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Abstract—In public transportation, the motor pool often 
consists of various different vehicles bought over a duration of 
many years. Sometimes, they even differ within one batch 
bought at the same time. This poses a considerable challenge in 
the storage and allocation of spare parts, especially in the event 
of damage to a vehicle. Correctly assigning these parts before 
the vehicle reaches the workshop could significantly reduce 
both the downtime and, therefore, the actual costs for 
companies. In order to achieve this, the current software uses a 
simple probability calculation. To improve the performance, 
the data of specific companies was analysed, preprocessed and 
used with several modelling techniques to classify and, 
therefore, predict the spare parts to be used in the event of a 
faulty vehicle. We summarize our experience running through 
the steps of the Cross Industry Standard Process for Data 
Mining and compare the performance to the previously used 
probability. Gradient Boosting Trees turned out to be the best 
modeling technique for this special case. 

Keywords-maintenance; utility vehicle; spare parts; data 
analysis; predictive analytics. 

I.  INTRODUCTION 
For service providers in the field of public transportation 

or waste disposal in particular, it is important to be able to 
optimally manage their own vehicle fleet in the area of 
maintenance and to minimize downtimes as much as 
possible. Unfortunately, the vehicles purchased over the 
years sometimes differ so much even within a single batch 
that many different spare parts have to be kept in stock. In 
addition to the enormous storage costs, this makes the 
assignment of a new part to a faulty vehicle more difficult 
than one would hope for [1]. Therefore, software is used in 
the areas of fleet management, workshop and logistics, to 
help traffic companies meet these challenges. However, 
cases still exist when a defect reported by a driver is checked 
upon arrival at the depot of the company by a shop 
assistant. In the worst case, when creating a repair order, the 
mechanic realizes that not all spare parts needed are in stock, 
which means that the downtime of the vehicle will be 
extended by the respective delivery time taking at least six to 
eight hours, even with special express delivery, depending on 
the industry and supplier. If the workshop manager were to 
receive a well-founded proposal on the material to be 
installed ahead of time, it could be ready at the point of entry 
to the workshop and both the time and cost could be reduced 
enormously. 

For that reason, this work focuses on analysing and 
processing the data of several traffic companies ranging from 
the vehicle data to the respective repair processes. In 
particular, data quality should be taken into account, as the 
data basis of the software could be used by the respective 
company in the most diverse ways. The knowledge gained 
from this should make it possible, based on the Cross 
Industry Standard Process for Data Mining [2], to improve 
an already implemented software by creating and evaluating 
different models for the prediction of the corresponding 
spare parts. 

This paper is organized as follows. Section 2 puts this 
paper in the context of related works, whereas Section 3 
explains the current implementation of the mentioned 
probability in the application and the data this is based upon. 
Data analysis and preprocessing are explained in Section 4, 
whereas Section 5 describes the actual modelling. Section 6 
summarizes the evaluation criteria and results, and the final 
section concludes this paper. 

II. RELATED WORK 
In the field of maintaining machines or plants, predictive 

maintenance is often used when talking about data analytics. 
This usually means the prediction of faults or failures of said 
machines in order to avoid larger failures through planned 
repairs or servicing. As described in [3], this is about the 
observation of the current state of the machine in the 
execution of its tasks. The bottom line is therefore the 
evaluation of log-based sensor data and the possible 
prediction of failures. Another elaboration [4] also attempts 
to improve their maintenance planning by detecting error 
signatures in environment variables in significant data sets 
containing machine records. Even though this paper deals 
with the avoidance of vehicle failures, such a preventive 
approach is currently not possible, which is partly due to the 
fact that the vehicle manufacturers do not make the data 
available during operation. 

Rather, one could think about it as using predictive 
analytics techniques as a kind of "management tool" to 
reduce the planned and unplanned downtime of the 
respective machine [5] – in this case the vehicles. Detecting 
the correct and needed spare parts before the vehicle arrives 
in the depot could at least partially eliminate unnecessary 
activities, such as inspecting the vehicle or adjusting 
incorrect parts, thereby dramatically reducing the overall cost 
of the vehicle. In the optimal case, for example, the repair 
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could be planned so that it lies between two uses of the 
vehicle. This would make the vehicle practically not fail. 

Breaking down the required task down to its core one 
realizes that it is ultimately about the classification of the 
respective spare part based on relevant attributes of the 
existing data sets. Which attributes in addition to the error 
message of the driver or vehicle are relevant or which 
algorithms are suitable in this case for determining the parts 
is therefore part of this work. In addition to Support Vector 
Machines (SVM) or simple decision trees, Gradient Boosted 
Trees could also be an option. A future relevant approach 
could also be "Gradient Boosted Decision Tables" using a 
novel method of storing the decision tables and a more 
efficient prediction algorithm [6]. 

III. CURRENT IMPLEMENTATION 
In the area of public transportation, the software used 

here offers extensive functions for the administration and 
support of buses and their maintenance. It has a modular 
structure and supports a large number of vehicle types and 
their technical infrastructure. Among other things, vehicles 
can be planned, timetables managed, defects recorded and 
spare parts ordered. The last two points belong to the process 
of maintenance, which is triggered in the event of a fault on 
the vehicle. As soon as a defect is created in the system, 
possible spare parts are displayed with the respective usage 
probabilities. However, this is only possible with 
correspondingly good data and with reference to the vehicle 
and the work to be performed.  

Due to the individual adaptability of the software, the 
various supported business areas as well as the high degrees 
of freedom in the administration of the data by the users, it 
may be difficult to obtain sufficient data. Furthermore, the 
number of processes, after which meaningful suggestions for 
spare parts can be generated, increases due to the variety of 
different vehicles of each company. However, if all 
prerequisites are met, it is possible to confirm everyday 
knowledge and gain new insights with the calculation of the 
probability of using specific parts. This already implemented 
probability is calculated from the ratio of the number of 
processes executed using a particular spare part to the total 
number of executions of that process. In this way, one 
obtains a simpler way of calculating the conditional 
probability of using a material, assuming that a particular 
process is applied to a defect. However, the probability also 
always depends on the particular vehicle, which – in simple 
terms – is defined by its brand and model. Thus, formula (1) 
can be used to calculate the probability of using a 
replacement part, where the individual components can be 
formalized as such that Iv represents the parts used and Ov the 
individual processes: 

 P(Iv | Ov) = P( Iv ∩ Ov) / P (Ov)  (1) 

This could lead to a result like the one shown in Table I. 
So, because of the probability in this particular case one 
would probably order item 1536 for the corresponding 
process and vehicle.  

TABLE I.  CALCULATION OF THE PROBABILITY OF THE USAGE OF ONE 
PARTICULAR ITEM FOR EACH PROCESS AND VEHICLE 

Item Process Vehicle P [%] 
1536 82-1203 EVO-O530-BJ08 47.15 
1531 82-1203 EVO-O530-BJ08 29.27 
1539 82-1203 EVO-O530-BJ08 13.01 
1537 82-1203 EVO-O530-BJ08 2.85 
1529 82-1203 EVO-O530-BJ08 1.22 

 

IV. DATA FOUNDATION 
The required data is stored in a relational database 

management system. On this basis, the attributes needed to 
calculate the explained probability are simply merged via 
joins in a view. However, there is the question of how much 
the results can be trusted and business decisions to be made 
on that basis. On the one hand, some users may sometimes 
make very far-reaching changes to the data; on the other 
hand, they must also be appropriately maintained, and the 
processes carefully recorded. Here, one can probably assume 
that given freedoms are often exploited, which may corrupt 
the data quality and thus the results. In addition, it turns out 
that the recalculation and update of the probability is not 
always enabled for all processes. It should also be noted that 
the probability of use is based on purely historical 
observations and that no model for future events is included 
or can be derived. 

Moreover, direct feedback on errors is just as impossible 
as basic testing of the quality of the process in the event of 
emerging defects. For the practical application of the 
method, with a few exceptions, it is still necessary to have a 
person with relevant specialist knowledge. So important 
decisions should not depend on this calculation – but it can 
help in assessing the situation at hand. To improve this 
situation, predictive analytics methods have been tested and 
their results analysed in further sections. 

A. Data Understanding 
In order to better understand the vehicle and deficiency 

data needed to predict spare parts and thus create different 
models, it is first necessary to understand the context of the 
data by generating it. Furthermore, the quality of the 
preliminary data has to be considered more closely so that 
the attributes used in the modelling can be selected. After 
that the data may be preprocessed for further usage. In this 
work, R [7] and R Studio [8] have been used with various 
packages, such as "caret" [9], "ROSE" [10] or "doParallel" 
[11] for all analysis and modelling work. 

B. Data Analysis 
For further analysis of the data, database backups are 

used of two companies who use the same software in 
different ways and to varying degrees. On closer inspection, 
the big difference between the existing data records has 
become clear. The first database (DB1) has more than 25 
times as many lines with 862,350 defect entries as the second 
database (DB2), which is also reflected in the number of 
different attributes. 
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TABLE II.  DISTRIBUTIONS AND CHARACTERISTICS OF SELECTED ATTRIBUTES 

Attribute Range Mean Median Skew Deviation 
ManufacturerTypeKey 325 100.07 59 1.01 76.06 
Manufacturer 44 29.33 34 -0.35 6.55 
Model 103 60.54 73 -0.88 18.98 
Process 1317 510.25 485 0.27 403.10 
Fault 368 161.83 178 0 107.75 
Material 1109 499.90 410 0.39 311.03 

 
Thus, the first company with 57 vehicle manufacturers 

and more than 140 models has almost 30 times as many 
different vehicles in use as the other one. However, this 
stark difference or this high number of different 
manufacturers seems to be exceedingly unrealistic, since 
there are not so many brands in the area of buses in the local 
market. This could either be a mixture of different 
categories, such as passenger cars or some data may not 
have been recorded correctly. It is also noticeable that the 
granularity of work processes and defects differ greatly. For 
example, with 584 to 369, DB1 has more than 1.5 times 
more defects and 2,567 to 1,234 more than twice as many 
processes than DB2. These observations can also be 
demonstrated in the usable spare parts. While a larger 
number of different vehicles can be expected to have an 
increasing number of different replacement parts, the 
differences in granularity present show how fundamentally 
different the two companies deal with defects and 
workflows. Fig. 1 illustrates these observations by the 
different occurrences of the key attributes 
"ManufacturerTypeKey", an artificial primary key, which is 
composed among other things of the two attributes 
"Manufacturer" and "Model" which are also shown. 
Furthermore, the attributes "Process", "Fault" and 
"Material", which corresponds to the spare parts, are 
displayed. Note that the illustration assumes a minimum 
occurrence of defects and attributes of 50 each. Even though 
the two most common deficiencies in DB1 have been 
removed, as explained in the preprocessing section, it 
promises significantly better results.  

Therefore, further investigations are being concentrated 
on this database. For example, the attributes "performance" 
and "weight" have a proportion of missing values (NAs) 

between 70% and 80%, which makes them completely 
useless due to the lack of possibilities for recalculation. For 
the other attributes, on the other hand, the number of NAs is 
so small that the respective rows could simply be removed. 
Thus, after the clean-up of the missing values, a number of 
861,026 supposedly usable rows are obtained. However, 
when looking at the three most common deficiencies, it turns 
out that this unfortunately is not the case. For example, one 
can see from the descriptions "additional work and 
maintenance" and "lack, please more specific" of the fault 
types "Z1111" and "Z9999" that in the first case simple 
maintenance work has been carried out. Thus, there was no 
defect of the vehicle. In the second case, the clerk simply did 
not know what was really broken. So, both manifestations 
should not be used in the given context, as this could distort 
the result in case of doubt. This means that with 485,489 
lines that make up these two most common deficiencies, 
nearly 60% of the total database is unusable for the process 
of learning which spare parts to use in which situation. 

For further analysis, the distributions and characteristics 
of individual attributes of the resulting data set can now be 
considered. This information is presented in Table II, noting 
that only those datasets have been used in which both the 
feature of the spare part and the defect have occurred at least 
50 times. Furthermore, the attributes have been numbered 
prior to the calculations. It can be seen that, for example, the 
months in which a deficiency occurred are distributed fairly 
evenly, whereas the affected vehicle models appear to be 
affected very differently. Therefore, if necessary, the data 
should be normalized in preprocessing.  

Calculating a correlation matrix and looking at it by 
using a heat map, the correlation of 0.27 shows that the 
manufacturer-type key seems to have some connection with 
the target class of parts, while the day or month when the 
deficiency was reported appears to be completely 
insignificant (0.01 to 0.02). Whether this is actually the case 
will be demonstrated by the various experiments in creating 
the models. What seems logical, however, are the obvious 
links between the manufacturer and the model (0.71) or the 
age and miles driven (0.28). 

C. Data Preprocessing 
In the following, the activities performed in the field of 

data preparation are explained. Here, not only separately 
performed steps are mentioned, but also those which have 
been run through during the model creation with the help of 
the respective packages. First, approximately 15 attributes 
like "weight" and "performance" that have been found to be 
unhelpful during each experiment have been removed 

Figure 1.  Number of different characteristics in key attributes with a 
minimum occurrence of the deficiencies and attributes of 50 each and the 

exclusion of the two most prevalent deficiencies in DB1 
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because, for example, they contain too many missing values  
[12]. Following this, the errors for non-specific problems 
"Z1111" and "Z9999" were removed due to their low 
information content.  

After this clean-up, some transformations of the data and 
generation of new attributes from existing columns were 
performed. This includes, for example, the generation of the 
age in years, which is derived from the first registration and 
the current date. The age of the vehicles can therefore be 
very important, as some parts become more susceptible to 
defects over time. This also means that certain repairs and 
thus also certain spare parts, for example, are needed after 5 
years, rather than after just one year.  

Furthermore, from the date of the defect notification, the 
corresponding month was extracted to obtain a seasonal 
component. From this, temporal correlations of potential 
failures of the heating can be obtained, which are more likely 
to occur in winter than in summer. In addition to this 
characteristic, the mileage since the last inspection has been 
roughly obtained from the kilometers travelled so far. This 
was only possible because the vehicles in the public transport 
industry are always maintained every 30,000 km. After 
calculating this information, the kilometer-based attributes 
are categorized according to the experiment. For example, 
the total mileage of the vehicles could be divided into 
5,000 km classes. 

In the next step, the attributes were converted to 
numerical factors and those columns were removed that had 
become unnecessary by generating additional information. 
Theoretically, a scaling or transformation at this point would 
be useful. However, a number of experiments have shown 
that performing these activities manually produces worse 
results than running them by the respective package just 
prior to the modelling. Now the data was prepared in such a 
way that further experiments could be carried out on the 
basis of it. Other possible steps at this point included both 
splitting the data into training and test data by a fixed 
percentage or performing a Principal Component Analysis 
(PCA). For example, the former would have specified that 
70% of the data would be used to learn a model, while 30% 
would be used for later evaluation [12]. The PCA tries to 
further reduce the number of currently 11 attributes at this 
time by calculating artificial properties to reduce complexity 
while maintaining the same quality [12]. Furthermore, PCA 
offers other benefits, such as decorrelating the attributes. 
Ultimately, however, all attempts at optimization were 
doomed to failure, as the various deficiencies and materials 
occur in very different frequencies, which can be seen, for 
example, in the respective skewness in Table 2. Thus, there 
was a bias in the direction of the most prevalent 
manifestations, which will be shown by the experiments 
presented in the next section.  

V. MODELLING 
At the beginning, we performed experiments with 

various algorithms and various combinations of attributes 
and split ratios of the training and test data. For the latter, 
70:30 and 80:20 were first investigated, while Naive Bayes 
[12] and Support Vector Machines (linear, radial, and 

polynomial) were mainly used with their default settings. It 
quickly became clear that a holistic prediction of the many 
different, very unevenly distributed target classes of the 
attribute "material" is not possible. For this reason, according 
to the number of different spare parts, we have to generate 
databases with all data records but binary target classes. Each 
database therefore stands for a single spare part and its use, 
which is why the target attribute "material" only indicates 
whether or not it is used – in other words, a "yes" or a "no". 
This created significantly better results. However, in some 
cases a few positive cases were faced with some 10,000 
negative cases, which meant that some materials could be 
predicted extremely well and others extremely badly. 
Therefore, we tried to approximate the uneven classes with 
the help of packages like ROSE and thus to improve the 
results, which finally succeeded. We were also able to 
largely confirm the results of the correlation matrix for the 
individual attributes with some experiments. However, there 
was also one or the other surprise. While the matrix did not 
see any correlation with the day the defect was reported, this 
property proved helpful in determining the required spare 
part. In order to give a small but concrete overview of the 
modellings carried out, three of them are described below. 
First, however, we explain how the individual parameters of 
the respective packages were determined. For the modelling 
itself, mainly the Caret package [8] with different algorithms 
was used. 

A. Parameter Settings 
To determine the best possible parameters, models were 

created for 10 to 20 previously randomly selected spare parts 
and the respective results compared. Through this reduction, 
the calculation time could be minimized. However, with a 
more powerful production system, integration into the actual 
modelling process would be desirable. Finally, the following 
steps for parameter determination were carried out – here 
exemplified at the k-fold cross validation: 

1. Definition of the possible values for the tuning 
parameters. 

2. Execution of the modelling process including 
resampling of the data and prediction of the 
respective spare parts using the test data. 

3. Creation of an evaluation matrix for all results 
meaning that the results of the respective 
predictions have been collected in a confusion 
matrix and the sensitivities have been read out. 

4. Determination of the final tuning parameters by 
ordering the sensitivities in descending order of 
magnitude and frequency. 

B. Naive Bayes vs. GBM and C5.0 
After the initial experiments, it turned out that the 

generated data sets with binary target classes using Naive 
Bayes provided the best results so far. In this series of 
experiments, tree-based models, such as Gradient Boosting 
Trees (GBM) [12] or C5.0 Trees were tested. GBM should 
hereby maximize the Receiver Operating Characteristic 
(ROC), while C5.0 used a cost function to try and improve 
the results by increasing the cost of incorrect predictions. 
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Furthermore, it should be noted that only parts that were 
used more than 1000 times were evaluated, resulting in 84 
models. Added to this is the restriction to defects that 
occurred more than 50 times. Finally, after some 
experiments a split ratio of 75:25 was calculated as the mean 
of the previous experiments. 

C. Gradient Boosting Trees 
With the aforementioned experiment, we found that 

Gradient Boosting Trees in our context enable the better 
models, which is why they were used as a priority thereafter. 
Added to this was the described determination of optimal 
parameters, which should further improve the results. Here 
are some of the parameters and options used in the Caret 
Package: 

• Scaling and centering of the data 
• Repeated k-fold cross validation with 5 folds 

and 2 repeats 
• Between 400 and 500 trees at a depth of 7 

However, at this time it was first noticed that the most 
prevalent shortage, which accounts for more than one-third 
of the data, is for maintenance and remanufacturing only 
and, therefore, does not represent a defect. For this reason, 
these samples did not contribute to the determination of the 
target class and were therefore not considered. The 
remaining shortcomings and materials have now been 
assumed to occur at least 100 times, ultimately using just 
over 200,000 samples and creating 788 models. 

D. Gradient Boosting Trees without the two most common 
defects 
In this experiment, only models were created using 

Gradient Boosting Trees. However, only those records were 
used that do not represent the two most common 
shortcomings "Z1111" and "Z9999". In addition, both the 
respective defects and the target class should total at least 50 
times in the data, leaving 231,363 lines remaining. Following 
this, binary training and test data with a ratio of 75:25 were 
generated for each of the 1110 spare parts. In the modelling 
itself, the following parameters were used: 

• Preprocessing: 
o Center and scale 
o Principal Component Analysis  

• Train Control: 
o Repeated cross validation with 6 folds 

and no repetition 
• Grid Settings: 

o 700 trees with a depth of 13 
o Shrinkage of 0.1 

It should be noted at this point that this experiment was 
performed once with and once without the information of the 
work process. This is because the usage probability used so 
far includes this, while in the future it will work without this 
information. The tests carried out thus permit estimates of 
the quality of the individual models in both cases. 

VI. EVALUATION 
After the experiments presented in the previous section 

and the training of different models for the classification of 
spare parts, the criteria for determining the model quality and 
the performance are explained below. Afterwards, the results 
are presented and conclusions drawn for future applications. 

A. Underlying Criteria  
In principle, the probability of using spare parts already 

implemented sets the standard for all new processes. 
Furthermore, it is especially important for companies to 
recognize the cases in which a spare part is really needed. 
This means that it is far less dramatic to get a material out of 
the warehouse for repair or to order and then not need it, as if 
the vehicle is already in the workshop and it is found that 
parts are missing. On the one hand, one can conclude that 
some of the known quality measures should be weighted 
more heavily than others, on the other hand, the relevant 
measures for the used probabilities must be calculated. The 
latter is relatively easy since it already covers or predicts the 
positive cases. This also coincides with the requirement to 
determine really needed parts. 

Thus, the evaluation strategy is quite simple: For the 
predictive algorithms, the known criteria listed below are 
used, with the ultimate focus being on sensitivity and the 
possible comparison with the probabilities. For these 
measurements, a 2x2 confusion matrix is first calculated, 
which makes it possible to compare the actual classes to test 
data predicted with the respective model. This simple matrix 
is usable because the data has been converted into binary sets 
as described. From this, mainly criteria like sensitivity, 
accuracy and others were calculated [13]. 

Although other measures such as False Positive Rate or 
Positive Predictive Value have been calculated, they will not 
be listed here due to the lack of relevance to the results.  

B. Results 
Despite the poor accuracy of 20 to 30% achieved in first 

experiments with Naive Bayes, this algorithm is used again 
and again as a comparison. Looking at the average values for 
sensitivity, specificity and accuracy (see Fig. 2), the three 
algorithms compared here seem to work similarly well. 
Furthermore, it can be seen that the optimization towards the 
spare parts actually needed has an effect and, therefore, the 

Figure 2. Average modelling results by criteria 
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Figure 3.  Results from ten randomly selected models created with GBM 

true positive rate (TPR) is higher than the other values. The 
Gradient Boosting Trees, with the two most common defects 
removed, are an exception. With more than 90% on all 
criteria they provide very good results. Comparing these with 
the average sensitivity of the currently implemented 
probability reveals its seemingly blatant weaknesses. This 
also confirms the assumption that the modeling techniques of 
predictive analytics should provide better results. However, 
this diagram does not disclose some important information. 
First and foremost, only the average of the respective quality 
measure is indicated across all models and thus across all 
spare parts. This means that outliers, i.e., binary models for 
the respective spare parts that deliver bad classifications, are 
not recognizable in Section V (D). Another important point 
is that the probability is not calculated in all cases, which 
makes a scientifically sound comparison almost impossible. 
This is because the function may have been disabled due to 
other deficiency evaluations or set calculation limits. 
Nonetheless, these benchmarks can be seen as indicative, 
suggesting that better ways could be found to provide 
automatic suggestions for replacement parts to be installed in 
the event of vehicle defects. 

VII. CONCLUSIONS 
First, it must be noted that despite the problems during 

the experiments, it is in principle possible to predict the 
required spare part with predictive analytics in case of a 
defect in a vehicle. Based on the underlying criteria, this also 
worked better than the currently implemented probability.  

However, in order to make an actual recommendation 
and to be able to compensate for variations in the quality of 
the forecast, a few points should be noted. First, care should 
be taken to improve the quality of the data. For this purpose, 
it would be useful to standardize the basic vehicle data across 
all companies using the software and at least to explain the 
information of the vehicle registration certificate to 
mandatory information. Furthermore, a uniform catalog of 
shortcomings should be drawn up in cooperation with the 
customer in order to avoid, for example, different 
granularities in case of defects. This would allow more 
attributes or even more databases from multiple customers to 
be used to create the models, which should allow them to be 
more accurate and less subject to fluctuations. Whether 
Gradient Boosting Trees still deliver the best results after 
that will have to be reevaluated. However, it may also be 
beneficial to use the probability calculation to validate the 

results of the models if the results are not too bad, which 
would be the case for accuracies of less than 60%. 

These improvements will be addressed in future activities 
in this area and an integrated service in the cloud for 
companies in public transportation will be created, which 
then stores information about the work processes in case of 
emerging defects and can create models on the common 
data. Then, it should also be able to answer inquiries about 
new processes and make suggestions or make predictions 
about spare parts. This work has thus paved the way for far-
reaching improvements to the repair of utility vehicles. 
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