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Abstract—In this paper, a novel approach that allows the
retrieval of OLAP analytics by means of storing multidimen-
sional data in key-value databases is described and evaluated.
The proposed mechanism relies on generated keys based on
the path-enumeration model built upon a tree representation
of a relational database. Each key represents a combination of
OLAP dimension labels and is inserted into a key-value sorted
set where its associated values are the metrics of interest, i.e.,
the OLAP facts. Our implementation for a real advertisement
server system in Redis and its performance comparison with
a relational OLAP (ROLAP) database running on top of
MySQL, show that our proposed scheme can answer complex
multidimensional queries much faster, while keeping a great
flexibility of the data schema. In contrast with general ROLAP
schemes, which usually require the pre-computation of tables
for specific queries, the sorted sets in the proposed system are
not pre-computed but generated on demand, so no further
delay is introduced. To the best of the authors’ knowledge,
this is the first system that deals with mapping relational
data structures into sorted sets of key-value store databases
to answer complex queries on multidimensional data.

Keywords-OLAP; path-enumeration keys; sorted sets;
databases; key-value stores.

I. INTRODUCTION

By making use of object-relational mapping (ORM) [9],
object-oriented programming classes on the application level
can be represented in a persistent way on a relational
database. With ORM, the Entity Relation map of a relational
database can be represented by a parent-child relationship
tree. In this type of trees, relations between nodes can be
represented using verbal expressions like “has one”, “has
many”, “has and belongs to many”, “belongs to” and so
on. In fact, these expressions describing relationships among
classes are very popular in abstraction layers of SQL data
connectors developed for mainstream scripting languages
like Java[2], Python[5] or Ruby[8].

Online Analytical Processing (OLAP) databases are a key
tool for the analysis of large amounts of data. An OLAP [20]
database corresponds to a multidimensional database where
measures or statistics of interest are pre-calculated in the
so-called fact tables. The flexibility and high-speed with
which multi-dimensional OLAP (MOLAP) allows to perform

complex queries involving several dimensions have turned it
into one of the most useful tools for modern data analysis.
On the other hand, during the last decade there has been a
big hype on no-SQL databases, featuring various software
solutions and open-source tools. The technologies, concepts
and algorithms used in them differ quite substantially but
one can observe the presence of the key-value store concept
in many. The basics of such key-value store systems are
databases where a hash key can be associated to a value,
which can range from a simple text string to more complex
data structures such as arrays, lists or even binary files.

This paper introduces an algorithmic approach that maps
a relational database into tailored sorted sets in a key-
value store database. In a cold start, no data needs to be
transferred from the relational database to the proposed
system since from the application’s point of view it works as
a caching layer, not needing to pre-compute tables as they
are generated on the fly as the queries arrive. To the best
of the authors’ knowledge, this is the first system that deals
with automatically mapping relational data structures into
sorted sets of key-value store databases to answer complex
queries on multidimensional data like in OLAP.

The proposed data representation structure is helpful for
analyzing multidimensional data in real-time as in OLAP.
The advantage of the proposed approach is two-folded:
1) on the practical side, OLAP solutions are quite costly
and complex, so they usually require a large investment
on dedicated servers, software licenses and staff training.
In contrast, there exist a handful of excellent open-source
enterprise-level key-value store databases which are easy
to configure and use, and those are the target tools of this
work. 2) On the technical side, the mechanism proposed in
this document differs substantially to the OLAP approach
for consolidating the multidimensional data structure for
analytics, and furthermore allows the user to still keep her
relational database in place to store the almost-static data.

The paper is organized as follows: in Section II, we review
some key concepts. Works related to our approach are briefly
mentioned in Section III. Section IV provides a more in-
depth description of the proposed mechanism. Section V
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shows performance measurements and comparison with a
ROLAP database running on top of MySQL in a real
implementation. Finally, some final remarks are provided in
Section VI.

II. BACKGROUND

In this section, a brief overview of key concepts like
OLAP, sorted sets, path enumeration as well as a brief
description of the Redis database are provided.

A. OLAP

OLAP stands for Online Analytical Processing, a category
of software tools that provides analysis of data stored in
a database. OLAP tools enable users to analyze different
dimensions of multidimensional data, and allow flexible and
fast access to the data and those multiple dimensions. Such
dimensions are stored as a side of what is called an OLAP
cube, or hypercube, building that way a multidimensional
cube which stores information, also known as facts or
measures. Such facts store no other than the aggregated
totals of relevant key information that one wants to analyze.
All this data is, typically, created from a star or snowflake
schema of tables in a relational database (RDB) such as
the simplified one shown in Figure 1, which depicts the
RDB for a real advertising server application deployed by
our company. Our star schema features six dimensions,
represented as the peripheral tables, and we are interested
in measuring the aggregated results from the central facts
table, all relevant to the presented dimensions. Each measure
can be thought of as having a set of labels, or meta-data
associated with it. A dimension is what describes these
labels; it provides information about the measure. As a
practical example, in our systems, a cube contains the
clicked advertisements as a measure and the advertisement
space as a dimension. Each clicked advertisement can then
be correlated with its campaign, publisher, advertiser, time,
campaign resource dimensions and any other number of
dimensions can be added, as long as data to correlate those
dimensions with the click are added in the structure, such
as a foreign key for instance. This allows an analyst to
view the measures along any combination of the dimensions.
Additionally, OLAP systems are typically categorized under
three main variations:

• MOLAP
It is the standard way of storing data in OLAP and
that is why it is sometimes referred to as just OLAP.
It stores the data on a multi-dimensional array storage
where fact tables are pre-computed. It does not rely on
relational databases.

• ROLAP
It works on the top of relational databases. The base
data and dimension tables are stored as relational tables
and new tables are created to store the aggregated in-
formation. It gives the appearance of traditional slicing

Figure 1. Sample star data model in OLAP.

and dicing OLAP functionalities working with the data
stored in the relational database.

• Hybrid
There is no clear definition of what a “hybrid” OLAP
system means, but in all cases the data is stored in both
a relational database and special array storage with pre-
computed data.

B. Sorted Sets

A sorted set is a data structure defined by a list where each
element has an associated score. In contrast with a normal
set, a sorted set can be ordered based on its elements’ score.
Hence, a sorted set Z = {(e1, s1), . . . , (en, sn)}, where each
element ei has score si, can be represented as a hash where
each key has an associated score value and the elements in
the set can be ordered by their score.

C. Path Enumeration Model

One of the properties of trees is that there is one and only
one path from the root to every node. The path enumeration
model stores that path as a string by concatenating either
the edges or the keys of the nodes in the path. Searches
are done with string functions and predicates on those path
strings. There are two methods for enumerating the paths,
edge enumeration and node enumeration. Node enumeration
is the most common, and there is little difference in the basic
string operations on either model. In this paper we apply the
node enumeration method.

D. Redis

Redis [7] is an open-source memory-only key-value store
database with a handful of useful data structures. Similar
to other key-value data stores, Redis has as data model
a dictionary where keys are mapped to values, with the
essential differences that values can be other than strings
of text and that it can handle collections, or sets, in an
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unordered and ordered manner, which behave in the same
way as the sorted sets presented in Section II-B.

At this moment, there is no effective way to distribute
Redis other than manually distributing chunks of data in
independent servers, typically known as sharding. Therefore,
measuring the scalability of our proposed scheme highly
depends on future work inherent to Redis development. As
Redis stores the whole database in memory it is faster than
conventional solutions, while maintaining some control over
the data persistence. If needed, Redis allows us to take
snapshots of data as well as asynchronously and periodically
transfer data from memory to disk, however this is not
relevant to the idea presented in this work. Finally, another
benefit of using Redis is the lack of necessity to perform any
data schema alteration providing us with higher flexibility to
introduce changes on demand.

III. RELATED WORK

Related work for OLAP analytics in key-value store data-
bases is primarily focused on distributed algorithms like
MapReduce, cloud services and in-memory OLAP architec-
tures. Bonnet et al. [14], Qin et al. [28], Wang et al. [29],
analyze and improve upon existing MapReduce algorithms
while Abelló et al. [12] make use of distributed data stores
like Bigtable [18], GFS [23] or Cassandra [26]. The rea-
soning behind the adoption of those architectures is due to
the large amount of resources needed when dealing with
large data sets. Such architectures also allow parallelization
of queries and provide easy means of hardware scaling.
However, solutions based on MapReduce are less efficient,
due to lack of efficient indices, proper storage mechanisms,
lack of compression techniques and sophisticated parallel
algorithms for querying large amounts of data [27].

Some related literature focuses on using cloud services,
like Dynamo [22] from Amazon, to improve upon current
resource utilization and reducing costs [15], [16], [19], as
several cloud platforms began to give access to cheap key-
value stores that allow easy scaling. Such cloud services
can, however, be problematic as privacy issues can arise,
if the data cannot be anonymized [10]; data is often stored
in untrusted hosts and replicated across different geographic
zones, without much control from the users. Moreover, those
cloud services lack important data structures, such as the
presented sorted sets, for instance. Also, they are proprietary
and closed to improvements from the developers, making
it impossible to add or develop features when needed or
customize a certain part of the engine.

More literature [17], [21] emphasizes the need to combine
the benefits of NoSQL database systems with traditional
RDBMS, in order to effectively handle big data analytics.
With the growth of data stored in RDBMS databases, it is
deemed impossible to cover all the needed scenarios and still
expect timely reporting of results. By using key-value store
databases, data analytics can be offloaded from RDBMS,

specially if the operations are simple lookups of objects,
with no urgency of having consistent data at a very granular
level. Recently, the decline in memory price has allowed
for new solutions, entirely based on memory, to become
financially feasible. Therefore, architectures providing in-
memory OLAP capabilities have arisen, such as DRUID [1],
QlikTek [6], SwissBox [13] architecture, H-Store [24] and
Cloudy [25]. However, not much detail on their architec-
tures and internal implementation aspects are known and
no comparison to any state of the art solution has been
published. Most of the solutions provide very controlled
environments, often specific to an operating system and are
business oriented.

IV. PROPOSED SCHEME

In a tree representing parent-child-relation classes mapped
into an underlying relational database, we can generate a
basic unique key for each branch by hierarchically listing
in a top-to-bottom order the node ids found all the way
down from the root to the bottom leafs along every branch.
This is equivalent to picking up the deepest paths of every
branch from the path enumeration model applied to general
trees. In order to store all possible combinations of relevant
dimensions for our reports it is essential that every path
from the path enumeration model has an associated key.
This defines a set of deepest paths D = {d1,d2,. . . ,dn} for
n root-through-bottom-leaf paths where each di corresponds
to a path represented by a list of nodes ordered from top to
bottom in the tree hierarchy. Each of the nodes in the tree
represents a dimension that can be included in the reporting
system. After the set of deepest paths D is constructed,
another set D’ ⊇ D is defined, so that D’ = {d1, d2, . . . , dn,
d1:d2, d1:d3, . . . , d1:d2:d3:. . . :dn} and |D’| ≤ (2n − 1).
Eventually, D’ should only hold the combination of paths
that are frequently consulted via the reporting system.

sorted sets = {}
foreach path ∈ D’ do

Insert path(time slot) into sorted sets
end

Algorithm 1: Initialization of sorted sets.

In the next step, one has to concentrate on the statistical
values or parameters that should be measured, i.e., the so-
called facts in OLAP. After identifying the facts we define
sorted sets combining the time dimension (in the maximum
resolution of interest) with the paths of D’. Thus, the name
of each sorted set can be built as specified on Algorithm 1
where time slot represents one time slot in the maximum
level of granularity for the reporting system. Every time
there is an event related to one of the facts, the corre-
sponding fact’s score is incremented for the combination
of all dimension ids related to the event. Hence, when
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Figure 2. Example entity relationship diagram.

an event measured by a fact occurs, the score of a fact
related to a particular combination of dimension ids, denoted
as dimension ids(path)fact, in sorted set path(time slot)
is incremented by one in case the fact corresponds to
an aggregate statistic. If the fact is not measured by an
aggregate statistic, the score is totally ignored for all set
operations so the sorted set behaves just as a normal set.

For the sake of clarity, an example of the proposed data
structure applied to a real advertisement server application is
presented. Figure 2 shows the example data structure where
the root node “Manager” corresponds to one advertising
agency administrator. Each advertising agency has “Pub-
lishers” and each of those publishers has “Websites” and
smartphone “Applications”. In turn, each website and each
smartphone application has one or many “Ad Spaces” which
are sold to “Advertisers”. On the other hand, each advertiser
has “Campaigns” of products it wants to promote. Inside
each campaign there are many advertising media assets like
image banners, video banners, text banners, etc., which are
called “Campaign Resources”.

In the tree of the example shown in Figure 2, there exist
three deepest paths given by the set D = { M:A:C:R1,
M:P:W:S2, M:P:Ap:S3}. This set has to be united with the
deepest path keys’ combination set E, which corresponds
to E = { M:A:C:R:P:W:S4, M:A:C:R:P:Ap:S5 } in our
example. After the union operation has been performed, the
resulting set contains five unique basic keys that can be
derived in a straightforward manner from both sets above
as:

D’ = D ∪ E =

 M:A:C:R,M:P:W:S,
M:P:Ap:S,M:A:C:R:P:W:S,

M:A:C:R:P:Ap:S

 (1)

In order to construct the full keys, we need to combine these
five basic keys with each of the parameters or statistical

1Manager, Advertiser, Campaign, Campaign Resource
2Manager, Publisher, Web Sites, Ad Spaces
3Manager, Publisher, Applications, Ad Spaces
4Manager, Advertiser, Campaign, Campaign Resource, Publisher, Web

Site, Ad Space
5Manager, Advertiser, Campaign, Campaign Resource, Publisher, Appli-

cation, Ad Space

measures we are interested in assessing, i.e. the facts in the
OLAP jargon as well as the time expressed in the maximum
resolution required by our reporting system. Let us say that
in the example of Figure 2 we are interested in measuring
the views and clicks as fact events. Thus, in the same way as
in OLAP, our reporting system should be able to answer all
types of multidimensional queries like: “what was the most
clicked campaign resource from Advertiser a on ad spaces
from Publisher p between 2011/07/19 and 2011/09/21?”, or
“what was the number of accumulated clicks and views
on Campaigns from Advertiser a for all the Ad Spaces
from Publisher p’s Web Sites between 2011/06/15 and
2011/12/21?”, “what was the total number of accumulated
clicks and views on campaign resource r when shown in Ad
spaces from all applications of Publisher p?”, etc. To build
such a reporting system we make use of sorted sets. In order
to name the sorted sets we need to follow the steps described
below. For all deep-most branches in the tree and their
combinations we name their associated sorted sets using the
pattern basic key(time slot). If the time slot corresponds
to one hour (i.e. the maximum resolution for accumulated
statistics we are willing to tolerate is one hour) the sorted
sets associated to the time period between 16:00 and 17:00
of 2011/07/09 can be named as basic key(2011-07-09-16).
Inside this sorted set we will increment the score of a
particular combination of dimension ids based on the event-
related fact. The pseudo-code below describes the basic logic
to increment the score of the related basic-key elements in
the sorted set.

if event = “view” then
for basic key ∈ D’ do

[dimension ids(basic key)views].score++
end

else if event = “click” then
for basic key ∈ BasicKeySet do

[dimension ids(basic key)clicks].score++
end

end

Algorithm 2: Incrementing event-related facts.

As can be seen in Algorithm 2, after naming the sorted
sets, we increment by one the score for the combination
of ids associated with the basic key and the related event.
For example, let us suppose there is a click at 4:45 p.m. on
Campaign Resource r from campaign c ran by Advertiser a
(belongs to manager m) when shown at an ad space s from
website w of publisher p. Algorithm 3 shows how each of
the five basic key ∈ D’ would be modified.

The above sets are suitable for the most granular questions
over multiple dimensions for our reporting system. But
what happens if we need to know, for example, the total
accumulated clicks on website w of Publisher p during the
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TimeSlot = {2011-07-09-16, 2011-07-09, 2011-07,
2011}
foreach t in TimeSlot do

In set M:A:C:R(t)
[m:a:c:rclicks].score++

In set M:P:W:S(t)
[m:p:w:sclicks].score++

In set M:P:Ap:S(t)
nothing is modified

In set M:A:C:R:P:W:S(t)
[m:a:c:r:p:w:sclicks.].score++

In set M:A:C:R:P:Ap:S(t)
nothing is modified

end

Algorithm 3: Modification of scores in basic key sets.

month of February 2011. In that case, we can obtain the
requested measure by performing union operations among
the sorted sets between date1 = 2011-02-01-00 and date2 =
2011-02-28-23. In this paper, we present three different
approaches to deal with this type of queries. By default,
we assume the scores of the same element are added during
a union operation of sorted sets, however, the mathematical
operation performed on the values during a union can be
extended to more complex operations.

A. Approach 1

This approach consists of performing union operations
only on the deep-most branch keys of the basic key set D’.
For our example, the set

Q =

date2⋃
d=date1

M:P:W:S(d) (2)

contains the total number of accumulated clicks for all ad
spaces throughout all days within the specified period for all
combinations of publishers, websites and ad spaces. Thus, in
order to answer the query stated above, we just have to add
the scores of values m:p:w:*clicks ∈ Q, where ∗ symbolizes
all ad spaces that belong to web site w of publisher p with
manager m.

The disadvantage of the method above is that we need
to search for all elements with pattern m:p:w:*clicks ∈ Q
using regular expressions or other parsing techniques, and
then add all their associated scores. This is time-consuming
and expensive in terms of resources as we need to load all
elements in Q to memory and perform the search operation
for the pattern in a separate application. In order to address
this problem, we store a M:P:W:S(m,p,w, ∗) set, which
contains all combinations of the requested dimension ids in
the form of m:p:w:*clicks. Then, we can simply perform an
intersection between M:P:W:S(m,p,w, ∗) and Q, and sum

the scores of the members in the resulting set

Q’ = M:P:W:S(m,p,w, ∗) ∩Q (3)

In practice, we map the function M:P:W:S(m,p,w,*) to a set
in Redis whose key follows the pattern M:m:P:p:W:w:S.
Please note that M:P:W:S(m,p,w,*) is a regular set, while
Q and Q’ are sorted sets. In our context, the intersection
between a sorted set and a regular set results in a sorted
set whose members are present in both sets, while retaining
the score they had on the sorted set. For example, let us
assume that the clicks registered between date1 and date2
are contained in the sorted set

Q =

m1:p1:w1:s1clicks=2,m1:p1:w1:s2clicks=7,
m1:p2:w2:s3clicks=4,m1:p2:w2:s5clicks=5,
m2:p3:w3:s7clicks=3,m2:p3:w4:s8clicks=6

 (4)

and that all combinations of ids for web site w2 of publisher
p2 with manager m1 that have so far experienced events such
as clicks and views during the entire history of the system
are given by

M:P:W:S(m1,p2,w2, ∗) =


m1:p2:w2:s3clicks,
m1:p2:w2:s4clicks,
m1:p2:w2:s5clicks,
m1:p2:w2:s6clicks

 (5)

Then, the resulting set Q’ is denoted by

Q’ =
{

m1:p2:w2:s3clicks=4,m1:p2:w2:s5clicks=5
}

(6)

The amount of clicks for this particular combination of
manager, publisher and website between date1 and date2
is 9. For this example, the combinations m1:p2:w2:s4clicks
and m1:p2:w2:s6clicks did not occur during the specified
period of time and thus, were not included in either Q
or Q’. However, they might have appeared if a larger
time range had been specified. In our implementation, we
initialize M:P:W:S(m,p,w,*) as an empty set and update it
each time an event occurs in the system. Since adding or
checking whether a member exists within a set is a constant
time operation, this does not degrade the performance of
the system. In this way, M:P:W:S(m,p,w,*) only contains
combinations for which data is available, which in turn
allows us to efficiently perform the intersection operation.

B. Approach 2

A simpler and faster alternative to the previous approach
would be storing the desired combination of keys to an-
swer the report query in a unique sorted set as well. In
that case we would not need to perform any intersection
operation over ad spaces but only set unions over time.
Thus, for the previous example, if we stored a-priori the
sorted set “M:P:W(time)” with the corresponding values
“m:p:wclicks” and their scores inside, we could answer the
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previous question by simply performing a union operation
over the time period as follows:

Q’ =
date2⋃

d=date1

M:P:W(d) (7)

As the union operation automatically performs an addition
of the scores, after it finishes we just need to look at
the score associated to the “m:p:wclicks” combination we
are interested in. This approach is considerably faster and
simpler, but it is more expensive in terms of resources as
more sorted sets need to be created.

C. Approach 3

A third approach to deal with this type of queries is simply
naming the sorted sets, not by using generic dimension
names as done by the first two approaches, but instead by
naming them using the individual ids of the dimensions
of interest and storing the facts in them. Hence, in the
case of the above example, a sorted set could be named as
M:P:W(m,p,w, time slot), and in it we can store “clicks
(with score), views (with score)”, where the score in each
value represents the total number of clicks and views,
respectively, accumulated during the period of time defined
by time slot for that unique combination of dimension ids
(m and p). Furthermore, in this case it makes even more
sense to keep only the keys of the deep-most branches
and their combinations, as the less granular queries can be
answered by performing simple union operations over their
child sorted sets:

date2⋃
d=date1

M:P:W(m,p,w, d) (8)

The main difference with the first approach is that in this
case it is not necessary to look for the specific combination
of keys inside the resulting set but this output set will readily
provide the value of interest. The disadvantage is that it
creates considerably more sorted sets than in the first two
approaches.

D. Non-aggregate events

In all of the above examples, sorted sets and union
operations work well since clicks and views correspond to
events that are aggregate statistics. But, this is not true for
all the cases, like unique users for instance. So, how can we
answer a query like: “what is the number of unique users
that clicked on campaign resource r from campaign c ran by
advertiser a between date1 and date2?”. We cannot simply
add the number of daily unique users throughout the whole
comprehended period, because a given unique user could
access the system at two or more different time slots. For this
case, we do not actually need neither sorted sets nor scores
but normal sets defined, for instance, as in Approach 3, with
the only difference that instead of the basic keys, we can

Figure 3. Performance comparison for Query #1.

Figure 4. Performance comparison for Query #2.

directly store the non-aggregate statistic of interest (user id
in this case) inside sets like the one described below.

Users:A:C:R(a, c, r, time slot) = {user1, . . . , usern}
(9)

The example set above stores the unique users detected per
time slot (1 hour in this case) for the combination campaign
resource r, campaign c and advertiser a. Thus, whenever
there is a new view for that combination of dimension ids,
we simply store the user id into the set. If the user id is
already an element in the set then no change takes place.
If the user id is not an element in the set, it is added to
it. To answer the example query stated above we only need
to get the cardinality of the resulting set U from the union
operation over the whole time period as stated below:

|U| =

∣∣∣∣∣
date2⋃

d=date1

Users:A:C:R(a, c, r, d)

∣∣∣∣∣ (10)

V. TESTS AND RESULTS

The proposed system was implemented on Redis 2.4.2 for
a real ad server application running on Ruby on Rails 2.3.10
and MySQL [3]. The models previously used as example
in this paper come from the same platform but have been
pruned and much simplified for the sake of clarity.
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A. Experimental settings

To assess the performance of our three proposed ap-
proaches, we present a set of seven sample queries for our
ad server application, which cover many relevant cases in-
volving multidimensional data so that other specific queries
can be easily derived from them.

• Query 1: What is the total number of clicks and views
between any two dates date1 and date2 for campaign
resource r from campaign c owned by Advertiser a and
Manager m?

• Query 2: What is the total number of clicks and
views between any two dates date1 and date2 on the
advertising space s owned by Publisher p and Manager
m when shown on applications?

• Query 3: What is the number of clicks and views
between any two dates date1 and date2 for campaign
resource r from campaign c owned by Advertiser a
when shown in web sites on the ad space s owned by
Publisher p and Manager m?

• Query 4: What is the number of clicks and views
between any two dates date1 and date2 for campaign
resource r from campaign c owned by Advertiser a
when shown on all ad spaces of all websites owned by
Publisher p and Manager m?

• Query 5: What is the number of clicks and views
between any two dates date1 and date2 for the whole
campaign c owned by Advertiser a when shown in
applications on the ad space s owned by Publisher p
and manager m?

• Query 6: What is the number of unique users that
clicked on any campaign resource from campaign c
owned by Advertiser a when shown on applications
in ad space s owned by Publisher p and Manager m?

• Query 7: What is the number of unique users that
clicked on all campaign resources owned by Advertiser
a when shown on all ad spaces owned by publisher p
and manager m?

The data used for all queries correspond to real production
data taken from September 1st, 2011 through November
30th, 2011, i.e. exactly three months.

In a first performance measurement attempt, an open-
source ROLAP database based on a Pentaho’s Mondrian
server [4] running on top of the MySQL database holding
the ad server application’s data was set up and tested. Its
performance, however, was rather slow when answering the
seven example queries taking in average between one and
three minutes. In view of the situation, an optimized ROLAP
database was setup by providing the underlying MySQL
database with pre-computed tables holding all the measures
of interest (clicks and views) per hour and, furthermore,
either provide or not the MySQL data with tailored indexes
to answer each of the seven queries. This optimized MySQL
database provided to Mondrian is denoted as optimized

Figure 5. Performance comparison for Query #3.

Figure 6. Performance comparison for Query #4.

ROLAP and it is the benchmark against which our approach
is compared.

One of the most relevant Redis functionalities is the policy
for automatic deletion of keys in the database. Our system
should only keep sorted sets that are frequently consulted or
queried, and at the same time automatically remove those
that are seldom seen or used. Fortunately, Redis provides
a set of policy options to automatically remove keys so
that the amount of memory allocated to the databases is
never exceeded. In our implementation we have set the least
used resource policy so that when the system reaches its
maximum allocated memory, it can start removing the least
used sorted sets from the database.

B. Experimental Results

Briefly, the first five queries (Figures 3 through 7) cor-
respond to aggregate statistics (clicks and views) while the
last two (Figures 8 and 9) are associated with non-aggregate
statistics (unique users). For the former five the performance
of the three approaches described in Sections IV-A, IV-B
and IV-C is measured and compared with the optimized
ROLAP (with indexed and non-indexed MySQL data) with
pre-computed tables holding all the measures of interest per
hour. For the last two queries, the performance of the non-
aggregate statistics method described in Section IV-D is also
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Figure 7. Performance comparison for Query #5.

Figure 8. Performance comparison for Query #6.

benchmarked against the same optimized ROLAP.
The maximum resolution chosen for our application is

one hour. Thus, the sorted sets of the three proposed
approaches are named using the time dimension elements
hour, day, month and year. That means we can always
access pre-computed aggregate data in those time scales for
any combination of dimension ids used in our sorted sets.
From Figures 12 and 13, one can see that the ratio among
the three proposed approaches in terms of both memory-
usage and number of created sorted sets in Redis is roughly
1:3:6, for approaches 1, 2 and 3, respectively. Regarding the
execution time for the seven sample queries, first of all it
is important to remark that the abrupt falls in the execution
time every 30 days are due to the use of our pre-computed
aggregate monthly data in our system. It can be observed in
the results that our proposed approaches 2 and 3 are faster
than appropriately indexed MySQL in all cases except in
the case of Query 3. This is because Query 3 corresponds
to the most granular query in our system as it involves
all single nodes in the ORM from the root to the bottom
leafs in all branches. As such, it is required to perform a
union operation on large sets of per-day aggregate data with
hundreds of elements each. Despite this, we can see that,
even in case of Query 3, our system outperforms properly
indexed optimized ROLAP most of the times. In the context

Figure 9. Performance comparison for Query #7.

Figure 10. Number of elements in sets for Query 1.

of this paper, properly indexed means with indexes tailored
for the incoming queries.

It is interesting to observe that in the case of queries 6
and 7 for non-aggregate statistics, the proposed approach
is more than 10 times faster than non-indexed optimized
ROLAP, and 5 times faster than indexed optimized ROLAP
for three months of data. For this approach, however, the
system needs to create a large amount of sets, making
the system inefficient from a memory usage point of view.
Figures 10 and 11 show the total number of set elements
for approaches 1, 2 and 3 when answering the first and
second queries. As it can be seen in Figure 10, the number
of elements in approaches 1 and 2 is exactly the same for
Query 1, but substantially differ in Query 2, as shown in
Figure 11. This is because Query 1 involves a combination
of dimensions directly included in the basic set of keys,
while for answering Query 2 new sets must be created in
Approach 1. These new sets are created by union operations
over the basic-key sets, as the combination of dimensions
requested in the query involves only partial branches from
the relational tree. This also explains the execution time of
Approach 1 being considerably larger than Approach 2 in
queries 2 and 5 (Figures 4 and 7, respectively).
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Figure 11. Number of elements in sets for Query 2.

C. Discussion of Results

As expected, the results show that Approach 3 is the
fastest among all three (in all cases its execution time falls
between 100 and 200 microseconds), but at the same time
it is very inefficient in terms of memory: it consumes thrice
as much as Approach 2 and six times as Approach 1. On
the other hand, Approach 2 uses only twice the memory of
Approach 1 but significantly outperforms it in terms of query
execution time for all sample queries. Hence, Approach 2
is a much better performance compromise than Approach 1
and a very good alternative in comparison with Approach 3
when the memory usage is a big issue. That does not mean,
however, it is impractical to use Approach 3 or Approach 1
in all kind of scenarios since as it can be observed in
Fig. 12 the consumption of memory increases linearly with
the amount of stored data for the three approaches. Thus,
Approach 3 can be used in applications that feature a small
number of RDB tables - i.e. a small number of sorted sets in
Redis - with a lot of data inside while Approach 1 becomes
attractive in applications where very granular queries are
common since that means full-path queries in the proposed
Redis data structure would be used more often.

Our results show that the speed of MySQL considerably
improves after appropriately indexing the database on dif-
ferent dimensions to match those of the concerning query.
However, it is well known that it is inefficient to keep
many composite indexes especially on databases subject
to frequent INSERTs, UPDATEs and DELETEs (as in our
case) and furthermore, it is impractical to keep composite
indexes for all possible multidimensional queries. Problems
related to multi-column indexes in relational databases are
well documented in the literature [11], but these topics are
beyond the scope of this paper. A big advantage of the
proposed system is that it does not have to pre-compute any
sorted set but it creates them on the fly as the queries arrive
following one of the described approaches. That means no
further delay is introduced by our system in order to build
the sorted sets as it works on the caching layer from the
application’s viewpoint and no data has to be transferred

Figure 12. Memory usage.

Figure 13. Number of keys.

from the RDB to the proposed system in a cold start.

VI. CONCLUSIONS AND FUTURE WORK

This paper has proposed and analyzed a new method
to map a relational database into sorted sets on a key-
value store database in order to create OLAP-like reporting
systems. The four approaches described to map relational
databases and their OLAP facts into sorted sets in key-
value store databases for both aggregate and non-aggregate
statistics are easily applicable to any conventional RDB
structure. Our implementation in Redis shows that the pro-
posed system is fast, surpassing properly indexed MySQL, to
answer complex multidimensional queries for both aggregate
and non-aggregate data. Furthermore, the flexibility of the
database schema and the presence of automatic key deletion
policies make the implementation very efficient. In our
view the proposed scheme opens an innovative way to deal
with complex data visualization and reporting systems based
on multidimensional data using key-value store databases.
Future work will aim at better algorithms to tune the system,
studying alternatives for distributed systems based on other
key-value data stores and reduce the amount of memory used
by sets related to non-aggregate data.
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