A New Proposal to Improve Credit Scoring Model Predictive Accuracy

Arianna Agosto and Paolo Giudici
Department of Economics and Management
University of Pavia, Italy
Email: arianna.agosto@unipv.it
paolo.giudici@unipv.it

Emanuela Raffinetti
Department of Economics,
Management and Quantitative Methods
University of Milan, Italy
Email: emanuela.raffinetti@unimi.it

Abstract—Machine Learning models and Artificial Intelligence algorithms are required to provide powerful predictions to support the decision process of operators in the FinTech sector, characterised by an extensive use of credit scoring models and digitalised financial services. In such a context, the model predictive accuracy assessment represents a basic requirement. On the one hand, literature provides several predictive accuracy measures but, on the other hand, these measures are typically computationally intensive or are based on subjective criteria. In this paper a solution is provided through a novel predictive accuracy measure, we called Rank Graduation Accuracy (RGA), which is based on the distance between the predicted and observed ranks of the response variable. The RGA presents properties which allow to fulfill the need of ensuring reliable predictions improving the model predictive accuracy assessment in highly complex situations.

Keywords—Machine Learning models; Artificial Intelligence-based systems; Predictive accuracy; Credit Scoring models.

I. INTRODUCTION

A very key point in the application of Machine Learning (ML) and Artificial Intelligence (AI) methods is the evaluation of their predictive accuracy. The predictive accuracy requirement is basic especially in banking and FinTech sectors where data have to be exploited in order to draw conclusions from them and predict future trends. To do this, more accurate results have to be performed to allow organizations to detect new risks (in terms of default predictive accuracy). This objective is more evident when dealing with AI systems, which have a black-box nature resulting in automated decision making which in turn can classify a user into a class associated with the prediction of the individual behavior, without explaining the underlying rationale. In order to avoid that wrong actions are taken as a consequence of “automatic” choice, predictive accuracy measures have to be as much as possible reliable.

Several researchers have proposed, along the years, statistical measures aimed at evaluating predictive accuracy [4] [7]. Likewise, the increasing availability of computational power has allowed to translate these measures in statistical softwares giving rise to direct comparisons between different types of predictive models on the same data. But model comparison methods are not universal, since depending on the nature of response variable to be predicted. Our proposal is motivated by the several applications of machine learnings models in credit rating, where the response variable usually takes a binary nature. In this case, predictive accuracy can be assessed in terms of false positive and false negative predictions providing, for a given set of cut-off points, the Receiver Operating Characteristic (ROC) curve, whose main summary measure corresponds to the area under it (Area Under the Receiver Operating Characteristic curve - AUROC). If on the one hand, the AUROC is widely employed, on the other hand it suffers from some drawbacks due to subjective choice of the cut-off points. With the aim of overcoming this restriction, [10] proposes to resort to the Somers’ D measure [11] in the context of credit rating accuracy measurement. Even if the Somers’ D is independent on the subjective choice of cut-off points, Somers’ D is highly computational intensive.

Our purpose is to introduce a new predictive accuracy measure which, due to its construction, is based on objective criteria and less computational intensive than its main competitors. The novel predictive accuracy measure appears as a derivation of a recent research contribution in the field of dependence analysis illustrated by [3] and is based jointly on the comparison between the observed and the predicted response variable ranks and on the employment of the actual values of the response variable corresponding to both ranks.

The rest of the paper is organized as follows. In Section II, an overview of the mainly used predictive accuracy measures is introduced. In Section III, our new proposed predictive accuracy measure is presented and discussed. In Section IV, an application to credit scoring data is illustrated. In Section V, concluding remarks, together with details on future works, are provided.

II. BACKGROUND

Credit scoring models typically involve a binary response variable denoting the borrower’s default. Given the binary nature of the response variable, the most commonly employed predictive accuracy measure is the AUROC [2] [7].

Let n denote the total number of borrowers, such that $n = n_D + n_{ND}$, where D and ND are the defaulting and non-defaulting borrower sets. Let S_D and S_{ND} be the credit score random variable, for the defaulting and non-defaulting borrowers, respectively.

For a specific cut-off value c, $F_D(c)$ and $F_{ND}(c)$ are the sensitivity (true positive rate) and 1-specificity (false positive rate) of a credit scoring model based on the cut-off value c. Let $F_D(c)$ and $F_{ND}(c)$ be the sensitivity (true positive rate) and 1-specificity (false positive rate) of a credit scoring model based on the cut-off value c, such that $F_D(c) = P(S_D \leq c)$ and $F_{ND}(c) = P(S_{ND} \leq c)$ [1].

For a given set of cut-off values $c = \{1, \ldots, C\}$, the ROC curve is characterised by the set of points with coordinates $(F_D(c), F_{ND}(c))$ or, equivalently, by (G_{ND}, G_D),
where \(G_{ND_i} = \sum_{i=1}^{n} P_{ND_i}, \ G_{D_i} = \sum_{i=1}^{n} P_{D_i}, \ P_{ND_i} = P(S_{ND_i} = s_i), \ P_{D_i} = P(S_{N_i} = s_i) \) and \(i = 1, \ldots, n \). From this, it follows that the AUROC is computed as

\[
AUROC = \frac{1}{2} \sum_{i=1}^{n} (G_{D_i} + G_{D_{i+1}})(G_{ND_i} - G_{ND_{i+1}}).
\]

The AUROC measure is equal to 0.5 for a random model without any predictive accuracy and is equal to 1 for a perfect model. In the intermediate situations, AUROC takes values in the range \((0.5, 1)\).

An alternative measure of predictive performance is the Somers’ \(D\) measure [11]. Let \(Y \) be a response variable and \(X \) a predictor variable, and let us denote with \(G_i \) the (non-decreasing) ranks of \(X \). Let \(\hat{Y} \) be a vector of the observed values to be predicted and \(\hat{Y} \) be a vector of the predicted values, in terms of the \(y \)-axis values of the points lying on the concordance curve and the set of points lying on the concordance curve.

\[D_{XY} = \frac{1}{n_u} \sum_{i=1}^{n} \sum_{j>i} c_{ij}, \text{ with } n_u = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i<n} 1 \{\hat{y}_i \neq \hat{y}_j\}. \] (2)

Some specifications are needed:

- \(D_{XY} \) takes values in the close range \([-1, +1]\) and does not depend on the chosen cut-off points;
- \(D_{XY} \) is computational intensive since, given \(N \) observations to be predicted, it computes \(\binom{N}{2} \) combinations;
- in the case of a multivariate model, depending on more than one explanatory variable, the Somer’s \(D\) can be extended by replacing the values of \(X \) with the predictions derived from the model, which can be function of all the explanatory variables. Let us denote this extension with \(D_{\hat{Y}, \hat{Y}} \);
- since the focus is not on the direction of concordance, the absolute value of \(D_{\hat{Y}, \hat{Y}} \) has to be considered.

III. Methodology

Let \(y \) be a vector of the observed values to be predicted and let \(\hat{y} \) be the vector of the corresponding predicted values, computed through a specific model \(f(X) \), where \(X \) is the matrix containing the observations on the explanatory variables. Our goal is to compare different models: \(\hat{y} = f^1(X) \), \(\hat{y} = f^2(X) \), . . . , using a general methodology based on the concordance curve.

A. The concordance curve

Let \(y \) be a target variable and let \(X_1, X_2, \ldots, X_p \) be a set of \(p \) explanatory variables. The \(y \) values, re-ordered in a non-decreasing sense, can be used to build the \(Y \) Lorenz curve, denoted with \(L_Y \). More formally, the \(L_Y \) curve is characterised by the following pairs: \((\hat{y}_i, \sum_{j=1}^{i} y_{r_j}) \), \(i = 1, \ldots, n \), where \(r_i \) indicates the (non-decreasing) ranks of \(Y \).

The same \(Y \) values can also be used to build the \(Y \) dual Lorenz curve, denoted with \(L_Y \), obtained by re-ordering the \(y \) variable values in a non-increasing sense. More formally, the curve is characterised by the following pairs: \((\bar{y}_i, \sum_{j=1}^{i} y_{r_j}) \), \(i = 1, \ldots, n \), where \(\bar{y}_i \) indicates the (non-increasing) ranks of \(Y \).

Likewise, the predicted \(\hat{Y} \) values can also be re-ordered, in a non-decreasing sense. Let \(\hat{r}_i \), \(i = 1, \ldots, n \), indicate the (non-decreasing) ranks of \(\hat{Y} \). A third curve, named concordance curve and denoted with \(C_Y \), can be provided by ordering the \(Y \) values with respect to the ranks of the predicted \(\hat{Y} \) values, \(\hat{r}_i \). Formally, the concordance curve is characterised by the pairs: \((\hat{y}_i, \sum_{j=1}^{i} y_{r_j}) \), \(i = 1, \ldots, n \), where \(\hat{r}_i \) indicates the (non-decreasing) ranks of \(Y \).

To illustrate the previous concept, Figure 1 reports, for a given set of test values \(Y \), and the corresponding predictions \(\hat{Y} \): the Lorenz curve, the dual Lorenze curve and the concordance curve, together with the bisector curve (\(y/n, \bar{y}/n \)), for \(i = 1, \ldots, n \). In case the illustration, all values have been normalised using the sum of all \(Y \) values: \(\bar{y} \), where \(\bar{y} \) indicates the mean of \(Y \).

From Figure 1, we note that the Lorenz curve and its dual are symmetric around the bisector curve, and that the concordance curve lies between them. Note also that, when \(\hat{r}_i = r_i \), for all \(i = 1, \ldots, n \), the concordance curve is equal to the Lorenz curve, and a perfect concordance between the \(Y \) values and the corresponding predictions arises. On the other hand, when \(\hat{r}_i = d_i \), the concordance curve is equal to the dual Lorenz curve and a perfect discordance between the \(Y \) values and the corresponding predictions emerges. In general, for any given point, a discrepancy between the Lorenz curve and the concordance curve arises only when the predicted rank is different from the observed one. We finally remark that, when the \(Y \) values are all equal each other, the concordance \(C_Y \) curve perfectly overlaps with the bisector curve. In this case, the model has no predictive capability, as it coincides with a random prediction of the \(Y \) values.

B. Our proposal: the RGA predictive accuracy measure

The concordance curve, and its relationship with the Lorenz and the dual Lorenz curve can be exploited to summarise the “distance” between the \(Y \) and the \(\hat{Y} \) values, in terms of the “discrepancy” between their corresponding ranks. In this way, we fully address the ordinal requirement for credit scores. A novel predictive accuracy measure, we call Rank Graduation Accuracy (RGA), is introduced starting from a function \(C \) of \(C_Y \) and \(L_Y \) defined as:

\[
C = \frac{\sum_{i=1}^{n} \{i/n - (1/(\bar{y})) \sum_{j=1}^{i} y_{r_j}\}}{\sum_{i=1}^{n} \{i/n - (1/\bar{y}) \sum_{j=1}^{i} y_{r_j}\}}, \tag{3}
\]

where \(y_{r_j} \) are the \(Y \) variable values ordered according to the ranks \(r_j \); \(\bar{y}_{r_j} \) are the same values but ordered according to the ranks \(\hat{r}_j \).

From (3), we note that the \(C \) index is a function of the \(y \)-axis values of the points lying on the concordance curve \(C_Y \) and of the \(y \)-axis values of the points lying on the Lorenz curve \(L_Y \). Indeed the numerator of the index in (3) compares the distance between the set of points lying on the bisector curve and the set of points lying on the concordance curve.

Data Analytics 2020: The Ninth International Conference on Data Analytics
\[C_Y, \text{ while the denominator compares the distance between the set of points lying on the bisector curve and the set of points lying on the Lorenz curve } L_Y.\]

It can be shown that \(C \) fulfills the following properties, whose proofs can be found in [5]:

- \(-1 \leq C \leq +1\): specifically, when \(0 < C \leq +1 \), \(Y \) and \(\hat{Y} \) are concordant and when \(-1 \leq C < 0\) they are discordant;
- \(C = +1 \) if and only if \(C_Y = L_Y \) (full concordance): the concordance curve \(C_Y \) overlaps with the Lorenz curve \(L_Y \);
- \(C = -1 \) if and only if \(C_Y = L'_Y \) (full discordance): the concordance curve \(C_Y \) overlaps with the dual Lorenz curve \(L'_Y \).

Remark Note that, when some of the \(\hat{Y} \) values are equal to each other, the original \(Y \) values associated with the equal \(\hat{Y} \) values can be substituted by their mean, as suggested by [3]. This adjustment is coherent with the definition of a model without predictive capability. To illustrate this point, suppose to consider a general model \(f(X) \) with only one explanatory variable, such that \(\hat{Y} = E(Y|X) = E(Y) = \bar{y} \) holds for any value of \(X \). Since a re-ordering problem arises if the response variable values are associated with equal estimated values, the response variable values corresponding to the same estimated values are replaced by their mean. As a result, the resulting concordance curve \(C_Y \) overlaps with the bisector curve, whose co-ordinates are given by the set of pairs \((i/n, i/n)\). This can be easily shown considering the normalised set of pairs \((i/n, \sum_{j=1}^{i} y_{r_j}/n\bar{y})\), characterising the concordance curve \(C_Y \). In the case in which \(\hat{y}_i = \bar{y}, \forall i = 1, \ldots, n \), we obtain \((i/n, \sum_{j=1}^{i} y_{r_j}/n\bar{y}) = (i/n, \sum_{j=1}^{i} \bar{y}/n\bar{y}) = (i/n, i\bar{y}/n\bar{y}) = (i/n, i/n)\).

Looking more closely at (3) note that, when different models are compared, the denominator does not change, while the numerator does. It is therefore intuitive to compare models in terms of differences between the distances expressed by the numerator of formula (3), leading to the following:

\[
C_{num} = \sum_{i=1}^{n} \left\{ \frac{i/n - \left(1/(n\bar{y})\right) \sum_{j=1}^{i} y_{r_j}}{i/n} \right\}. \tag{4}
\]

The above measure suffers from a drawback: positive values of the index may be compensated by negative values, leading \(C_{num} \) to take a value equal to zero. To overcome this problem, we resort to the squared distance between the set of points lying on the concordance curve \(C_Y \) and the set of points lying on the bisector curve. Indeed, as the bisector curve defines the situation of a random, non-predictive model, for which the \(Y \) values are independent on the \(\hat{Y} \), we can interpret the squared distance as the difference between the observed and the expected concordance values of \(Y \), where by expected we mean the concordance values that we would have with a random model. If we divide the difference by the expected values themselves, we obtain the \(RGA \) (Rank Graduation Accuracy) measure as:

\[
RGA = \sum_{i=1}^{n} \left\{ \frac{(1/(n\bar{y})) \sum_{j=1}^{i} y_{r_j} - i/n}{i/n} \right\}^2. \tag{5}
\]

Through some manipulations, an equivalent version of (5) can be further derived as

\[
RGA = \sum_{i=1}^{n} \left\{ \frac{C(y_{r_i}) - i/n}{i/n} \right\}^2, \tag{6}
\]

which emphasises the role of the quantity \(C(y_{r_i}) = \sum_{j=1}^{i} y_{r_j}/\sum_{j=1}^{i} \bar{y} \), that represents the cumulative values of the (normalised) response variable.

Note that the \(RGA \) index takes values between 0 and its maximum value \(RG_{max} \), which is obtained when the predicted ranks order the response variable values in full concordance (full discordance) with the observed ranks. It can be used to normalise the values of the \(RGA \) index, obtaining a measure that is bounded between 0 and 1. It is worth remarking that all models with the same predicted ranks provide the same value of the \(RGA \) index. This issue has not to be intended as a limitation of our proposal being the goal of the measure to assess the model attitude in providing a re-ordering of the observed values, which is as much as possible similar to the original ordering.

C. The RGA for scoring models

When assessing the predictive accuracy of credit scoring models in terms of our diagnostic measure, the response variable \(Y \) values can be re-ordered according to the predicted values \(P(y_i = 1) \), which indeed take real values. Thus, the computation of the \(RGA \) index involves only the values 0 or 1, according to the absence or the presence of the attribute of interest, which in this case is the non-default or default occurrence.

The possible behaviors of the concordance curve in the binary case is illustrated in Figure 2. Figure 2 illustrates the
three alternative scenarios that can arise, if \(Y \) and \(\hat{Y} \) are: a) perfectly concordant, b) perfectly discordant and c) partially concordant (discordant). Looking more closely at Figure 2 note that the \(C_Y \) concordance curve has a behavior which is similar to the ROC curve. However, while the ROC curve is built ordering cut-off points in an arbitrary way, the \(C_Y \) concordance overcomes this subjectivity issue, as the ordering is based on the predicted values themselves. This is indeed a further advantage of our proposal presenting as an objective predictive accuracy diagnostics.

In Table I, the financial ratios employed to predict company’s status are reported. Table I shows that, to predict the company’s status in 2016, 23 financial ratios from 2015 are available.

Table I. List of Financial Ratios Employed as Explanatory Variables.

<table>
<thead>
<tr>
<th>ID</th>
<th>Formula or Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Assets/Equity</td>
</tr>
<tr>
<td>2</td>
<td>(Long term debt + Loans)/Shareholders Funds</td>
</tr>
<tr>
<td>3</td>
<td>Total Assets/Total Liabilities</td>
</tr>
<tr>
<td>4</td>
<td>Current Assets/Current Liabilities</td>
</tr>
<tr>
<td>5</td>
<td>(Current assets - Current liabilities)/(Current liabilities)</td>
</tr>
<tr>
<td>6</td>
<td>Shareholders Funds + Non current liabilities/Equity</td>
</tr>
<tr>
<td>7</td>
<td>EBIT/interest paid</td>
</tr>
<tr>
<td>8</td>
<td>(Profit or Loss before tax + Interest paid)/Total assets</td>
</tr>
<tr>
<td>9</td>
<td>Return on Equity (ROE)</td>
</tr>
<tr>
<td>10</td>
<td>Operating revenues/Total assets</td>
</tr>
<tr>
<td>11</td>
<td>Sales/Total assets (Activity Ratio)</td>
</tr>
<tr>
<td>12</td>
<td>Interest paid/(Profit before taxes + Interest paid)</td>
</tr>
<tr>
<td>13</td>
<td>EBITDA/interest paid (Solvency ratio)</td>
</tr>
<tr>
<td>14</td>
<td>EBITDA/Operating revenues</td>
</tr>
<tr>
<td>15</td>
<td>EBITDA/Sales</td>
</tr>
<tr>
<td>16</td>
<td>EBIT Dummy (=1 if EBIT<0, 0 otherwise)</td>
</tr>
<tr>
<td>17</td>
<td>Profit before tax Dummy (=1 if Profit before tax<0, 0 otherwise)</td>
</tr>
<tr>
<td>18</td>
<td>Financial Profit Dummy (=1 if Financial Profit<0, 0 otherwise)</td>
</tr>
<tr>
<td>19</td>
<td>Net Profit Dummy (=1 if Net Profit<0, 0 otherwise)</td>
</tr>
<tr>
<td>20</td>
<td>Trade Payables/Operating Revenues</td>
</tr>
<tr>
<td>21</td>
<td>Trade Receivables/Operating Revenues</td>
</tr>
<tr>
<td>22</td>
<td>Inventories/Operating Revenues</td>
</tr>
<tr>
<td>23</td>
<td>Turnover</td>
</tr>
</tbody>
</table>

Following the standard cross-validation approach, the dataset is split into a training and a test subsample, corresponding to 70% and 30% of the sample. A stepwise logistic regression is performed on the training dataset. From Figure 3, which provides the R output of the stepwise procedure, it results that that 17 variables over the original 23 variables are selected with \(\alpha = 5\% \). For each variable, the corresponding estimated coefficients are also reported. In order to fulfill the model parsimony requirement, variables which are not significant at a level of 1%, are removed leading to select only 9 variables.

By using the estimated coefficient values reported in Figure 3 and derived from the implemented stepwise procedure, the predicted response values \(\hat{Y} \) are computed for a set of models that are obtained considering all the subsets of the 9 selected predictors, whose number of predictors is let vary from 1 to 8. For each model, the RGA, Somers’ \(D \) and AUROC are determined.

A comparison of the measures in terms of model selectivity is also provided by assessing the capability to order models by performance and choose the best among them. We first assess selectivity, for a given model dimension. To this aim, the boxplots in Figure 4 represent the distribution of the three measures for different model dimensions: from 1 predictor to 8 predictors. From the boxplots in Figure 4, it arises that the variability of the RGA measure across the models of the same dimension is always larger than that associated with the other measures, except in the case of only one predictor. This result shows the attitude of the RGA measure to order models and discriminate between them, by resorting to their predictive accuracy. On the contrary, Somers’ \(D \) works better in the one dimensional case and this is motivated by the usual use of Somers’ \(D \) as an exploratory tool for variable
selection. From a methodological viewpoint, the better model selection power of the RGA measure, with respect to the AUROC, stems from the different construction. While the AUROC is calculated at a selected set of cut-off points, the RGA is calculated at all response values making it more sensible to model variations. Moreover, if on the one hand increasing the number of cut-off points would improve the AUROC performance making it similar to that associated with the RGA, this “modus operandi” may lead the AUROC-based approach more computationally intensive. Somers’ D is also calculated at all response values but, differently from RGA, employs an additional data transformation, based on the binarisation of model errors, which makes it less sensible than the RGA.

As the last step, model selectivity is assessed by comparing different model dimensions. To do this, RGA, Somers’ D and AUROC measures are computed on the best model - the one for which the analyzed measure is maximum - for model dimensions that go from 1 to 8. Figure 5 displays the relative change in the maximum value of the three measures, as the number of predictors increases. From Figure 5, it arises that the RGA measure dominates the others in terms of relative change, for all dimensions, allowing us to further show the RGA measure superiority in ordering models and discriminating between them.

![Figure 3](image_url)

Figure 3. Logistic regression output for the model selected through the stepwise procedure.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a new measure to evaluate the predictive accuracy of a credit scoring model was presented.

The new measure, called RGA, is based on the computation of the cumulative values of the response variable, reordered according to the ranks of the values predicted by a given model.

Compared with the other most commonly used predictive accuracy measures, the RGA has the advantage of respecting the ordering requirement for borrowers, and of being independent on the choice of cut-off points, differently from the AUROC, and similarly to Somers’ D. Nevertheless, on the contrary of the Somers’ D, the RGA is less computational intensive.

![Figure 4](image_url)

Figure 4. Distribution of RGA, Somers’ D and AUROC over the models estimated on credit rating data. The eight plots correspond to different model dimensions; reading from left to right, and from top to bottom: models with 1, 2, 3, 4, 5, 6, 7 and 8 predictors.

| Coefficients: Estimate | Std. Error | z value | Pr(>|z|) |
|------------------------|------------|---------|----------|
| (Intercept) | -1.708e-00 | 1.715e-01 | -10.309 < 2e-16 *** |
| id_1 | 3.212e-03 | 1.521e-03 | 2.112 0.03485 * |
| id_3 | -5.538e-01 | 1.144e-01 | -4.839 1.30e-06 *** |
| id_4 | -3.351e-01 | 6.943e-02 | -4.826 1.39e-06 *** |
| id_6 | 4.775e-03 | 1.584e-03 | 3.015 0.00257 ** |
| id_7 | 3.415e-03 | 1.645e-03 | 2.078 0.03773 * |
| id_8 | -2.829e+00 | 3.588e-01 | -7.884 3.18e-15 *** |
| id_9 | -6.001e-02 | 4.175e-02 | -1.438 0.15058 |
| id_10 | -2.745e-01 | 1.615e-01 | -1.699 0.09823 . |
| id_11 | 3.717e-01 | 1.602e-01 | 2.320 0.02034 * |
| id_13 | -3.029e-03 | 1.347e-03 | -2.249 0.02451 * |
| id_15 | -4.794e-01 | 1.973e-01 | -2.407 0.01668 * |
| id_20 | 1.854e-03 | 2.924e-04 | 6.260 3.85e-10 *** |
| id_21 | 7.038e-04 | 2.681e-04 | 2.625 0.00867 ** |
| id_23 | -2.245e-05 | 7.658e-06 | -2.932 0.00337 ** |
| id_17 | 4.770e-01 | 1.631e-01 | 2.924 0.00345 ** |
| id_19 | 6.236e-01 | 1.538e-01 | 4.055 5.01e-05 *** |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 1

![Figure 6](image_url)

Figure 6. Example of a logistic regression model.
The proposed measure appears mathematically sound and easy to implement. Moreover, it has been found quite effective in both a real and a simulated credit scoring application. It outperforms Somers’ D and AUROC in model ordering and in discriminating between “good” and “bad” models.

Due to its properties, we believe that the main beneficiaries of the proposed measure may be regulators and supervisors, interested in assessing and validating the credit risk models employed by banks and financial technology companies.

Future extensions of the research will be addressed both to the methodological and application contexts. In the former case, the development of a statistical testing procedure would provide to the predictive accuracy assessment a significance measure. In the latter case, the extensive application to several other application fields, involving the implementation of other machine learning models, would further shed light on the adequacy of our proposal as a suitable criterion for the evaluation of the predictive accuracy in multiple scenarios.

ACKNOWLEDGMENT

The work in the paper has received support from the European Union’s Horizon 2020 training and innovation programme "FIN-TECH", under the grant agreement No. 825215 (Topic ICT-35-2018, Type of actions: CSA, https://www.fintech-ho2020.eu).

REFERENCES