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Abstract—Taxis are an essential component of the transportation
system in most urban centers. The ability to optimize the effi-
ciency of routing represents an opportunity to increase revenues
for taxi drivers. The vacant taxis cruising on the roads are not
only wasting fuel consumption, the time of a taxi driver, and
create unnecessary carbon emissions but also generate additional
traffic in the city. In this paper, we use Markov Decision Processes
to optimize the revenues of taxi drivers by better routing. We
present a case study with New York City Taxi data with several
experimental evaluations of our model. We achieve approximately
10% improvement in efficiency using data from the month of
January. The results also provide a better understanding of the
several different time shifts. These data may have important
implications in the field of self-driving vehicles.

Keywords–New York taxi service; revenue optimization; optimal
routing; Markov decision processes

I. INTRODUCTION

In New York City, there are over 485,000 passengers taking
taxis per day, equating to over 175 million trips per year [1].
Creating an efficient way to transport passengers through the
city is of utmost importance. Taxi drivers cannot control a
passenger’s destination but can make better decisions using
optimal routing. This consequently leads to reductions of costs
and of the carbon emissions.

Previous studies have focused on developing recommenda-
tion systems for taxi drivers [2]–[7]. Several studies use the
GPS system to create recommendations for both the drivers
and the passengers to increase the profit margin and cutting
the time for seeking [4], [6]–[8]. Ge et al. [9] and Ziebart et
al. [10] gather a variety of information to generate a behavior
model to improve driving predictions. Ge et al. [2] and Tseng
et al. [11] measure the energy consumption before finding the
next passenger. Castro et al. [8], Altshuler et al. [12], Chawla et
al. [13], Huang et al. [14] and Qian et al. [15] learn knowledge
from taxi data for other types of recommendation scenarios
such as fast routing, ride-sharing, or fair recommendations.

Most of the papers above focus on optimizing the measures
for the immediate next trip. Rong et al. [3] investigate how to
learn business strategies from the historical data to increase
revenues of the taxi drivers using Markov decision processes
(MDPs). Their research model uses historical data to estimate
the probability of finding a passenger and its location for

drop-off as the necessary parameters for the MDP model. For
each one-hour time slot, the model learns a different set of
parameters for the MDP from the data and finds the optimal
move for the vacant taxi to maximize the total revenues in that
time slot. At each state, the MDP model uses a combination
of location, time, the current and the previous actions. The
vacant taxi can travel to its neighboring locations and cruise
through the grid to seek for the next passenger. Using dynamic
programming to solve the MDP, the output of the model
recommends the best actions for the taxi driver to take at each
state.

Tseng et al. [11] examine the viability of electric taxis in
New York City by using MDPs. Due to the usage limitation of
electric taxis before each charge, they examine the profitability
of replacing taxi with internal combustion engines by electric
taxis. The research model uses OpenStreetMap (OSM) to
assign each pick-up and drop-off into the nearest junctions. The
advantage of using OSM is to be able to identify the number of
available taxis at the junction without extra calculations. The
research is concentrated on energy consumption; the actions
become infeasible if the electric vehicle runs out of battery.

Analysis of real taxi data shows that there are significant
differences in demand between certain periods of the day.
The aforementioned research has not taken the effect of this
demand variation into account. The contribution of our model
is that we extend the research by Rong et al. [3] in this
direction. We analyze the New York City Taxi data and study
the differences in optimal policies and revenues for the demand
between weekdays, weekends, day shifts, and night shifts.
From these observations, we can infer relevant policies for
taxi drivers based on the shift that they work in.

The paper is structured as follows. In Section II, we do
data analysis on the New York Taxi dataset. This provides
input for our MDP, which is explained in Section III. We
assess the performance of the MDP in Section IV, where we
conduct numerical experiments. Finally, the paper is concluded
in Section V.

II. DATASET AND METHODOLOGY

In our research, we use 14,776,615 taxi rides collected in
New York City over a period of one month (January 2013) [1].
From each ride record, we use the following fields: taxi
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Figure 1. Rotated Manhattan with the total revenue for NYC Taxi by
pick-up location in Jan 2013.

Figure 2. Rotated Manhattan with the total revenue for NYC Taxi by drop-off
location in Jan 2013.

ID, pick-up time, pick-up longitude, pick-up latitude, drop-
off time, drop-off longitude, drop-off latitude, the number of
passengers per ride, average velocity, trip distance, traveling
time, and fare amount. We omit the records containing missing
or erroneous GPS coordinates. Records that represent rides that
started or ended outside Manhattan, as well as trip durations
longer than 1 hour and trip distances greater than 50 kilometers
are omitted as well. Furthermore, we collect the drivers who
drive for six to nine hours consistently to yield a clean dataset
containing approximately 13.5 millions taxi rides. We observe
that most of the pick-up locations are in the Manhattan area.

We concentrate on the island of Manhattan area in NY.
This area imposes a rectangular grid of avenues and streets.
However, the citys avenues are not parallel to the true north
and south. For that reason, we tilted the map by 28.899 degrees
according to Petzold et al. [16]. This creates blocks with the
same grid system in most areas. We discretize the grid into
a 50 × 50 grid, making each block in the grid approximately
300 meters × 300 meters. The choice for a block size of 300
meters is based on the assumption that a taxi can traverse this
distance within 1 minute. Figure 1 shows the total revenue
for the taxis by the pick-up location with the rotated map.
Figure 2 indicates the total revenues of the drop-off location,
and it shows that Lower Manhattan, along with the airport are
the largest revenue generators and the drop-off location has
spread to the mid-Manhattan area and also Brooklyn area.

The state of a taxi can be described by two parameters: the
current location L = {(1, 1), . . . , (50, 50)} grid and the current
time, T = {1, . . . , 60}. We will denote the system state in our
MDP model as s = (x, y, t), which we will elaborate on in
Section III.

A. Performance indicators

In this section, we present performance indicators of the
taxi drivers. This will be used in the MDP to optimize the
routing decision of each taxi driver. Hence, the performance
indicators will be dependent on the routing policy that is being
applied by the taxi drivers. To improve readability, we drop the
dependency on the policy in the notation and use it only in
cases where it benefits clarity.

We calculate the total business time of each taxi driver per
shift. The total business time (denoted as Tbus) is equal to the
sum of the total occupancy time (Toccupy) and the total seeking
time (Tseek):

Tbus = Toccupy + Tseek. (1)

The total occupancy time, Toccupy is the sum of all the trip
durations with passengers of a taxi per day. And the total
seeking time (Tseek) is the time between each trip. Figure 3
depicts the overall Tseek and the graphs in which we distinguish
between the weekday, weekend, day shift, and the night shift.
Based on the data, we consider 90% of the seeking time is less
than 20 minutes for the day shift and less than 25 minutes for
the night shift. Therefore, we discount any seeking time that
is over 30 minutes as we assume those are the breaks for the
drivers.

Logically, the Tbus is approximately the same for each taxi
driver. To increase the revenue, the taxi drivers aim to have
the maximal Toccupy and the minimal of Tseek. We define the
revenue efficiency (Erev) metric as the revenue earned divided
by the total taxi drivers business time. This is expressed as
follows:

Erev =
M

Tbus
=

M

Toccupy + Tseek
, (2)
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Table I. REVENUE EFFICIENCY EREV .

Weekday Weekday Weekend Weekend Overall
dayshift nightshift dayshift nightshift

Top 10% 0.59203 0.62408 0.60111 0.64646 0.60869
Mean 0.49985 0.52232 0.50252 0.54871 0.50565

Standard Deviation 0.07253 0.08011 0.07787 0.07799 0.08088
Bottom 10% 0.41028 0.42174 0.40426 0.44978 0.40572

Figure 3. Seeking time for the models.

where M denotes the total money earned by the taxi driver
during that period.

To illustrate the consistency of the taxi driver, we concen-
trate on the drivers who work between six hours to nine hours
during the month of January. From that data, we generate the
data of Pfind, Pdest, Tdrive, r (parameters of our MDP to be
described in the next section) of each model and identify the
top 10% and bottom 10% drivers in each model.

Table I indicates the revenue efficiency of the top 10% and
bottom 10% distinguished by weekday, weekend, day shift,
night shift, and the overall efficiency. Based on the table, there
is approximately 20% difference between the performance of
the top 10% and bottom 10% drivers. The previous studies
that were mentioned above (see, e.g., [4], [8], [11], [13], [14])
attribute the difference between the performance by the top
and bottom 10% drivers to the seeking time of the taxi drivers.
This warrants research to determine if our model can provide
a better solution for the taxi drivers for seeking passengers.

III. MARKOV DECISION PROCESS

In order to model the taxi service in New York City, we
adopt the framework of MDPs. This framework allows us to
deal with the uncertain demand over the different periods in
the grid, and to model them explicitly. The MDP is a stochastic
decision process with a set of states (S) and a set of possible
actions (A) that transition the states from one to another.
Each action will correspond to the process of the current state

to the new state with a probability transition function and a
reward function. The collection of optimal actions for each
state is called the policy, which maximizes the total reward
over several numbers of steps. The objective of our model is
to minimize the seeking time for the taxi to maximize the
expected revenues.

A. System States

The state for a taxi is described by its current locations and
the current time. The details are explained as follows.

Location(x, y) ∈ L = {1, . . . , 50× 1, . . . , 50}: the area is
divided into grid 50× 50 grid cells;

Time t ∈ T = {1, . . . , 60}: we use minutes as the
interval of a time slot, and a total of 1 hour as
time horizon.

Each pick-up and drop-off location is assigned to a grid
cell. We remove the records that contain 1) incomplete data
information, 2) trip distance over 100 kilometers, 3) trip
durations over 60 minutes, 4) pick-up and drop-off locations
with the same coordinates, 5) pick-up and drop-off locations
outside the grid, and 6) shifts that are shorter than six hours
and longer than nine hours.

We denote the system state of our MDP model as s =
(x, y, t), and the collection of all admissible states is denoted
by S.

B. Actions

The admissible actions from a given state s have nine
possibilities to choose from. We use numbers 1, . . . , 9 to index
the directions. We express them formally as:

A =
7 8 9
4 5 6
1 2 3

,

where, e.g., action 9 moves the taxi to the neighboring north-
east location.

C. Parameters of the MDP model

In this subsection, we state the parameters used in the rest
of MDP model.

The probability parameters are defined as:

• Pfind (x, y) describes the probability of successfully
picking up a passenger in grid cell (x, y). We can
calculate the probability of picking up a passenger in
the cell by dividing the number of successful pick-
ups in the cell (nfind(x, y)) by the total number of
times this cell is visited by a vacant taxi. The vacant
taxi includes the taxis that drop off passengers in
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grid cell (x, y) (ndrop-off(x, y)) and also the taxis that
are seeking for passengers (nOSRM(x, y)). To locate
the vacant taxi every minute during the seeking trip,
we use the API provided by Open Source Routing
Machine [17], to estimate the coordinates. We use
one hour time slots between 12:00 to 13:00 for the
day shift model and 0:00 to 1:00 for the night shift
model. In our overall model, we took the average of
the day time and night time models to estimate the
number of vacant taxis at each grid during the month
of January in 2013. Thus,

Pfind =
nfind(x, y)

nfind(x, y) + ndrop-off(x, y) + nOSRM(x, y)
.

• Pdest(x, y, x
′, y′) describes the probability of a pas-

senger travelling from grid cell (x, y) to the grid cell
(x′, y′). To estimate the destination probability for a
time slot, we calculate the number of trips between
each pair of source and destination locations in that
time slot and get a 50×50 matrix. The value is divided
by the sum of the entire number of trips of the grid
cells. Therefore, Pdest has the empirical probability
distribution of a passenger choosing destination loca-
tion (x′, y′) when he is picked up at location (x, y).

The time parameters are defined as:

• Tseek(a): The required time to travel from one location
to a neighboring location based on action a ∈ A.
We assume that the average speed of seeking trips
is approximately 300 meters per minute. Thus, a taxi
can traverse on cell when a = 2, 4, 5, 6, 8, and hence
Tseek(a) = 1 in this case. In case a = 1, 3, 7, 9,
then we set Tseek(a) equal to 2, due to the diagonal
movement.

• Tdrive (x, y, x
′, y′): The driving time from (x, y) to

(x′, y′). We can calculate the total driving time from
grid cell (x, y) to grid cell (x′, y′) and then divide
by the number of trips from grid cell (x, y) to grid
cell (x′, y′). We calculate Tdrive individually for all
models. From the calculation, there is approximately
+15.67% driving time difference between the day shift
model and the night shift model, and there is a +4.14%
difference between the weekend and the weekday.

• We assume there is no waiting time for passengers to
get in and out of the vehicle.

The reward is defined as:

• r(x, y, x′, y′): The expected reward from grid cell
(x, y) to grid cell (x′, y′). Similar to Tdrive, we cal-
culate the average fare of the number of trips between
each pair of source and destinations as the expected
fare. Note that due to this definition, we reward
does not depend on the action of the taxi driver.
We calculate r separately for all models. Similarly to
Tdrive, there is approximately +6.21% reward differ-
ence between the day shift model and the night shift
model, and there is a +1.21% difference between the
weekend and the weekday.

D. State transition function

The state transition function is a function that describes
the probability that one moves from state (x, y, t) after taking
decision a moves to state (x′, y′, t′). Assuming the current state
is S = (x, y, t) and action a is taken, there are two possible
outcomes of the transition:

1) The taxi successfully finds a passenger in grid (x, y)
within Tseek(a) minutes. The taxi with the passenger goes
to destination (x′, y′) with probability Pdest(x, y, x

′, y′).
The taxi arrives at location (x′, y′) with Tdrive(x, y, x

′, y′)
as the total time used to travel from (x, y) to (x′, y′).
The taxi driver receives r(x, y, x′, y′) as the expected
reward. Then the taxi will start seeking for a passenger
from grid cell (x′, y′). In this case, the new state becomes
s′ = (x′, y′, t+ Tseek(a) + Tdrive(x, y, x

′y′)).
2) The taxi does not find a passenger after Tseek(a) minutes

being in grid (x, y) with the probability (1−Pfind(x, y)).
The taxi driver does not receive a reward and saves the
driving time Tdrive. The taxi driver starts to make the next
action at grid cell (x′, y′). Hence, the state of the taxi
driver becomes s′ = (x′, y′, t+ Tseek(a)).

E. The objective function

The objective function of the MDP model is to maximize
the total expected rewards starting from an initial state. The
terminal states are the states with t = 60. No more actions
can be taken once the system reaches the terminal states. The
maximal expected reward for an action a in state s = (x, y, t)
is expressed as V (s, a) shown in (3).

V (s, a) = (1− Pfind(x, y)) ×

max
a′∈A

V (x, y, t+ Tseek(a), a
′) +∑

(x′,y′)∈L

Pfind(x, y)× Pdest(x, y, x
′, y′)×

[
r(x, y, x′, y′)+

max
a′∈A

V (x′, y′, t+ Tseek(a) + Tdrive(x, y, x
′, y′), a′)

]
.

(3)

The optimal policy π∗ is defined as:

π∗(s) = argmax {V (s, a)} , (4)

and the optimal value function is given by

V ∗(s) = V (s, π∗(s)). (5)

F. Markov Decision Process Solution

In order to solve the Markov decision problem to derive the
optimal policy, we employ dynamic programming to maximize
the expected rewards. The algorithm starts from time t = 60
and then traces backward to time t = 1. The algorithm is listed
in Algoritm 1.
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Table II. REVENUE EFFICIENCY EREV .

Weekday Weekday Weekend Weekend Overall
dayshift nightshift dayshift nightshift

Top 10% 0.59203 0.62408 0.60111 0.64646 0.60869
Pfind(x, y) 0.52267 0.50915 0.51463 0.45475 0.50030

Bottom 10% 0.41028 0.42174 0.40426 0.44978 0.40572

Algorithm 1 Solving MDP using Dynamic Programming
Input: L,A, T, Pfind, Pdest, r, Tdrive, Tseek
Output: The best policy π∗

1: V is a | L | × | T | matrix; V ← 0
2: for t =| T | to 1 do
3: for all (x, y) ∈ L do .s = (x, y, t)
4: amax ← a that maximizes V (s, a)
5: π∗(s)← amax

6: V ∗(s)← V (s, amax)
7: return π∗

IV. CASE STUDY

In this section, we present our case study on the New
York Taxi dataset. We evaluate the MDP for the expected
reward based on the dataset from January 2013. We assume
that the NYC taxis have two shifts per day and each shift is
a 12-hour period. We analyze the taxi’s expected reward in
1) the day-time shift within six to nine hours of its operating
time, 5 am to 5 pm and 2) the night-time shift, 5 pm to 5
am and 3) the weekdays from Monday to Friday, and 4) the
weekend from Friday to Sunday. After filtering the data, we
have approximately 170,000, 205,000, 145,000, and 193,000
shifts, respectively, for the Weekday day-time shift, Weekday
night-time shift, Weekend day-time shift, and Weekend night-
time shift. Although the weekend has a fewer number of days
in January, the total number of shifts of the weekend night
time is almost the same as for the weekday night time.

The results of the case study (see also Table II) shows that
in our model

• Pfind(x, y) is 0.52267 which is 27.58% better than the
bottom 10%, and it is 11.65% less effective than the
top 10% for the Weekday day-time model.

• For the weekday night-time model, Pfind(x, y) is
0.50915 which is 27.52% better than the bottom 10%.
It is 16.74% less effective than the top 10%.

• For the weekend day-time model, Pfind(x, y) is
0.51463 which is 20.16% better than the bottom 10%.
It is 18.57% less effective than top 10%.

• For the weekend nighttime model, Pfind(x, y) is
0.45475 which is almost the same as the bottom 10%
and it is 29.14% less effective than the top 10%.

• The overall model, Pfind(x, y) is 0.50030 which is
23.41% better than the bottom 10% and it is 17.79%
less effective than top 10%.

The results of the case study show that our model is
capable of reducing the time to find a passenger for a taxi
driver significantly. Consequently, the end result is that the

Figure 4. Recommended movements by the MDP model.

earnings of the taxi drivers increases. This benefit is expressed
as approximately a 10% improvement in efficiency.

V. CONCLUSION AND FUTURE DISCUSSION

In this paper, we use MDP to model the taxi service
strategy and determine the optimal policy for taxi drivers with
a daytime and nighttime model during the weekdays and the
weekend. This paper proposed to model the passenger-seeking
process to receive the best move for a taxi that is seeking
for the next passenger. Figure 4 shows the recommended
movement by the MDP Model.

From the results of the case study, we observe that the
weekend night time draws an interesting discussion. It has a
similar number of shifts as compared to the weekday night time
model, but the revenue efficiency did not improve compared
to the bottom 10% drivers. A possible explanation might be
that the experienced drivers would use their experience to look
for the best location to seek customers. Consequently, the data
may not have provided enough evidence to improve the bottom
10% drivers.

In our data analysis, we found cases where there are pick-
up and drop-off locations in the Hudson River. We can assume
that this is an error in the GPS system. Similar to this issue,
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Pdest was estimated from a small number of trips from one
location to another. This could sometimes result in a high
probability, for instance, 1 of 3, would have created a 33%
of probability going from one location to another. Further
research is needed to develop methods to get a more accurate
estimate.
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