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Abstract—The rapid development of genomics, proteomics,
metabolomics and structural genomics techniques have pro-
vided an unprecedented amount of data, enabling system-wide
biological research. Although information integration has been
well investigated in database theory research, biological data
present numerous challenges from the lack of standard formats
to data inconsistencies resulting from experimental data vari-
ations. Satisfying and practical solutions are still lacking and
current molecular biology databases serve primarily as simple
data repositories with limited query capabilities. They also
provide little to no integration with other databases. However,
the success of systems biology is contingent on the ability to
integrate and utilize a wide variety of types of data. It also
relies on computational techniques to automatically predict and
assign functional annotations of proteins as effective integration
of biological data should enable scientists to perform compar-
ative analyses, modelling and inference of protein functions.
Therefore, there is a need for a paradigm shift toward systems
biology databases with flexible query systems that focus on
answering a diversity of questions from biologists without the
need to reconfigure the underlying database architectures.

Keywords-genomics; proteomics; systems biology; data ware-
housing; data integration

I. INTRODUCTION

Life sciences techniques made significant improvements
over the past decades, resulting in huge amounts of data
collected over the years by the scientific community. In order
to facilitate the organization and the subsequent analyses
of this valuable data, databases have been developed very
early. Since then, the number of databases has dramatically
increased. The 2010 Molecular Biology Database Collec-
tion [1] includes well over a thousand databases, each
describing millions of biological records.

This unprecedented wealth of information originating
from genomic studies represents a tremendous potential in
all areas of biological science. The emerging information
integrated with existing knowledge bases could lead to an
explosive understanding of complex molecular interactions,
networks and pathways. Successful data integration is one of
the keys to successful bioinformatics research [2]: scientists
need an integrated view of these heterogeneous data sources

with advanced data-mining, analysis and visualisation tools.
The continuing data growth will lead to an increasing need
for large-scale data management as biological discovery
depends, to a large extent, on the presence of clean, up-
to-date and well-organised datasets.

Unfortunately, the rapidly growing number of differ-
ent molecular biology databases, created at various places
worldwide, serve primarily as data warehouses with simple
query interfaces designed for specific tasks. The databases
are not readily amenable to complex system-based research
that requires the integration of a large number of these
disparate databases. There is a need for a paradigm shift
toward systems biology databases with flexible query sys-
tems that focus on answering a diversity of questions from
biologists without the need to reconfigure the underlying
database architectures.

In this paper, we present an overview of the problem of
the integration of multiple biological databases from the
perspective of large-scale analysis of biological systems.
Section II overviews some technical aspects of data ware-
housing. Section III explains the specificities of biological
data and some of the challenges they raise when being
integrated, from data heterogeneity (Section III-A) to exper-
imental variability (Section III-C). Section IV then describes
data warehousing requirements for effective systems biology
and reviews key features and limitations of several major
data warehousing frameworks.

II. DATA INTEGRATION METHODS

Information integration has been well investigated in
database theory. Currently, three main approaches are gen-
erally considered when integrating data: the Extract, Trans-
form and Load (ETL), the Local-As-View (LAV) and seman-
tic integration methods.

A. Extract-Transform-Load method

An ETL-based warehouse is constructed by Extracting,
Transforming and Loading the data to integrate into a single
unified schema. The transformation step allows the data to
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be pre-processed before they are integrated in the warehouse,
which may be useful to address some of the problems
mentioned in Section III, in particular those related to data
inaccuracies and inconsistencies. However, ETL methods
generally lack flexibility because the warehouse schema is
tightly coupled the data sources. As a result, integrating
new databases requires considerable effort as the entire
warehouse and subsequent queries need to be redefined. The
warehouse schema may also have to be redesigned if one of
the data sources schema changes after an update.

B. Local-As-View method

Local-As-View (LAV) methods [3], [4] are designed to
address the flexibility issues of ETL methods. They are
based on functions — or wrappers — that provide an
abstraction layer and a simplified view of the integrated
data sources. They traditionally rely on dynamic logical
views, which are featured by most DBMSs. However, logical
views are usually constructed using natural joins to correlate
database keys and can therefore provide erroneous or mis-
leading answers (see Section III-C for details). Dynamically
generating views that contains millions of records can also
be computationally expensive and/or inefficient.

C. Semantic integration

Unlike the ETL and LAV methods, semantic integra-
tion methods [5], [6] do not address issues related to the
underlying architecture of the DBMS of the warehouse,
but focus on the semantic integration of related entities or
concepts from heterogeneous data sources through the use
of ontologies, that is, formal descriptions of the concepts
and entities for a domain of interest and the relationships
that hold among them. Semantic integration is therefore
useful to handle heterogeneous data that lack standardization
(see Section III-B) as if often the case in biology. It is
however computationally expensive and often requires large
data centres to be effective [7].

III. BIOLOGICAL DATA SPECIFICITIES AND
CHALLENGES

Biological data present a number of specificities and raise
many challenges when being integrated, in particular in the
context of large-scale analyses of biological systems as a
whole. As a result, satisfying and practical solutions derived
from the methods described above have proven to be elusive
for these complex data sources.

A. A wealth of heterogeneous data

The 2010 Molecular Biology Database Collection [1] con-
tains 1,230 databases, requiring a database of databases to
integrate data and keep track of all the knowledge available
to biologists today [8]. Among these databases is the extent
of our knowledge related to genomics [9], proteomics [10],
metabolomics [11] and structural genomics [12].

As an illustration of the vast amounts of accessible data,
consider: (i) the RefSeq [13] database, containing 16
million sequences (152 billion base pairs) from over 10,000
species, (ii) the Joint Genome Institute (JGI) sequencing
projects [14], comprising 200 billion base pairs, (iii) the
Gene Ontology [15], containing 30,914 terms that describe
the biological function of nearly 500,000 gene products
(iv) the eggNOG (evolutionary genealogy of genes: Non-
supervised Orthologous Groups) database [16], describ-
ing 224,847 orthologous groups covering 2.5 million pro-
teins (v) the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [17], containing 116,962 metabolic pathways com-
prising 16,291 compounds.

While these five distinct molecular biology databases
represent a small fraction of those available, they still contain
a wealth of data beneficial to system biology studies. But,
conducting searches or identifying correlations across just
these five databases ranges from extremely limited to non-
existent. Furthermore, the web-based interfaces are generally
designed with the expectation of presenting the user with
only a few results from a query. The display and manual
analysis of queries that generate hundreds or thousands of
results is not practical.

B. Lack of unique standards

Integrating data from multiple databases provides an
additional challenge because of the different data formats
and structures [18]. Those data are very disparate and
often stored in database management systems (DBMS) or
as simple plain text files in multiple data repositories,
which provide very limited compatibility or interoperability
between systems.

Describing a chemical structure clearly illustrates this
critical problem since there are more than 80 different
formats currently in use. There are also numerous ways to
name a chemical compound, which includes common names,
abbreviations and systematic nomenclatures [19] defined by
the International Union of Pure and Applied Chemistry
(IUPAC). IUPAC systematic nomenclatures are an evolving
process and tend to be cumbersome for relatively complex
molecules and difficult to generate even with software that
automate the process. Errors are common and there is a
relatively high failure rate in actually generating a name. An
alternative approach uses a linear character string to repre-
sent a 2D structure of the compound. SMILES (Simplified
Molecular Input Line Entry System) is the most popular
approach of generating a simple text-based representation
of a chemical structure [20]. However, numerous distinct
and correct SMILES strings can be generated from a single
chemical structure. InChl (International Chemical Identifier)
— “a new standard for molecular informatics” — is a recent
variation on SMILES strings [21]. While InChl generates a
unique character string for a given molecule, it is relatively
new and not as widely used as SMILES strings.
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Another example is DBGET/LinkDB [22], which aims at
providing a unified database query mechanism. Yet, only a
handful databases are capable of handling DBGET/LinkDB
requests. Furthermore, using DBGET, it is currently not pos-
sible to query two databases and automatically integrate the
results: data from the integrated databases remains largely
independent and difficult to combine.

C. Data inconsistencies and inaccuracies

1) Experimental variations: Because of their experimen-
tal nature, biological data are also routinely sparse and/or
inaccurate. For example, consider the fungus Aspergillus
niger available from two major repositories for fungal
genomics: the JGI Genomes [23] database developed by
the U.S. Department of Energy and EnsemblFungi [24], a
fungal database maintained by the European Bioinformatics
Institute. GBrowse [25] is the primary means to visualize
genomes on JGI whereas EnsemblFungi is powered by
BioMart [26].

On JGI Genome, consider the gene
fgenesh1_pg.C_scaffold_6000331 located on
Chromosome I:612-2,561, which codes for a
protein involved in fungal specific transcription. The
sequence of this gene was matched with sequences from
EnsemblFungi using BLASTN [27]. The best hit on
EnsemblFungi was a perfect match (E = 0, 100% sequence
identify). However, on EnsemblFungi, the gene is located
on Chromosome III:3,638,575-3,640,524.
Similarly, gene e_gw1.12.166.1 at the locus
Chr.III:2,768-4,422 on JGI was identified
(E = 1.5 ∗ 10−88) at Chr.II:2,593,707-2,594,464
on EnsemblFungi. In addition, both repositories use non-
standardized mapping systems: coordinates are relative to
scaffolds in JGI whereas they are relative to chromosomes
in EnsemblFungi.

2) Data entry errors: Compounding the above incon-
sistencies are entry errors in the original data, such as
spelling mistakes and the inadvertent addition or deletion
of characters or spaces [28]. A number of experimental
errors associated with the data are also to be expected [29],
where estimates of annotation errors for gene products range
from 8% to 49%, depending on the method [30]. Similarly,
spelling and typographical errors have been measured to
occur at rates of 1.5 to 2.5% and 1 to 3.2%, respectively [31].
Thus, data errors present an inherent challenge in the devel-
opment of molecular biology databases [32].

3) Approximate string matching and similarity functions:
3rd Millennium R© showed that the number of incorrect
entries grows geometrically with the number of joins and
reaches nearly 50% by the fourth join, assuming a con-
servative error rate of 15% per join [2]. Solely relying
on database indexes to correlate database keys is generally
dangerous and blind data integration can provide erro-
neous or misleading answers. Similarity functions unique to

molecular biology data are therefore required and numerous
similarity algorithms have been developed but these are
generally implemented as independent stand-alone programs
accessible through web-servers. Nearly 1,200 web links to
resources and software accessible to the scientific commu-
nity have been documented [33]. This provides a variety
of valuable tools to improve the quality and flexibility of
biological database searches. For instance, BLAST [27] and
FASTA [34] are well-known and highly utilized sequence
homology approaches that search sequence databases using
substitution matrices and string matching heuristics. Alterna-
tively, PSI-BLAST [35] uses a profile-sequence comparison
method, and HMMER applies hidden Markov models [36].
Similarly, programs such as Dali [37] and Structal [38] align
the 3D structures of proteins present in the Protein Data-
Bank. The Expresso [39] program combines both sequence
and structure alignments to identify similar proteins.

Errors in the data are more likely to be accommodated
by the robustness of these similarity searches [40] and the
most reliable approach is to incorporate similarity algorithms
into the database structure to simulate indexes that are
normally based on binary search trees or hashes in most
DBMS. Similarity measures may also improve semantic
integration [41] when combined with ontologies.

Moreover, spelling mistakes may be detected using ap-
proximate string matching algorithms [31]. In particular,
Damerau [42] and Levenshtein [43] estimated that 80% of
human spelling mistakes could be automatically corrected
using at most one character insertion, deletion, substitution
or transposition.

4) Data provenance: To help address data quality issues,
tracking the provenance of the data is critical [44]. The
provenance typically consists of metadata associated with
the data and is helpful for scientists to evaluate their quality
and reliability. Its also allows them to examine the lineage of
a piece of information, which shows all the steps involved
in sourcing, moving and processing the data. Toward that
end, all datasets and their transformations must be recorded.
Goble [45] suggested that data provenance could be use-
ful to address ownership and copyright issues as well as
to record experimental protocols followed to generate the
data, effectively ensuring the reproducibility of experimental
results. When data is redundantly available from multiple
sources, provenance may also be beneficial for automated
data curation and arbitration of data inconsistencies.

D. Non-textual data

Biological data are not always textual. This adds to the
difficulties of indexing data for effective data-mining. This
is most notably the case for high throughput microscopy
imaging and enzymatic activity experimental characteriza-
tion. For example, microplate assays are widely used in
research and drug discovery to detect biological or chem-
ical events of samples. Those events are typically detected
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by measuring the fluorescence intensity of samples from
each of the ninety-six wells that compose a plate and are
usually stored as greyscale pictures. SDS-PAGE (Sodium
Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis) gels
are broadly used for protein separation and analysis. Gels
are usually stored as images and analysed using imaging
tools such as ImageJ [46] and to date, indexing and mining
those files is not possible using current databases.

E. Data versioning
Data versioning offers many benefits to end users. First, it

enables data recovery in case of an entry mistake or system
corruption. More importantly, it facilitates the analysis of
historical changes of data, which can be helpful to enhance
predictions and automatic data classification [47]. Barkstrom
presented a formal structure for keeping track of files,
source code, scripts, and related material for large-scale
Earth science data production [48]. However, biological
data present a number of unique challenges and effective
solutions for biological data versioning are still lacking.

One of the main issues in biological data versioning is the
variability of the data and the lack of well-defined protocol
to compare the numerous formats. Biological experiments
are conducted using some biological data as input and yield
results. These results may be used as data sources in other
experiments to yield further sets of results. This cycle of
experimentation continues, presumably until the required set
of results are achieved. Research questions and interests
may also vary over time, thereby altering the nature of the
data. This is often the case for emerging high throughput
technologies, where refinement of experimental protocols
can significantly change the types of data to be collected [2].

IV. DATA WAREHOUSING FOR SYSTEMS BIOLOGY

To date the National Center for Biotechnology Informa-
tion lists over 2,500 whole-genome sequencing projects,
including 833 in progress. JGI lists nearly 1,500 whole-
genome in addition to over 850 sequencing projects. Ob-
taining protein functional assignments is a necessary first
step to enable progress in research areas associated with
development, evolution and physiology. Solving the chal-
lenging problem of assigning a function to proteins requires
multiple approaches because sequence similarity techniques
may provide functional information for at most 50% of these
proteins [49], [50]. Addressing this complex biological issue
necessitates a Systems Biology [51], [52] approach to data
analysis that requires identifying relationships hidden within
multiple databases [53]. An important mechanism to achieve
this goal will require the development of next-generation
databases that enable sophisticated queries beyond simple
text-based searches.

A. Systems biology: a new scientific perspective
Biological systems are more than a set of independent

components working together. Although they are composed

of a limited number of elements, these elements — proteins
in particular — usually have multiple functions and interact
very tightly to form complex pathways. Historically, scien-
tists have focused their research on isolating those elements
to understand their individual functions and activities. The
knowledge of their function is indeed critical to comprehend
the intricate biological machinery of the whole system.

However, the success of the Human Genome Project has
ushered in a new scientific perspective, a system-wide view
of protein function and biological activity: while traditional
methods focus on the detailed analysis of isolated proteins
to understand its cellular function, systems biology applies
a holistic approach to understand the details of cell biology
and evolution as a whole. This relatively new concept in
biology, which is expected to yield more realistic models of
a complete biological system, requires the integration of data
from the individual subsystems. Biological models are usu-
ally constructed — and validated — using high-throughput
quantitative data including, but not limited to, genome
sequencing, gene expression, proteomics, metabolomics and
high-resolution microscopy imaging.

Effective integration of biological data should enable sci-
entists to perform comparative analyses, modelling and in-
ference of protein functions. The success of systems biology
is therefore contingent on the ability to integrate and utilize
a wide variety of types of data and computational techniques
to automatically predict and assign functional annotations of
proteins. Systems biology databases are expected to expand
upon the traditional sequence and structure approach because
the primary method to assign a function to a protein of
unknown function is to identify a relationship with a protein
of known function. Additional protein associations may also
be made through protein interaction networks, metabolic
pathways,protein expression patterns or any number of rela-
tionships envisioned by a biologist. The key to this approach
is moving the design focus from a fixed database structure
defining precomputed relationships between elements to a
fluid and flexible relational model that can be adapted to the
biologist questions [54] without re-designing the underlying
data structure.

B. Overview of Existing Frameworks and their Limitations

Over the past few years, a number of specialized data
warehouses have been developed to accommodate the speci-
ficities of biological data and to address specific needs. For
example, the e-Fungi database [55] integrates data from
36 fungal genomes and aims at facilitating the systematic
comparative study of those genomes. GeWare [56] is a lab-
oratory information management system, featuring tools for
the integrated analysis of clinical data from large biomedical
research studies.

In this section, we briefly describe the main capabilities
and limitations of a few general data warehousing frame-
works although it is beyond the scope of this paper to
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provide a formal and comprehensive benchmark.
1) BioMart Central Portal: BioMart Central Portal [26]

is a complete framework that provides tools to federate
a variety of biological databases. These include major
biomolecular sequence, pathway and annotation databases.
Moreover, the web server features a unified user-friendly
interface for mining data from various datasets. The web
server also supports programmatic access through a Perl
API as well as RESTful web services. Queries are defined
as a set of successive filters to be applied to data. Queries
are however limited to two datasets at once, hence limiting
the scaling capabilities of BioMart. It is also not possible
to edit or create new filters, restricting possible queries to
the otherwise comprehensive set of filters defined by the
developers of the framework.

2) BioXRT: The BioXRT framework [57] is designed to
allow biologists to publish their data on the Internet with
only minimal knowledge of database design and usage. It
provides a highly flexible and extensible database structure
as well as tools to import spreadsheets. However, flexibility
is achieved to the detriment of data types as all pieces of data
are defined as strings of characters. Consequently, queries
are constrained to string matching and BioXRT does not
support advanced data-mining tools for complex biological
questions.

3) InterMine: FlyMine [58] is a data warehouse built
upon InterMine that integrates and utilizes numerous bio-
logical data sources. It features parsers for integrating data
from numerous biological formats and facilities for adding
one’s own data. It provides a web access to integrated data
at a number of different levels, from simple browsing to
construction of complex queries and it includes a user-
friendly web interface that can be easily customised for the
user’s needs. The provenance of the integrated datasets is
also tracked. However, InterMine does not provide tools for
classifying or clustering data and queries may not include
similarity functions to address annotation errors as discussed
in Section III-C.

4) Open Genome Resource (OGeR): Strepto-DB [59]
and SYSTOMONAS [60] are databases for the comparative
genome analysis of streptococci and pseudomonas respec-
tively, and rely on the Open Genome Resource (OGeR)
to achieve data integration of external resources. OGeR is
an open source system for the storage, visualization and
analysis of prokaryotic genome data. Genome sequences and
annotations can be automatically downloaded from relevant
databases and features cross-references to external databases.
However, like other frameworks, OGeR does not provide
tools for clustering and statistical analysis, nor does it
provide advanced mining tools besides pairwise and multiple
sequence alignment tools.

5) PROFESS: The PROtein Function, Evolution, Struc-
ture and Sequence (PROFESS) database [61] integrates nu-
merous biological databases and aims at giving an overview

of biological systems by integrating protein annotations at
different levels: function, evolution, structure and sequence.
The primary means to query the database is the “PROFES-
Sor”, a unified text field that mines data from any integrated
database. PROFESS also provides clustering and aggregation
tools for statistical analysis of large datasets and features
a user-friendly modular web interface. However, like other
systems, its query system is based on a predefined non-
customizable set of filters and does not yet support similarity
functions besides standard BLAST searches.

V. CONCLUSION

Although biological data present a number of unique
specificities making them challenging to integrate, there
is a growing need for effective integration of biological
datasets to enable large scale and comparative analysis
of the numerous genomes being sequenced. To date, no
biological data warehouse meets all the requirements for
effective integration of system-wide data. BioXRT offers a
flexible and extensible database structure, BioMart provides
advanced data-mining tools although they may not be ex-
tended by users. PROFESS features a flexible and modular
user interface and tools for clustering and statistical analysis
of large datasets. InterMine also features a customizable user
interface and is helpful to track the provenance of data.

However, there now exists a variety of resources that
may be helpful in accommodating data inaccuracies, such as
approximate string matching or similarity-based algorithms
that may be implemented within database management sys-
tems for the next generation of biological data warehouses.
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