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Abstract—The effectiveness of compression algorithms is
increasing as the data subjected to compression contains
repetitive patterns. This basic idea is used to detect the
existence of regularities in various types of data ranging from
market basket data to undirected graphs. The results are quite
independent of the particular algorithms used for compression
and offer an indication of the potential of discovering patterns
in data before the actual mining process takes place.
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I. I NTRODUCTION

Our goal is to show that compression can be used as
a tool to evaluate the potential of a data set of producing
interesting results in a data mining process. The basic idea
that data that displays repetitive patterns or patterns that
occur with a certain regularity will be compressed more
efficiently compared to data that has no such characteristics.
Thus, a pre-processing phase of the mining process should
allow to decide whether a data set is worth mining, or
compare the interestingness of applying mining algorithms
to several data sets.

Since compression is generally inexpensive and compres-
sion methods are well-studied and understood, pre-mining
using compression will help data mining analysts to focus
their efforts on mining resources that can provide a highest
payout without an exorbitant cost.

Compression has received lots of attention in the data min-
ing literature. As observed by Mannila [7], data compression
can be regarded as one of the fundamental approaches to data
mining [7], since the goal of the data mining is to “compress
data by finding some structure in it”.

The role of compression developing parameter-free data
mining algorithms in anomaly detection, classification and
clustering was examined in [4]. The sizeC(x) of a com-
pressed filex is as an approximation of Kolmogorov com-
plexity [2] and allows the definition of a pseudo-distance
between two filesx andy as

d(x, y) =
C(xy)

C(x) + C(y)
.

Further advances in this direction were developed
in [8][5][6]. A Kolmogorov complexity-based dissimilarity
was successfully used to texture matching problems in [1]

which have a broad spectrum of applications in areas like
bioinformatics, natural languages. and music.

We illustrate the use of lossless compression in pre-mining
data by focusing on several distinct data mining processes:
files with frequent patterns, frequent itemsets in market
basket data, and exploring similarity of graphs.

The LZW (Lempel-Ziv-Welch) algorithm was introduced
in 1984 by T. Welch in [9] and is among the most popular
compression techniques. The algorithm does not need to
check all the data before starting the compression and the
performance is based on the number of the repetitions and
the lengths of the strings and the ratio of 0s/1s or true/false
at the bit level. There are several versions of the LZW
algorithm. Popular programs (such as Winzip) use variations
of the LZW compression. The Winzip/Zip type of algorithms
also work at the bit level and not at a charater/byte level.

We explore three experimental settings that provide strong
empirical evidence of the correlation between compression
ratio and the existence of hidden patterns in data. In Sec-
tion II, we compress binary strings that contain patterns;
in Section III, we study the compressibility of adjacency
matrix for graphs relative to the entropy of distribution of
subgraphs. Finally, in Section IV, we examine the compress-
ibility of files that contain market basket data sets.

II. PATTERNS IN STRINGS AND COMPRESSION

Let A∗ be the set of strings on the alphabetA. The length
of a string w is denoted by|w|. The null string onA is
denoted byλ and we defineA+ asA+ = A∗ − {λ}.

If w ∈ A∗ can be written asw = utv, whereu, v ∈ A∗

andt ∈ A+, we say that the pair(t, m) is an occurrence of
t in w, wherem is the length ofu.

The occurrences(x, m) and(y, p) are overlapping ifp <
m + |x|. If this is the case, there is a proper suffix ofx
that equals a proper prefix ofy. If t is a word such that the
sets of its proper prefixes and its proper suffixes are disjoint,
there are no overlapping occurrences ofx in any word. The
number of occurrences of a stringt in a stringw is denoted
by nt(w). Clearly, we have

∑

{na(w) | a ∈ A} = |w|. The
prevalenceof t in w is the numberft(w) = nt(w)·|t|

|w| which
gives the ratio of the characters contained in the occurrences
of t relative to the total number of characters in the string.
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The result of applying a compression algorithmC to a
string w ∈ A∗ is denoted byC(w) and thecompression
ratio is the number

CRC(w) =
|C(w)|

|w|
.

In this section, we shall use the binary alphabetB = {0, 1}
and the LZW algorithm or the compression algorithm of the
packagejava.util.zip.

We generated random strings of bits (0s and 1s) and
computed the compression ratio strings with a variety of
symbol distributions. A stringw that contains only0s
(or only 1s) achieves a very good compression ratio of
CRjZIP (w) = 0.012 for 100K bits andCRjZIP = 0.003
for 500K bits, wherejZIP denotes the compression algo-
rithm from the packagejava.util.zip. Figure 1 shows,
as expected, that the worst compression ratio is achieved
when0s and1s occur with equal frequencies.

Figure 1. BaselineCRjZIP Behavior

For strings of small length (less than104 bits) the
compression ratio may exceed 1 because of the overhead
introduced by the algorithm. However, when the size of the
random string exceeds106 bits this phenomenon disappears
and the compression ratio depends only on the prevalence of
the bits and is relatively independent on the size of the file.
Thus, in Figure 1, the curves that correspond to files of size
106 and 5 · 106 overlap. We refer to the compression ratio
of a random stringw with an (n0(w), n1(w)) distribution
as thebaseline compression ratio.

We created a series of binary stringsϕt,m which have
a minimum guaranteed numberm of occurrences of pat-
terns t ∈ {0, 1}k, where 0 ≤ m ≤ 100. Specifically,
we created 101 filesϕ001,m for the pattern001, each
containing 100K bits and we generated similar series for
t ∈ {01, 0010, 00010}. The compression ratio is shown in
Figure 2. The compression ratio starts at a value of 0.94 and
after the prevalence of the pattern becomes more frequent
than 20% the compression ratio drops dramatically. Results
of the experiment are shown in Table I and in Figure 3.

Table I
PATTERN ’001’ PREVALENCE VERSUS THECRjZIP

Prevalence of CRjZIP Baseline
’001’ pattern

0% 0.93 0.93
10% 0.97 0.93
20% 0.96 0.93
30% 0.92 0.93
40% 0.86 0.93
50% 0.80 0.93
60% 0.72 0.93
70% 0.62 0.93
80% 0.48 0.93
90% 0.31 0.93
95% 0.19 0.93
100% 0.01 0.93

Figure 2. Variation of compression rate depends on the prevalence
of the pattern ’001’

Figure 3. Dependency of Compression Ratio on Pattern Prevalence

We conclude that the presence of repeated patterns in
strings leads to a high degree of compression (that is, to low
compression ratios). Thus, a low compression ratio for a file
indicates that the mining process may produce interesting
results.

III. R ANDOM INSERTION AND COMPRESSION

For a matrixM ∈ {0, 1}u×v denote byni(M) the number
of entries ofM that equali, wherei ∈ {0, 1}. Clearly, we
haven0(B)+n1(B) = uv. For a random variableV which
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ranges over the set of matrices{0, 1}u×v let νi(V ) be the
random variable whose values equal the number of entries
of V that equali, wherei ∈ {0, 1}.

Let A ∈ {0, 1}p×q be a0/1 matrix and let

B :

(

B1 B2 · · · Bk

p1 p2 · · · pk

)

,

be a matrix-valued random variable whereBj ∈ R
r×s, pj ≥

0 for 1 ≤ j ≤ k, and
∑k

j=1 pj = 1.
Definition 3.1: The random variableA← B obtained by

the insertionof B into A is given by

A⊗ B =







a11B . . . a1nB
...

. . .
...

am1B . . . amnB






∈ R

mr×ns

In other words, the entries ofA ← B are obtained by
substituting the blockaijB` with the probabilityp` for aij

in A.
Note that this operation is a probabilistic generalization

of Kronecker’s product for if

B :

(

B1

1

)

,

thenA← B has as its unique value the Kronecker product
A⊗B.

The expected number of1s in the insertionA← B is

E[ν1(A← B)] = n1(A)

k
∑

j=1

n1(Bj)pj

When n1(B1) = · · · = n1(Bk) = n, we haveE[ν1(A ←
B)] = n1(A)n.

In the experiment that involves insertion, we used a
matrix-valued random variable such thatn1(B1) = · · · =
n1(Bk) = n. Thus, the variability of the values ofA ← B
is caused by the variability of the contents of the matrices
B1, . . . , Bk which can be evaluated using the entropy of the
distribution ofB,

H(B) = −
k
∑

j=1

pj log2 pj.

We expect to obtain a strong positive correlation between the
entropy ofB and the degree of compression achieved on the
file that represents the matrixA← B, and the experiments
support this expectation.

In a first series of compressions, we worked with a matrix
A ∈ {0, 1}106×106 and with a matrix-valued random variable

B :

(

B1 B2 B3

p1 p2 p3

)

,

whereBj ∈ {0, 1}3×3, andn1(B1) = n1(B2) = n1(B3) =
4. Several probability distributions were considered, as
shown in Table II. Values ofA← B had1062∗32 = 101124
entries.

In Table II, we had 39% 1s and the baseline compression
rate for a binary file with this ratio of1s is 0.9775. We
also computed the correlation between theCRjZIP and the
Shannon entropy of the probability distribution and obtained
the value0.9825 for 3 matrices. In Table III, we did the same
experiment but with 4 different matrices of4× 4. A strong
correlation (0.992.) was observed betweenCRjZIP and the
Shannon entropy of the probability distribution.

Table II
MATRIX INSERTIONS, ENTROPY AND COMPRESSIONRATIOS

Probability distribution CRjZIP Shannon Entropy
(0, 1, 0) 0.33 0
(1, 0, 0) 0.33 0
(0, 0, 1) 0.33 0

(0.2, 0.2, 0.6) 0.77 1.37
(0.6, 0.2, 0.2) 0.74 1.37

(0.33, 0.33, 0.34) 0.79 1.58
(0, 0.3, 0.7) 0.7 0.88
(0.9, 0.1, 0) 0.51 0.46
(0.8, 0, 0.2) 0.61 0.72

(0.49, 0.25, 0.26) 0.77 1.5
(0.15, 0.35, 0.5) 0.78 1.44

Table III
KRONECKER PRODUCT AND PROBABILITY DISTRIBUTION FOR4

MATRICES

Probability distribution CRjZIP Shannon Entropy
(0, 1, 0, 0) 0.23 0
(0, 1, 0, 0) 0.23 0

(0.2, 0.2, 0.2, 0.4) 0.69 01.92
(0.25, 0.25, 0.25, 0.25) 0.69 2

(0.4, 0, 0.2, 0.4) 0.53 1.52
(0.3, 0.1, 0.2, 0.4) 0.65 1.84

(0.45, 0.12, 0.22, 0.21) 0.61 1.83

Figure 4. Evolution CRjZIP and Shannon Entropy of Probability
Distribution.

In Figure 4, we have the evolution ofCRjZIP on they
axis and on thex axis the Shannon Entropy of the probability
distribution for both experiments. We can see clearly the
linear correlation between the two.
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This experiment proves us again that in case of repe-
titions/patterns theCRjZIP is better than in the case of
randomly generated files.

Next, we examine the compressibility of binary square
matrices and its relationship with the distribution of principal
submatrices. A binary square matrix is compressed by first
vectorizing the matrix and then compressing the binary
sequence. The issue is relevant in graph theory, where the
principal submatrices of the adjacency matrix of a graph
correspond to the adjacency matrices of the subgraphs of
that graph. The patterns in a graph are captured in the form
of frequent isomorphic subgraphs.

There is a strong correlation between the compression
ratio of the adjacency matrix of a graph and the frequencies
of the occurrences of isomorphic subgraphs of it. Specifi-
cally, the lower the compression ratio is, the higher are the
frequencies of isomorphic subgraphs and hence the worthier
is the graph for being mined.

Let Gn be an undirected graph having{v1, . . . , vn} as its
set of nodes. The adjacency matrix ofGn, AGn

∈ {0, 1}n×n

is defined as

(AGn
)ij =

{

1 if there is an edge betweenvi andvj in Gn

0 otherwise.

We denote withCRC(AGn
) the compression ratio of the

adjacency matrix of graphGn obtained by applying the
compression algorithmC. Define the principal subcom-
ponent of matrix AGn

with respect to the set of indices
S = {s1, . . . , sk} ⊆ {1, 2, . . . , n} to be thek × k matrix
AGn

(S) such that

AGn
(S)ij =











1 if there is an edge betweenvsi
andvsj

in Gn

0 otherwise.

The matrixAGn
(S) is the adjacency matrix of the subgraph

of Gn which consists of the nodes with indices inS along
with those edges that connect these nodes. We denote by
Pn(k) the collection of all subsets of{1, 2, . . . , n} of size
k where2 ≤ k ≤ n. We have|Pn(k)| =

(

n

k

)

.
Let (Mk

1 , . . . , Mk
`k

) be an enumeration of possible adja-

cency matrices of graphs withk nodes wherèk = 2
k(k−1)

2 .
We define the finite probability distribution

P (Gn, k) =

(

nk
1(Gn)

|Pn(k)|
, . . . ,

nk
`k

(Gn)

|Pn(k)|

)

,

wherenk
i (Gn) for 1 ≤ i ≤ `k is the number of subgraphs

of Gn with adjacency matrixMk
i . The Shannon entropy of

this probability distribution is:

HP (Gn, k) = −

`k
∑

i=1

nk
i (Gn)

|Pn(k)|
log2

nk
i (Gn)

|Pn(k)|
.

If HP (Gn, k) is low, there are to be fewer and larger
sets of isomorphic subgraphs ofGn of size k. In other
words, small values ofHP (Gn, k) for various values of
k suggest that the graphGn contains repeated patterns
and is susceptible to produce interesting results. Note that
although two isomorphic subgraphs do not necessarily have
the same adjacency matrix, the numberHP (Gn, k) is a
good indicator of the frequency of isomorphic subgraphs
and hence subgraph patterns.

We evaluated the correlation betweenCRjZIP (AGn
) and

HP (Gn, k) for different values ofk.
As expected, the compression ratio of the adjacency

matrix and the distribution entropy of graphs are roughly
the same for isomorphic graphs, so both numbers are char-
acteristic for an isomorphism type. Ifφ is a permutation of
the vertices ofGn, the adjacency matrix of the graphGφ

n

obtained by applying the permutation is defined byA
G

φ
n

is
given by

A
G

φ
n

= PφAGn
P−1

φ .

We compute this adjacency matrix ofA
G

φ
n
, the entropy

HP (Gφ
n, k) the compression ratioCRjZIP (A

G
φ
n
) for several

values ofk and permutations.
We randomly generated graphs withn = 60 nodes

and various number of edges ranging from5 to 1765.
For each generated graph, we randomly produced twenty
permutations of its set of nodes and computedHP (Gφ

n, k)
andCRjZIP (A

G
φ
n
).

Finally, for each graph we calculated the ratio of standard
deviation over average for the computed compression ratios,
followed by the same computation for distribution entropies.

The results of this experiment are shown in Figures 5
and 6 against the number of edges. As it can be seen, the
deviation over mean of the compression ratios forn = 60
does not exceed the number0.05. Also, the deviation over
average of the distribution entropies for various values of
k do not exceed0.006. In particular, the deviation of the
distribution entropy for the graphs of100 to 1500 edges
falls below 0.001, which allows us to conclude that the
deviations of both compression ratio and distribution entropy
with respect to isomorphisms are negligible.

For eachk ∈ {3, 4, 5}, we generated randomly560
graphs having60 vertices and sets of edges whose size were
varying from10 to 1760. Then, the numbersHP (Gn, k) and
CRjZIP (AGn

) were computed. Figure 7 captures the results
of the experiment. Each plot contains two curves. The first
curve represents the changes in averageCRjZIP (AGn

) for
forty randomly generated graphs of equal number of edges.
The second curve represents the variation of the average
HP (Gn, k) for the same forty graphs. The trends of these
two curves are very similar for different values ofk.

Table IV contains the correlation betweenCRjZIP (AGn
)

and HP (Gn, k) calculated for the560 randomly generated
graphs for each value ofk.
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Figure 5. Standard deviation vs. average of theCRjZIP (AGn
) for

a number of different permutations of nodes for the same graph. The
horizontal axis is labelled with the number of edges of the graph.

Figure 6. Standard deviation vs. average of theHP (Gn, k) of a number
of different permutations of nodes for the same graph. The horizontal axis
is labelled with the number of edges of the graph. Each curve corresponds
to one value ofk.

IV. FREQUENT ITEMS SETS AND COMPRESSIONRATIO

A market basket data set consists of a multisetT of
transactions. Each transactiont is a subset of a set of
items I = {i1, . . . , iN}. A transaction is described by its
characteristicN -tuple t = (t1, . . . , tN ), where

tk =

{

1 if ik ∈ t.

0 otherwise,

for 1 ≤ k ≤ N . The length of a transactiont is
|t| =

∑N

k=0 tk, while the average size of transactions is
∑

{|t| | t in T}
|T | .

The support of a set of itemsK of the data setT is
the numbersupp(K) = |{t∈T |K⊆t|

|T | . The set of itemsK is
s-frequent ifsupp(K) > s.

The study of market basket data sets is concerned with
the identification of association rules. A pair of item sets
(X, Y ) is an association rule. Its support,supp(X → Y )
equalssupp(X) and its confidenceconf(X → Y ) is defined
as

conf(X → Y ) =
supp(XY )

supp(X)
.

n = 60 andk = 3

n = 60 andk = 4

n = 60 andk = 5

Figure 7. Plots of averageCRjZIP (AGn
) (CMP RTIO) and average

HP (Gn, k) (DIST ENT) for randomly generated graphsGn of equal
number of edges with respect to the number of edges.
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Table IV
CORRELATIONS BETWEENCRjZIP (AGn

) AND HP (Gn, k)

k Correlation
3 0.92073175
4 0.920952812
5 0.919256573

Using the artificial transaction ARMiner generator de-
scribed in [3], we created a basket data set. Transactions
are represented by sequences of bits(t1, · · · , tN ). The
multiset ofM transactions was represented as a binary string
of length MN obtained by concatenating the strings that
represent transactions.

We generated files with 1000 transactions, with 100 items
available in the basket, adding up to 100K bits.

For data sets having the same number of items and trans-
actions, the efficiency of the compression increases when
the number of patterns is lower (causing more repetitions).
In an experiment with an average size of a frequent item
set equal to10, the average size of a transaction equal to
15, and the number of frequent item sets varying in the set
{5, 10, 20, 30, 50, 75, 100, 200, 500, 1000}, the compression
ratio had a significant variation ranging between0.20 and
0.75, as shown in Table V. The correlation between the num-
ber of patterns andCR was0.544. Although the frequency
of 1s and baseline compression ratio were roughly constant
(at 0.75), the number of patterns and compression ratio were
correlated.

Table V
NUMBER OF ASSOCIATION RULES AT0.05SUPPORT LEVEL AND0.9

CONFIDENCE

Number of Patterns Frequency of 1s Baseline Compression Number of assoc.
compression ratio rules

5 16% 0.75 0.20 9,128,841
10 17% 0.73 0.34 4,539,650
20 17% 0.73 0.52 2,233,049
30 17% 0.76 0.58 106,378
50 19% 0.75 0.65 2,910,071
75 18% 0.75 0.67 289,987
100 18% 0.75 0.67 378,455
200 18% 0.75 0.70 163
500 18% 0.75 0.735 51
1000 18% 0.75 0.75 3

Further, there was a strong negative correlation (-0.92)
between the compression ratio and the number of association
rules indicating that market basket data sets that satisfy many
association rules are very compressible

V. CONCLUDING REMARKS

Compression ratio of a file can be computed fast and easy,
and in many cases offers a cheap way of predicting the
existence of embedded patterns in data. Thus, it becomes
possible to obtain an approximative estimation of the use-
fulness of an in-depth exploration of a data set using more
sophisticated and expensive algorithms. The use of compres-
sion as a measure of minability is illustrated on a variety
of paradigms: graph data, market basket data, etc. Recent

investigations show that identifying compressible areas of
human DNA is a useful tool for detecting areas where the
gene replication mechanisms are disturbed (a phenomenon
that occurs in certain genetically based diseases.
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