
An Architecture for Semantically Enriched Data Stream Mining

Andreas Textor, Fabian Meyer, Marcus Thoss,
Jan Schaefer, Reinhold Kroeger

Distributed Systems Lab
RheinMain University of Applied Sciences

Unter den Eichen 5, D-65195 Wiesbaden, Germany
{firstname.lastname}@hs-rm.de

Michael Frey
Humboldt-Universität zu Berlin

Department of Computer Science
Rudower Chaussee 25, D-12489 Berlin, Germany
{lastname}@informatik.hu-berlin.de

Abstract—Data stream mining (DSM) techniques can be used
to extract knowledge from continuous data streams. In this
paper, we present an approach providing a modelling and
execution architecture for networks of DSM operators. It can
be applied in resource-constrained environments, and provides
capabilities for semantic enrichment of data streams. This
allows processing of streams not only based on information
contained in the streams, but also on their semantic contexts.
The approach consists of a DSM runtime system, a concept
for semantic tagging of stream elements, the integration of se-
mantic information stores, and a domain-specific DSM network
description language. A small ambient assisted living scenario
is presented as an example application.

Keywords-data stream mining, complex event processing,
ontologies, semantic tagging, stream query language, IT man-
agement, ambient assisted living.

I. MOTIVATION

The number of applications where data must be processed
in real-time is constantly increasing. Classic data mining
approaches are applicable to cases where all data sets are
statically accessible in a persistent database, and make use
of mathematical and statistical methods to recognize trends,
correlations between values, or clustering. If data must be
evaluated on the fly, because the amount of data is too
high to be stored completely, or because it is inherently
continuous, so-called data stream mining (DSM) techniques
need to be employed. The goal of data stream mining is the
extraction of knowledge from continuous streams of data,
e.g., packet streams, monitoring data from sensor networks,
streams of log records in applications etc. Usually, knowl-
edge discovery and machine learning approaches are used
to achieve this. While data mining usually operates directly
on the complete, stored data, DSM tends to make use of
supporting application models and data models because of
the transient nature of the data to be processed.

In a related field, Complex Event Processing (CEP),
streams of distinct simple events are analyzed and events are
correlated in order to extract more abstract (complex) events,
which may then be inserted into a stream. Any logical or
physical change in the observed system is counted as an
event, and the events must be processed in a limited time
frame, without access to the entirety of data. CEP systems

often work using pattern recognition, and abstraction and
modeling of events and relationships between events. The
processing technology underlying a DSM architecture will
often have CEP characteristics as well.

Different approaches for implementations of both DSM
and CEP exist, including runtime systems for the extrac-
tion and correlation of data and specialized stream query
languages. However, few approaches are suitable for the
application in resource constrained environments, e.g., home
routers with little memory (which becomes relevant in the
context of ambient assisted living (AAL) environments). In
such environments, a DSM system additionally needs to
be highly reconfigurable, as the environment can change
quickly and the deployment of new software versions can
be non-trivial. On the other hand, AAL installations often
provide only a small number of sensors and low frequencies
of sensor events. The image that can thus be created from
reality tends to be fragmentary, so another motivation for
supplementing sensor stream data with additional knowledge
is to improve the accuracy of the interpretation of scarce
sensor values.

Furthermore, a problem that arises with the application of
DSM systems that are integrated into existing application en-
vironments is the preservation of semantics of the processed
data. Processing needs to be possible depending on semantic
information, e.g.: which type of sensor is it, in which room
is the sensor located, which are adjacent rooms, used by
whom, when, and so on. Equivalent semantic information is
necessary in other domains as well.

In this paper, we present an approach for a DSM architec-
ture that satisfies some basic requirements - being able to run
in a resource restricted environment, providing facilities for
semantic enrichment and processing of data streams that can
be expressed in a high-level abstract notation, and dynamic
reconfiguration capabilities. The architecture consists of a
modular runtime system, which can be adapted to different
environments using pluggable input and output connectors,
a semantic information store component and a description
language for DSM networks.

It is not the goal of the DSM network to replace existing
systems, such as the free CEP system Esper [1]. Although

107Copyright (c) IARIA, 2012. ISBN: 978-1-61208-242-4

DATA ANALYTICS 2012 : The First International Conference on Data Analytics

the DSM network can be used stand-alone, it is also possible
to combine it with Esper, e.g., for pre-filtering streams.
For certain applications (such as processing events in IT
management systems), the rate of data in a stream may be
much higher than in others (such as processing sensor data
in AAL systems), which can make this a viable option.

The paper is structured as follows: Section II describes
existing approaches for DSM and CEP systems with regards
to the aforementioned requirements, and Section III gives
an overview of the proposed architecture, including the
structure (III-A), dynamic scripting capabilities (III-B), the
semantic information store (III-C), DSM network operators
(III-D) and the DSM network description language (III-E).
In Section IV, details about the prototypical implementation
are given and in Section V an exemplary use case is
described. The paper closes with a summary in Section VI.

II. RELATED WORK

An early, popular and widely cited DSM framework
was created by the Aurora [2] project. It was designed
as a single-site solution focusing on centralised high per-
formance stream processing. Subsequent projects extended
the Aurora architecture for distributed processing, notably
Medusa [3], also providing a hardware platform for the
distributed nodes, and Borealis [4], which resulted from a
joint effort of the Aurora and Medusa teams, aiming at a bet-
ter integration of modelling and distribution aspects. These
architectures employ query languages that are syntactically
and idiomatically derived from SQL and the underlying
database query paradigm, like CQL [5], the query language
of STREAM [6], another early single-site stream processing
engine. In PIPES [7], a processing network similar to our ap-
proach is used, which is expressed formally using a generic
operator algebra. From an application perspective, PIPES
also maps CQL-related query expressions onto operator
networks, focusing on query optimisation.

Since the major academic DSM projects closed down
years ago after funding had ceased or key members left
the projects, research results have been picked up by larger
commercial data mining systems from companies like IBM,
Oracle and Tibco. Research architectures were commer-
cialised, notably Aurora, which evolved into the StreamBase
CEP product [8] and PIPES, which was branded RTM
Analyzer [9] and is now part of the Software AG portfolio.
The remaining most prominent open and freely available
stream processing framework, Esper [1], is a commercial
product as well. StreamBase CEP, RTM Analyzer and Es-
per queries adhere to the SQL paradigm. Regarding the
categories established in [10], they would be classified as
using “Data Stream Query Languages”, whereas the internal
PIPES representation and our approach use “Composition-
Operator-Based Event Query Languages”.

A more generalised view on event processing and applica-
tions relating to data stream mining problems has been stated

by a group of IBM researchers in [11]. Especially Processing
can be linked to repositories possibly providing contextual
knowledge, and events can be “enriched” with additional
information, a mechanism we refer to as “tagging”. Still, the
main goal presented is to detect the occurrence of complex
events for immediate reaction, while we strive to interrelate
event stream information with long-term semantic model
information.

In [12], semantic enrichment of events and subsequent
complex event processing using semantic rules and on-
tologies is described. An architectural vision is given that
resembles our concept of mapping events to elements of an
ontology through semantic tagging and rule processing. The
resulting complex events are not fed back to the ontology,
though, but meant to be delivered to the user.

Concerning application orientation related to our work,
the DigiHome [13] platform must be mentioned as a CEP-
based control architecture targeting AAL environments. It
does not rely on an explicit semantic model, but it integrates
a large number of real-world devices and abstractions from
smart living environments, managing home automation tasks
through event stream processing within a service-oriented
architecture. The DogOnt [14] modeling language for Intel-
ligent Domotic Environments provides an ontology which
allows to formalize all the aspects of the environment and a
rule language which can automatically generate proper states
and functionalities for domotic devices.

III. ARCHITECTURE

The architecture presented here adds modelling and script-
ing facilities to a set of core components and operators, all
of which are discussed briefly in the following sections.

A. Data Stream Mining Network

At the heart of our architecture, shown in Figure 1,
data stream processing takes place by feeding data into a
processing network, which analyses and manipulates stream
contents and provides analysis results in the form of output
streams or appropriate signalling of results to a monitoring,
reporting or result storage environment. The basic building
blocks of a DSM network, and thus also the main elements
of the framework presented here, are operators manipulating
data streams and queues transporting data between the
operators.

Our queues are instances of unidirectional FIFO transport
lanes for data stream elements (“packets”) with basically
unlimited storage capacity and one dedicated end for input
and output of packets, respectively. Operators realise a given
data stream processing functionality (“operator type”) that
also defines the number of dedicated input and output con-
nection points for queues. Access to the queues is operator-
initiated, that is, operators actively push output data into
queues and pull input data from queues linked to them. A

108Copyright (c) IARIA, 2012. ISBN: 978-1-61208-242-4

DATA ANALYTICS 2012 : The First International Conference on Data Analytics

Figure 1. Core DSM Architecture

queue endpoint may be connected to one operator connection
point at most.

This boilerplate definition of an abstract operator is es-
sential for the specification of processing networks, since,
differently from query-based specification languages like
CQL, the operator/queue structure of the network remains
exposed up to the specification level. Especially the consis-
tent view of data as streams by all operator types is different
from the query approach, which requires the embedding
of conversion operators from streams to relational views
and back in order to apply SQL-like queries. The format
of messages sent through the queues is a compact binary
encoded representation of tuples of free-form name-value
pairs whose structure and semantics, except for a timestamp
value, are defined at application level.

For the creation of a DSM network, operators and queues
are instantiated separately one at a time, and then linked as
needed such that the resulting data flows and the processing
through the operators realise the overall DSM application.
Creation and linkage of the network elements is achieved
through utilising factory and control functions of a central
control entity, the “framework manager”.

Operators are active components, i.e., there is at least
one thread of control per operator. Currently, there is
no additional control over scheduling parameters to adapt
resources to asymmetric distributions of processing load
among operators, only the default OS scheduling model is
used with native threads. For load shedding, there is no
central component like in the Borealis architecture, instead,
load shedding operators are used that must be explicitly
inserted into mining network paths, similar to the concept
introduced by CQL.

B. Dynamic Scripting

For some DSM applications, static configurations of op-
erator networks are sufficient. For many problems though,
changes in the queries to be conducted can be expected,
i.e., in fault diagnosis scenarios, or changing numbers and
content of input data streams, all of which leads to change
requests targeting DSM network or operator configuration.

Dynamic reconfiguration of both operators and network
layout are provided by a scripting interface. It is realised
as a thin layer that wraps the framework manager, operator
and queue interfaces.

For the scripting language, Lua [15] was chosen, because
it is considered a mature, sufficiently popular language
with a compact native implementation on all mainstream
platforms. Lua is object-oriented, which maps well onto the
object-oriented design of the DSM framework implementa-
tion. Thus, most operations available at the C++ level can
be used in the Lua scripting environment.

Technically, the functionality of the internal mining frame-
work manager is thus externalized to an interactive console,
which uses a Lua interpreter to execute scripting commands.
The manipulation of network elements is expressed as a
Lua statement calling methods of Lua objects immediately
delegating the method call to corresponding C++ method
implementations. Besides being able to alter the network
dynamically and interactively using the console interpreter,
the same approach can be used to execute prepared Lua
script fragments. Through a script, a complete network
configuration can be set up, with the added benefit of having
a powerful scripting language to further express external de-
pendencies, network variants or to enhance the compactness,
expressiveness, and readability of the configuring actions by
using loops and other control structures of the Lua language.

C. Semantic Information Store

The data streams in the mining framework contain infor-
mation that can vary, depending on the originating source
of the data (i.e., different textual or binary representations).
Therefore, processing of the streams depending on their
semantic context is only possible if this context is provided
from the outside. For this task, the semantic information
store provides access to semantic information in the form of
OWL (Web Ontology Language) ontologies. The store is a
separate component that is intended to run on a node with
more computational resources, as the ontologies may need
more memory than what is available on the data source or
data stream processing nodes.

The ontologies in the store consist of two parts: A domain
ontology, and, where necessary, automatically updated data
values extracted by the DSM network. Domain ontologies
explicitly model those aspects of the application subject to
the DSM process which are not contained in the processed
data streams. This allows the semantic enrichment of streams
with either actual context information or with references
to context information. For cases in which subsequent pro-
cessing steps depend on context information, corresponding
values can be retrieved from the information store and
inserted into the data stream. When the original source of a
datum is expected to be removed in further processing steps,
then a reference to an ontology entity that describes the data
source or the original data type of the date, can suffice.

109Copyright (c) IARIA, 2012. ISBN: 978-1-61208-242-4

DATA ANALYTICS 2012 : The First International Conference on Data Analytics

Likewise, current values can be set as state information in
the semantic data store in order to preserve them for logging,
aggregation or tracking purposes before they are processed
in the DSM network and do not remain in the data stream.

D. Mining Network Operators
The approach of interconnected operators is the central

concept of the mining framework architecture. Hence, the
user needs to be offered a set of operators which can be
configured as an interacting network. Most of the operators
presented here are already implemented and integrated into
the mining framework. There are four classes in which
operators can be divided: Analysis, Structural, Knowledge
and System operators.

Analysis operators offer functionality for arithmetic and
statistical evaluation of numerical values of bypassing data
stream elements. They produce new data streams or enrich
existing data streams by new elements that contain the result
of the analysis process. The operators can either be config-
ured to analyse elements in sliding time windows or sliding
element windows. Supported operators include arithmetics
and standard deviation, element counter and average for
statistics. Further operators like minimum, maximum etc.
could be added easily.

Structural operators do not change the state of data stream
elements but affect their routing in the network. Mostly, they
observe the attributes of bypassing elements and perform a
configured routing action. They can decide to either forward
or drop elements based on configured filtering conditions
(filter), or to split incoming data stream elements to
the operator’s set of output streams using configurable
classification characteristics (split). Corresponding to the
split operator, there is an operator which handles a set of
input streams and merges incoming elements to a single
output stream (join) and the extension of a single stream
with additional elements (ejoin).

Figure 2. Overall DSM Architecture

Knowledge operators work on semantically enriched data
streams. In particular, operations used in different knowl-
edge operations are applied to a stream. This includes the

application of OCL (ocl) and SWRL rules (swrl) to a
semantically enriched data stream, like shown in Figure 2.

In order to add semantic tags to a stream in the first place,
the tag operator (tag) utilises the semantic information
store described in Section III-C as an external knowledge
base. A SPARQL query is configured for the operator which
is executed on the knowledge base for every bypassing
element. The query may contain wildcards which are bound
to the elements attribute state and returns a result set of key-
value-pairs which are added to the element, the so-called
“semantic tags”. These tags contain information which is
normally not present in the data stream but can only be
retrieved from the knowledge base. Semantically enriched
streams are streams where elements are mapped one-to-one
to elements of a knowledge representation. Correspondingly,
the untag operator (untag) removes semantic enrichments
from streams again.

An example for a more complex operator is the decision
tree operator (dtree). As opposed to the tag operator,
it does not have an external knowledge base which al-
ready contains information, but builds a classifier using the
knowledge contained in the bypassing stream elements. The
algorithm used for the implementation is the VFDT (Very
Fast Decision Tree learner) described in [16].

System operators offer functionality for loading streams
into the DSM system (in), output of streams into files
(out) and on screen (print) and logging (log). The
different possible sources of streams are specified using
internationalized resource identifiers (IRI).

E. Mining Network Description Language

The mining network description language (mDSL) is a
metamodel-based domain specific language (DSL) for the
definition of queries for the DSM system. With it, a domain
expert specifies how a stream is structured and what type of
sources and sinks for streams exist, what type of operators
are executed on a stream, and how they are interconnected.
In particular, mappings of model elements of knowledge
representations to elements of a stream as well as operations
on semantically enriched streams are defined. At the mDSL
specification level, streams and operations on a stream are
always typed.

Unlike in the DSM network realisation, elements of a
stream in mDSL have a unique name and a data type.
Streams have unique names as well and consist of one or
more elements which are specified within a data structure.
At present, integer, floating point numbers, booleans and
character strings are supported. In addition, variables can
be specified which consist of a unique name, data type
and value; they are used within operators. Operators of the
mDSL, covering all operator types introduced in the previous
section, can be interpreted as functions on streams. Code
written in the mDSL can be modularized into packages
and re-used through a generic resource import mechanism

110Copyright (c) IARIA, 2012. ISBN: 978-1-61208-242-4

DATA ANALYTICS 2012 : The First International Conference on Data Analytics

that can also be used for loading files provided by different
knowledge representations.

mDSL is based on a metamodelling approach. Concepts
of the mDSL refer to UML classes and relationships among
them. As a concrete syntax of the mDSL, a textual represen-
tation was chosen. Semantics are defined using annotations
in the mDSL metamodel and in the model-to-text (M2T)
transformation.

When application and system design are defined through
metamodels, model transformations can be established that
generate executable applications from formal software mod-
els, thus supporting a model-driven software development
(MDSD) process. Specifically, M2T transformations create
a textual representation of the input model. Figure 2 depicts
the transformation process applied to mDSL -based models.
Descriptions of the mining network written in the mDSL are
transformed to Lua using an M2T transformation.

Using a metamodel-based approach also facilitated the
integration of knowledge representations. Here, the ontology
definition metamodel (ODM) [17], a metamodel-based rep-
resentation of OWL specified by the OMG was used. Using
ODM, our concept aims at linking model-driven software
development with the use of ontologies. Shared and disjoint
concepts among OWL and UML are identified and the
knowledge representations are integrated by references in
classes and relationships among classes in the mDSL meta-
model. Thus, an mDSL-based operator class for mapping
elements of an OWL ontology to elements of a stream
can reference an OWL class represented as an UML class
in the ODM metamodel. This metamodelling approach is
very flexible since it allows to add further metamodel-based
knowledge representations to the language. A limiting factor
are the methods and concepts of a knowledge representation,
since they are shared among all knowledge representations
covered by the language.

IV. IMPLEMENTATION

For the architecture presented, a prototypical implementa-
tion has been created, and some of its aspects are highlighted
in the following sections.

A. Data Stream Mining Network
The framework with all of its core components and oper-

ators is natively implemented using C++ and the Boost [18]
libraries. For operators, a base class provides both the basic
implementation of thread handling and queue connectors as
a basis for new, concrete operator implementations. Every
operator is implemented within a shared library of its own,
such that it can be dynamically loaded and the operator
instances can be created at run-time.

The operator thread implementation basically relies on
operating system threads, which are encapsulated by the
thread abstraction of Boost libraries. Of course, the con-
currency introduced by active operators incurs race con-
ditions during queue access. Valid access semantics are

guaranteed by a combination of measures: First, at any given
point in time, a message is owned by exactly one queue
or operator, which avoids concurrency issues for access
to message contents. A lock-free queue implementation is
used in combination with memory barriers to ensure both
correctness and minimal locking.

The encoding of message contents is handled by a
BSON [19] implementation taken from the MongoDB [20]
project. BSON provides a compact binary encoding of
structured data. It also offers dynamic protocol buffer han-
dling based on Boost memory object abstractions like smart
pointers, which ensures that message memory is freed when
a message is no longer referenced by an operator or by a
queue.

The native implementation and the compact message for-
mat were chosen with resource-constrained environments in
mind. The virtual image size of an engine running a network
of 30 operators is around 50 MiB, and the message size is
almost devoid of overhead beyond the binary representation
of field names and values. For the deployment of DSM
networks on small appliances like those found in home
automation environments, minimisation of the overhead of
both memory footprint and computing is essential because
in living environments the limits of acceptance for energy
consumption and noise and heat emission of computing
devices are critical. Performance optimisations concerning
throughput and latency have not been carried out aggres-
sively yet, the same applies to memory pooling strategies for
messages of similar size. The processing rate for a simple,
linear three-operator setup with a numeric threshold filtering
operator is in the range of 200k messages per second on a
2 GHz dual core PC system, which is still half a magnitude
below the Java-based Esper engine.

B. Knowledge Operators

The assembly for most operators that have been presented
in Section III-D is rather simple, but especially the knowl-
edge operators have a complex structure for the integration
of external knowledge bases. Hence, the tag operator is
examined in this section.

The external knowledge base used by the tag operator
is an ontology offered by the semantic information store
presented in Section III-C. Since the exported interface of
the store is an OSGi service, the interprocess communication
proves difficult. Therefore, the semantic information store
was extended by a socket-based communication channel
that takes a SPARQL query string as input, performs the
query on the knowledge base, and writes the resulting tuples
of IRIs to the socket. The query is constructed using a
template, containing wildcards for stream element specific
data, which is configured for each tag operator instance.
When an element is taken from the operator’s input stream,
its attribute values are bound to the wildcards and the query
is sent to the semantic information store. The resulting data

111Copyright (c) IARIA, 2012. ISBN: 978-1-61208-242-4

DATA ANALYTICS 2012 : The First International Conference on Data Analytics

tuples are added to the elements attributes and the element
is put into the operators output stream, so that subsequent
operators can use the semantically enriched data for further
knowledge-based operations.

V. APPLICATION

As described earlier, one of the major motivations for
the DSM is the application in AAL environments. In this
section, it is shown how our DSM architecture can be applied
to a small but representative example application from an
AAL setting.

The scenario presented here consists of two light sensors,
one outside and one inside a house, a sensor to detect a
person in the house and an actor to control window blinds.
Furthermore, the network contains a decision tree operator
to classify sensor values. The goal of the given scenario is to
decide, on the basis of the given sensor values, whether or
not to open or close the window blinds, and then perform the
particular action. In a simple example such as this, a set of
rules or a purpose-built operator could be easily employed to
make a decision. In more realistic situations, though, more
sensors and additional information would have to be taken
into account (e.g., more persons, a notion of time, whether
the TV is turned on etc.).

package example {
stream sensors {
int id;
float value;

}
stream actors { int action; }
stream queryresult { bool return_value; }
sensors indoors, outside, person, aggregated;
actors blinds;
queryresult result;

indoors = in("http://wwwvs.cs.hs-rm.de/dsm/sensors/
indoors/#1", "localhost", 9597);

outside = in("http://wwwvs.cs.hs-rm.de/dsm/sensors/
outside/#1", "localhost", 9595);

person = in("http://wwwvs.cs.hs-rm.de/dsm/sensors/
person/#1", "localhost", 9596);

aggregated = join(indoors, outside, person);

result = sparql({SELECT ?"blinds" WHERE { ?"room"
<http://wwwvs.cs.hs-rm.de/dsm/contains> ?"blinds" .
?"room" <http://wwwvs.cs.hs-rm.de/dsm/contains>
"indoorslightsensor"}}, result.return_value,

aggregated);

blinds = dtree("PERSON" {"IN", "OUT"}, "LIGHT_OUTSIDE"
{"YES", "NO"}, "LIGHT_INDOORS" {"YES", "NO"}, 0.0001,
0.025, 0.98, 450, "BLINDS" {"YES", "NO"}, result);

}

Listing 1. Example application

Each of the sensors provides a separate data stream in the
DSM. The streams from the three sensors are merged into
one stream, which in turn is passed through an instance of
the tag (“sparql”) operator that enriches the stream with the
information about which blinds should be controlled. This
is information that is not present in the stream - depending
on the room, in which the light sensor is situated, different

window blinds could be selected. The enriched stream is
then passed to the decision tree operator, which decides to
open or close the window blinds, and finally to the actuator.

Listing 1 shows the DSM network description language
code for the scenario described above.

VI. SUMMARY AND FUTURE WORK

In this paper, we presented an approach for a data stream
mining architecture that takes into account the requirements
for being applied in resource-constrained environments and
for providing facilities for semantic enrichment and pro-
cessing of data streams. The approach includes a model
for DSM networks, a modular runtime system, a semantic
information store component and a description language for
DSM networks.

The DSM network is application agnostic, as the frame-
work and the operators operate on data streams which are not
further specified, i.e., contain untyped information, except
for the internal typing necessary to encode binary data
representations. This design decision allows the construction
of highly specialised and thus resource saving operators.
Nevertheless, a set of standard operators was described and
implemented, covering both structural operators such as join
and merge, numerical operators such as sum and average and
classification operators such as the VFDT operator.

Using the semantic information store, stream data can be
enriched with semantic information. The tag operator can
be used in the DSM network in places where additional
information from the knowledge base external to the actual
DSM elements is required for further processing. Semantic
information specific to the data source or data stream can
be added to the stream, such that subsequent operators
(e.g., classification operators) can incorporate the additional
information.

The DSM description language is a metamodel-based do-
main specific language that can be used to specify a network.
Programs in the language are compiled into a sequence of
commands to set up the DSM network incrementally. While,
for performance reasons, the elements of data streams in the
runtime system are not explicitly typed, the specification
language does support type information about the streams
and can use it to ensure consistency of the network.

Next steps in the project include further performance im-
provements and the implementation of more DSM network
operators: While the description language already supports
the specification of operators for the query languages OCL
and SWRL, this has yet to be implemented in the runtime
system. An operator that feeds back semantic tag informa-
tion from result streams to an ontology will be realised to
complete the semantic transfer cycle. It is also planned to
apply the approach to a scenario dealing with a larger AAL
infrastructure.

112Copyright (c) IARIA, 2012. ISBN: 978-1-61208-242-4

DATA ANALYTICS 2012 : The First International Conference on Data Analytics

REFERENCES

[1] EsperTech, “Esper Complex Event Processing System,”
http://esper.codehaus.org/. Last access 2012-07-10.

[2] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik,
“Monitoring Streams: A New Class of Data Management
Applications,” in Proceedings of the 28th international
conference on Very Large Data Bases, ser. VLDB ’02.
VLDB Endowment, 2002, pp. 215–226. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1287369.1287389

[3] S. Z. Sbz, S. Zdonik, M. Stonebraker, M. Cherniack, U. C.
Etintemel, M. Balazinska, and H. Balakrishnan, “The Au-
rora and Medusa Projects,” IEEE Data Engineering Bulletin,
vol. 26, 2003.

[4] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon
Hwang, W. Lindner, A. S. Maskey, E. Rasin, E. Ryvkina,
N. Tatbul, Y. Xing, and S. Zdonik, “The Design of the
Borealis Stream Processing Engine,” in In CIDR, 2005, pp.
277–289.

[5] A. Arasu, S. Babu, and J. Widom, “The CQL Continuous
Query Language: Semantic Foundations and Query
Execution,” The VLDB Journal, vol. 15, pp. 121–142, June
2006. [Online]. Available: http://dx.doi.org/10.1007/s00778-
004-0147-z

[6] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar,
K. Ito, R. Motwani, U. Srivastava, and J. Widom,
“STREAM: The Stanford Data Stream Management System,”
Stanford InfoLab, Technical Report 2004-20, 2004. [Online].
Available: http://ilpubs.stanford.edu:8090/641/

[7] J. Krämer, “Continuous Queries over Data Streams - Se-
mantics and Implementation,” Ph.D. dissertation, Philipps-
Universität Marburg, 2007.

[8] StreamBase Systems, Inc., “StreamBase CEP,”
http://www.streambase.com. Last access 2012-07-10.

[9] RTM Realtime Monitoring GmbH, “RTM Analyzer,”
http://www.realtime-monitoring.de. Last access 2012-07-10.

[10] M. Eckert, “Complex Event Processing with XChange EQ:
Language Design , Formal Semantics, and Incremental Eval-
uation for Querying Events,” Ph.D. dissertation, Ludwig-
Maximilans-Unversität München, 2008.

[11] C. Moxey, M. Edwards, O. Etzion, M. Ibrahim, S. Iyer,
H. Lalanne, M. Monze, M. Peters, Y. Rabinovich,
G. Sharon, and K. Stewart, “A Conceptual Model for
Event Processing Systems, IBM Form Number REDP-4642-
00,” IBM Redguide publication, 2010. [Online]. Available:
http://www.redbooks.ibm.com/abstracts/REDP4642.htm

[12] K. Teymourian and A. Paschke, “Enabling knowledge-based
complex event processing,” in Proceedings of the 2010
EDBT/ICDT Workshops, ser. EDBT ’10. New York, NY,
USA: ACM, 2010, pp. 37:1–37:7. [Online]. Available:
http://doi.acm.org/10.1145/1754239.1754281

[13] D. Romero, G. Hermosillo, A. Taherkordi, R. Nzekwa,
R. Rouvoy, and F. Eliassen, “The DigiHome Service-
Oriented Platform,” Software: Practice and Experience,
2011. [Online]. Available: http://hal.inria.fr/inria-00563678

[14] D. Bonino and F. Corno, “DogOnt - Ontology Modeling
for Intelligent Domotic Environments”,” in Proceedings of
the 7th International Semantic Web Conference, ser. LNCS.
Springer, 2008, pp. 790–803.

[15] R. Ierusalimschy, Programming in Lua, Second Edition.
Lua.Org, 2006.

[16] P. Domingos and G. Hulten, “Mining High-speed
Data Streams,” in Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery
and data mining, ser. KDD ’00. New York, NY,
USA: ACM, 2000, pp. 71–80. [Online]. Available:
http://doi.acm.org/10.1145/347090.347107

[17] Object Management Group, “Ontology Definition Meta-
model,” http://www.omg.org/spec/ODM/1.0/PDF. Last access
2012-07-10.

[18] B. Dawes, D. Abrahams, and R. Rivera, “Boost C++ Li-
braries,” http://www.boost.org. Last access 2012-07-10.

[19] D. Merriman, “BSON - Binary JSON,” http://bsonspec.org.

[20] 10gen, Inc., “mongoDB,” http://www.mongodb.org. Last ac-
cess 2012-07-10.

113Copyright (c) IARIA, 2012. ISBN: 978-1-61208-242-4

DATA ANALYTICS 2012 : The First International Conference on Data Analytics

