entity that are captured in both
representations. These data and semantics will be
preserved in a round-trip between an object-oriented
application and a relational database.

In Figure 3 the semantics and data of an entity
embodied in artefacts used in a schema are represented by
a set, drawn as an ellipse. We show two sets: object and
relational. The intersection of the two sets represents the
data and semantics of an entity common to both schemas.
These data and semantics need not be represented in the
same way but they are equivalent both to each other and to
an idealised representation of entity.

We can use an equivalence diagram in two ways. In
the first, we can use equivalence to explore differences of
data and semantics between two representations of an
entity. We can ask what data and semantics of an entity
can be preserved in a round-trip transition from one
representation to another. We provide an example in the
following sections.

Figure 3. Equivalence between an Object and a Relational

representation of an Entity at the Schema Level

In the second, we can use equivalence to improve an
ORM strategy. At each level of our framework we can
explore the different ways in which the data and semantics
of an entity are described by artefacts. At the schema level
we consider secondary the artefacts used for the
representation of data and semantics of an entity. We
describe the consequences for our framework of this use of
equivalence in Section VIII.

VI. AN EXAMPLE

In this section we provide an example of the use of an
equivalence diagram to explore the identity problem [2]:
how do we uniquely identify a collection of data values
across both an object and a relational representation?

Figure 4 presents an entity Equity taken from a
universe of discourse based on an investment bank. Equity
is a particular financial instrument that represents a share
in a company.

Figure 4. The entity Equity.

An equity is identified by an International Securities
Identifying Number (ISIN) code. The ISIN code is defined
under ISO 6166 and is unique across all financial
instruments. The other attributes are self-explanatory.

From Figure 4 we produce an outline class definition
shown in Figure 5 and an outline SQL-92 table definition
in Figure 6.

An object ID (OID) is implicit and represents the
identity of an object. In Java, for example, it is not
necessary to define the OID in the definition of the class of
which an object is an instance. Hence, there is no mention
of an object ID in the definition of class Equity in Figure
5.

67

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

… class Equity
{ … ISIN;

… NAME;
… DESCRIPTION;

 … NUMBER OF SHARES; }

Figure 5. The outline of a Java class Equity derived from the entity
Equity

The value of an OID is independent of the value of any
of the attributes of an object. For example, although an
ISIN is unique in the universe of discourse, the OID of an
object of class Equity will not be based on the value of
the attribute ISIN.

create table EQUITY(
 ISIN … PRIMARY KEY,
 NAME …,
 DESCRIPTION …,
 NUMBER_OF_SHARES …)

Figure 6. The outline of an SQL-92 table derived from the entity

Equity

An OID is unique within the execution space of an
object-oriented application. An OID guarantees the
uniqueness of an object. Two objects with exactly the
same attribute values are different objects if they have a
different OID. The identity of an object remains the same
regardless of any changes to the value of its attributes. For
example, two objects of class Equity are different even

if they have the same value for the attribute ISIN. In order
to prevent this erroneous situation, a constraint must be
implemented in a method. Furthermore, changing the
value of the attribute ISIN of an object does not change the
value of its OID.

The identity of a tuple is the value of all its domains.
As such the identity of a tuple is dependent on the value of
a domain. In a single relation there cannot be two tuples
with the same value for each domain. A primary key of a
relation is not necessary for identity but does provide a
short-form of reference to a tuple.

At the language level, the semantics of a table are
different. A duplicate row is permissible. A primary key
enforces uniqueness of a row in a table and restricts the
identity of a row to those columns in a key. For example
ISIN is the primary key of table EQUITY. There cannot be
two rows in this table with the same value for this column.
The value of a primary key column in a row should not be
changed because this affects the identity of that row.

In Figure 7 we provide an example of an equivalence
diagram for the semantics of identity in an object and a
relational schema. This shows that there is little in
common between the object and relational semantics of
identity at the schema level. A row and an object are not
the same thing. An OID and the primary key ISIN have
little correspondence. The only semantics they share is that
each uses identity as a mechanism for ensuring an
occurrence is distinct.

These differences are realised at the language level of
our framework and above. An OID is not a building block

of an object framework, rather it is a programming
necessity introduced at the language level. At the concept
level an object is distinct so there is no need for an OID.
Similarly, at the language level a primary key uniquely
identifies a row in a table. A tuple is distinct by definition.
At the concept level therefore we have an object and a
tuple, each is unique but they have no common basis for
this uniqueness. We have used the levels of our framework
to pinpoint the cause of the identity problem. We should
not attempt a correspondence between an OID and a
primary key because they have no common basis for
uniqueness.

!
Figure 7. Exploring Identity Between Object and Relational

Representations of an Entity

Pattern strategies using SQL-92 (e.g. Blaha [3] and
p420, Keller [4], p21) map the semantics of identity
between the identity systems employed in an object and a
relational schema. For example, they suggest we should
introduce a new column into the table EQUITY. This
column would store the value of an identity of an object of
class Equity. Keller [4] suggests using an application-
generated identity they call a synthetic identity rather than
the actual value of an object ID. Even in our simple
example this strategy has shortcomings.

An OID is unique only within the execution space of a
single object-oriented program. The correspondence
between an ISIN and an OID is only temporary. An OID
cannot be used as a primary key because it is not
guaranteed to be unique in a database. Even if we extract
the value of an ID from an object, that value has no
meaning in a database. It also has no semantics in the
universe of discourse from which a database schema is
derived. A synthetic object ID may somehow be unique
across executions but an object and a tuple are different
abstractions and such an ID also has no meaning in a
universe of discourse. An object ID does not have the
semantics necessary to be used as a primary key in a
database.

Using equivalence we understand that a mapping
between representations at the schema level should be
based on correspondence between the mechanisms used to
describe the identity of an entity. This mechanism may not
be the same as the identity used in each identity system but
the identity of an entity is common to both representations.
In our example we should make a correspondence between
an object and a relational representation of the attribute
ISIN of entity Equity, because this is the identity of the
entity Equity and it is common to both representations. We

68

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

should not make a correspondence between an object ID
and a primary key because these identify different things.
A consequence of making a correspondence between these
identity systems is that a transformation strategy is then
required to form a correspondence between identity
values.

VII. DESCRIBING AN ENTITY

The language for describing an entity is an important
choice. A description of an entity cannot favour one of the
two conceptual frameworks. This would limit the
description of the semantics of an entity to those that could
be expressed using just one of the frameworks. How then
do we describe an entity without favouring one conceptual
framework over another?

Dieste [9] describe what they term a generic
conceptual model (GCM). The objective of a GCM is to
describe knowledge of a requirement in a way that does
not determine (what they refer to as) the implementation
paradigm. They provide a number of transformations of a
GCM into a target conceptual model in a particular
implementation paradigm. Whilst the term paradigm was
originally intended to describe the set of practices that
define a scientific discipline at any particular period
of time [10], it has been used in computing as a label for a
particular viewpoint. We understand that a paradigm
underpins a conceptual framework, and that object and
relational are two conceptual frameworks.

The approach of Dieste is set within a software
development lifecycle. The objective of a GCM is to delay
commitment by providing a description of a universe of
discourse independent of an implementation paradigm.
Once a choice of implementation paradigm has been
made, a GCM is transformed into a model based on a
particular collection of conceptual building blocks. A
GCM is therefore independent of both an object and a
relational conceptual framework.

The language employed in the production of a GCM is
a possible candidate for the description of an entity. Unlike
an element of a GCM, an entity is not used as the basis for
the generation of a representation in a particular
conceptual framework. Rather a description of the
semantics and data of an entity may be used as the basis
for exploring equivalence.

Multi-paradigm Modelling (MPM) is another area in
which we may find a candidate for the description of an
entity. Multi-paradigm modelling is concerned with
“developing a set of concepts and tools to address the
challenge of integrating models of different aspects of a
software system specified using different formalisms and
eventually at different levels of abstraction” [11].
Integrating heterogeneous models is one of the most
important challenges of MPM. Amaral [11] notes that “the
topic on model composition is of very high interest but one
that raises a number of very difficult issues”. Various
authors (Jiang et al., Yie et al. and Barroca et al. in [11],
p222) have explored dependencies between models, model
transformations and language composition. Our
framework provides a means to structure an exploration of

these issues. The issue of dependency between models
occurs at the schema level of our framework whilst issues
of language composition occur at the language level of our
framework. Those working in the area of MPM will
benefit from our understanding of equivalence because
equivalence is essential for the preservation of semantics
between models.

VIII. EQUIVALENCE AND OUR FRAMEWORK

We have explored equivalence at the schema level and
shown that it may be possible to produce a description of
an entity independent of an object and a relational
conceptual framework. The concept of an entity is only
relevant at the schema level because a schema is a
representation of a universe of discourse. In this section
we explore the consequences of equivalence in the context
of our framework and explain the basis for equivalence at
the other levels.

The concept level of our framework provides the
context for the language level that in turn provides the
context for the schema level. We can use this
contextualisation to reflect on the description of an entity
at the schema level. The example of identity has
highlighted for example, that issues of language influence
the semantics of an entity as described in a schema.

Figure 8. Our Conceptual Framework including the Reference Silo

The description of an entity may be viewed as a
generalisation of an object and a relational description.
The description of an entity must be phrased in terms of a
language that is itself a generalisation of an object and a
relational language. The language used to describe an
element map ([9], Section 3.1) provides a possible
candidate. A conceptual framework that is a generalisation
of an object and a relational conceptual framework will
underpin the language. We therefore propose a third silo in
our framework and we label this the reference silo.

The reference silo (shown down the centre of Figure 8)
is currently theoretical and artefacts within it an ideal, but
its purpose can be related to the work we describe in
Section VII. In this silo there is a reference concept level, a
reference language level, a reference schema level and a

69

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

reference instance level. Each level provides artefacts for,
or influences the description of an entity from a universe
of discourse within a reference schema. This description
does not need to be perfect, but as a minimum it must be a
generalisation of those data and semantics that may be
described using an object and a relational artefact.

At each level of our framework within the reference
silo we can explore equivalence. We can explore
equivalence between the data and semantics of a reference
artefact and those data and semantics described in an
object and a relational artefact. The data and semantics of
a reference artefact described by an object or a relational
artefact are shown as a set in an equivalence diagram.
Depending on the level of the framework, that set may
contain conceptual building blocks, language structures,
design representations or data formats.

TABLE I. SOME BUILDING BLOCKS OF THE OBJECT AND THE

RELATIONAL CONCEPTUAL FRAMEWORKS

Conceptual

Framework

Building Blocks

Object [12] Object, Class, Association, Method, Attribute,

Subclass

Relational [13] Relation, n-tuple, Domain, Column, Projection,

Join, Restriction, Composition, Primary Key

At the concept level of our framework for example, a

set comprises the building blocks employed by a
conceptual framework. Table I provides an example of
some of the building blocks employed by the object and
the relational conceptual frameworks. The intersection of
the two sets comprises those data and semantics of a
reference artefact that are represented by artefacts in both
the object and the relational silo.

IX. SUMMARY AND CONCLUSIONS

Problems of an ORIM exist not just because artefacts
are described using a different language, but also because
an object and a relational representation are based on
different conceptual frameworks. This distinction
underpins our conceptual framework.

A conceptual framework underpins the language,
schema and data used to describe an entity from a universe
of discourse. If we are to preserve the data and semantics
of an entity from a universe of discourse in a round-trip
between an object-oriented application and a relational
database, the description of that entity in each schema
must be equivalent.

The novel perspective of equivalence facilitates an
understanding of an impedance mismatch between an
object and a relational artefact. We found at the schema
level there is little in common between the semantics of an
object and a relational system of identity. ORM strategies
have failed to recognise this and instead make a
correspondence between identity systems. In order to
avoid problems of an ORIM, the correspondence implicit
in an ORM strategy should be based on how the data and
semantics of the identity of an entity are described in each
representation.

Equivalence is not only a schema level concern
involving the description of an entity. Reflecting on the
contextualisation provided by our framework we
introduced the reference silo. This silo comprises the
artefacts used to describe an entity at each abstraction.

At each level of our framework we can explore
equivalence between an artefact in the reference silo and
those in the object and relational silos. Such an exploration
will provide further insights into the most appropriate way
to address problems of an ORIM.

 Whilst the reference silo is still an ideal, we note that
there is work in the areas of a GCM and MPM that may
lead to the realisation of artefacts in this silo. Our
framework will also help those working in the area of
MPM.

X. FUTURE WORK

Our technique of equivalence may be used to explore
other problems of an ORIM [2]. Such an exploration will
demonstrate further our technique, and may result in
improvements to other ORM strategies. Finally, further
work is required to understand the contribution of our
framework and the technique of equivalence, to MPM and
an exploration of the issues identified by Amaral [11].

REFERENCES

[1] G. Copeland and D. Maier: Making Smalltalk a database system.

ACM SIGMOD Record 14 (1984) 316-325

[2] C. Ireland, D. Bowers, M. Newton and K. Waugh: A Classification

of Object-Relational Impedance Mismatch. In: Chen, Q.,

Cuzzocrea, A., Hara, T., Hunt, E., Popescu, M. (eds.): The First

International Conference on Advances in Databases, Knowledge

and Data Applications, Vol. 1. IEEE Computer Society, Cancun,

Mexico (2009) p36-43

[3] M.R. Blaha, W.J. Premerlani and J.E. Rumbaugh: Relational

database design using an object-oriented methodology.

Communications of the ACM 31 (1988) 414-427

[4] W. Keller: Mapping Objects to Tables: A Pattern Language. In:

Bushman, F., Riehle, D. (eds.): European Conference on Pattern

Languages of Programming Conference (EuroPLoP), Irsee,

Germany (1997)

[5] M.L. Fussell: Foundations of Object Relational Mapping

(http://www.chimu.com/publications/objectRelational/) (Accessed:

25th September 2007)

[6] C. Ireland, D. Bowers, M. Newton and K. Waugh: Understanding

Object-Relational Mapping: A Framework Based Approach.

International Journal On Advances in Software 2 (2009)

[7] J.J.v. Griethuysen (ed.): Concepts and Terminology for the

Conceptual Schema and the Information Base. ISO, New York

(1982)

[8] S.W. Ambler: Agile Database Techniques - Effective Strategies for

the Agile Software Developer. Wiley (2003)

[9] O. Dieste, M. Genero, N. Juristo, J.L. Mate and A.M. Moreno: A

conceptual model completely independent of the implementation

paradigm. The Journal of Systems and Software 68 (2003) 183-198

[10] T.S. Khun: The Structure of Scientific Revolutions. The University

of Chicago Press, Chicago, IL (1970)

[11] V. Amaral, C. Hardebolle, G. Karsai, L. Lengyel and T.

Levendovszky: Recent Advances in Multi-paradigm Modeling.

Models in Software Engineering, Vol. 6002/2010. Springer-Verlag,

Berlin (2010) 220-224

[12] J. Rumbaugh, I. Jacobson and G. Booch: The Unified Modeling

Language Reference Manual. Addison Wesley (2005)

[13] E.F. Codd: A relational model of data for large shared data banks.

Communications of the ACM 13 (1970) 377-387

70

DBKDA 2011 : The Third International Conference on Advances in Databases, Knowledge, and Data Applications

Copyright (c) IARIA, 2011 ISBN:978-1-61208-115-1

